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Subventricular zone (SVZ) progenitors are a hallmark of the
developing neocortex. Recent studies described a novel type of
SVZ progenitor that retains a basal process at mitosis, sustains
expression of radial glial markers, and is capable of self-renewal.
These progenitors, referred to here as basal radial glia (bRG), occur
at high relative abundance in the SVZ of gyrencephalic primates
(human) and nonprimates (ferret) but not lissencephalic rodents
(mouse). Here, we analyzed the occurrence of bRG cells in the
embryonic neocortex of the common marmoset Callithrix jacchus,
a near-lissencephalic primate. bRG cells, expressing Pax6, Sox2
(but not Tbr2), glutamate aspartate transporter, and glial fibrillary
acidic protein and retaining a basal process at mitosis, occur at
similar relative abundance in the marmoset SVZ as in human and
ferret. The proportion of progenitors in M-phase was lower in
embryonic marmoset than developing ferret neocortex, raising the
possibility of a longer cell cycle. Fitting the gyrification indices of 26
anthropoid species to an evolutionary model suggested that the
marmoset evolved from a gyrencephalic ancestor. Our results
suggest that a high relative abundance of bRG cells may be
necessary, but is not sufficient, for gyrencephaly and that the
marmoset’s lissencephaly evolved secondarily by changing pro-
genitor parameters other than progenitor type.
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Introduction

A fundamental question in developmental neurobiology is how

the expansion of the neocortex that occurred during the

evolution of mammals is related to the types, numbers, and

modes of division of cortical stem and progenitor cells (Rakic

1995, 2000, 2009; Kriegstein et al. 2006; Abdel-Mannan et al.

2008; Fish et al. 2008; Lui et al. 2011). These cells have been

classified based on the location of their cell bodies, their site of

mitosis, and the extent of cell polarity (Kriegstein and Alvarez-

Buylla 2009; Fietz and Huttner 2011). The primary neural stem

and progenitor cells in the neocortex, as elsewhere in the neural

tube, are the neuroepithelial (NE) cells. NE cells exhibit apical--

basal cell polarity, contact both apical (ventricular) and basal

(pial) surfaces of the developing neocortex, their cell bodies

constitute the ventricular zone (VZ), and their mitoses occur at

the apical surface. With the onset of cortical neurogenesis, NE

cells transform into the highly related radial glial (RG) cells.

Because of their common site of mitosis, both NE and RG cells

have been collectively referred to as apical progenitors (APs).

APs undergo repeated symmetric and subsequently asymmetric

divisions, indicative of a high potential for self-renewal (Götz and

Huttner 2005; Pinto and Götz 2007; Kriegstein and Alvarez-Buylla

2009; Fietz and Huttner 2011).

A hallmark of the developing neocortex is the abundant

occurrence of a second class of neural progenitors that divide

in an abventricular (basal) location, which are referred to as

basal progenitors (BPs) (Fietz and Huttner 2011) or interme-

diate progenitor cells (IPCs) (Kriegstein and Alvarez-Buylla

2009) and are typically found in the subventricular zone (SVZ)

(Cheung et al. 2010). In lissencephalic rodents such as mouse

and rat, BPs typically lack overt apical--basal cell polarity. The

vast majority of rodent BPs divide only once in a self-consuming

manner, generating 2 postmitotic neurons, which indicates

their virtual lack of self-renewing potential (Kriegstein and

Alvarez-Buylla 2009; Fietz and Huttner 2011).

Triggered by the seminal study of Smart et al. (2002)

describing the cytoarchitectonic differences between the inner

SVZ (ISVZ) and the outer SVZ (OSVZ) in primates, 3 laboratories

independently reported on the main cell biological features of

a novel neural progenitor type thought to be characteristic of

the OSVZ (Fietz et al. 2010; Hansen et al. 2010; Reillo et al.

2011). These progenitors, referred to as OSVZ progenitors

(Lukaszewicz et al. 2005; Fish et al. 2008; Fietz et al. 2010; Fietz

and Huttner 2011; Shitamukai et al. 2011), outer RG cells

(Hansen et al. 2010; Wang et al. 2011), or intermediate RG cells

(Reillo et al. 2011), divide like rodent BPs in an abventricular

(basal) location, typically the SVZ. However, in contrast to the

vast majority of rodent BPs, these novel progenitor cells exhibit

cell polarity, being monopolar cells that lack an apical process

but retain a basal process at mitosis (Fietz and Huttner 2011).

Other features that distinguish them from typical rodent BPs are

the sustained expression of the transcription factors Pax6 and

Sox2 and of RG cell markers and the lack of expression of the

transcription factor Tbr2 (Fietz et al. 2010; Hansen et al. 2010;

Reillo et al. 2011). As these progenitors are not confined to the

OSVZ but also occur in the ISVZ of human (and ferret, see

below) neocortex (Fietz et al. 2010; Reillo et al. 2011), we shall
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refer to them henceforth as basal RG (bRG) cells rather than

‘‘OSVZ progenitors’’ or ‘‘outer RG.’’

bRG cells appear to be endowed with self-renewing

potential, as they have been observed to undergo repeated

asymmetric divisions (Hansen et al. 2010; Reillo et al. 2011). In

fact, interference with extracellular matrix-induced integrin

signaling was found to specifically reduce the pool size of bRG

cells, suggesting that their potential for self-renewal may be

linked to the retention of the basal process (Fietz et al. 2010).

While the OSVZ as a distinct layer in terms of cytoarchi-

tecture, being separated from the ISVZ by an inner fiber layer,

was originally suggested to be specific to the developing

neocortex of primates (Smart et al. 2002), the cell biological

characterization of bRG cells has revealed that their occur-

rence as such is not confined to primates. Thus, bRG

progenitors have been observed in the developing neocortex

of the ferret (Fietz et al. 2010; Reillo et al. 2011) and, very

recently, the mouse (Shitamukai et al. 2011; Wang et al. 2011).

Importantly, however, the abundance of bRG cells is strikingly

different between the species analyzed so far. Whereas in the

developing human and ferret neocortex bRG progenitors

constitute about half of all mitotic SVZ progenitors (Fietz

et al. 2010; Hansen et al. 2010; Reillo et al. 2011), they

constitute only a minute fraction of mitotic SVZ progenitors in

the developing mouse neocortex (Shitamukai et al. 2011; Wang

et al. 2011). Given that human and ferret are gyrencephalic,

whereas mouse is lissencephalic, these observations have

raised the possibility that an abundant occurrence of bRG

progenitors in the SVZ may be a characteristic feature of

developing gyrencephalic (as opposed to lissencephalic) neo-

cortex (Fietz et al. 2010; Reillo et al. 2011; Fietz and Huttner

2011). This possibility would be consistent with the notion that

the potential of SVZ progenitors for self-renewal is linked to

the retention of the basal process (Fietz et al. 2010).

A key question thus arising is: what is the abundance of bRG

cells in the SVZ of a lissencephalic primate? To address this

question, we have analyzed the neocortex of the common

marmoset Callithrix jacchus, a near-lissencephalic primate, at

various stages of embryonic development. We show that the

abundance of bRG cells in the marmoset SVZ is similar to that in

the developing gyrencephalic human and ferret neocortex,

suggesting that a frequent occurrence of bRG cells, while

perhaps necessary, is not sufficient, for gyrencephaly. Moreover,

an evolutionary analysis suggests that the marmoset may have

evolved from a gyrencephalic ancestor. Together, our data are

consistent with the concept that changes in multiple parame-

ters, including progenitor type and abundance as well as cell

cycle kinetics and number, determine whether the neocortex

develops to become lissencephalic or gyrencephalic.

Materials and Methods

Marmoset Embryos

Animal Maintenance and Timed Pregnancies

For embryonic stages E40 and E95, marmoset monkeys (C. jacchus)

were raised in the institutional breeding facility of the Centre of

Reproductive Medicine and Andrology (Bunk et al. 2011). Breeding,

maintenance, and experimental procedures were performed in accor-

dance with the German Federal Law on the Care and Use of Laboratory

Animals. A license for the marmoset breeding colony was obtained from

local authorities (Veterinär- und Lebensmittelüberwachungsamt der Stadt

Münster). The license to sacrifice marmosets as tissue donors for scientific

experiments was granted by the responsible review board: Landesamt für

Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen (Permit

number: 8.87-50.10.46.09.018). In accordance with the recommendations

of the Weatherall report, ‘‘The use of non-human primates in research,’’

every effort was made to alleviate animal discomfort and pain. The stages

of marmoset embryos were determined on the basis of breeding time and

embryo size.

For embryonic stages E78 and E92, fixed brains were provided by E.S.

All animal experiments were approved by the institutional animal care

and user committee and were performed in accordance with

institutional guidelines for animal experiments. The ovarian cycles

were synchronized using the prostaglandin F2a analog cloprostenol

(0.75 mg/head Estrumate; Schering-Plough Animal Health, Union, NJ),

which was administered in the luteal phase, 10 days after ovulation.

Plasma samples (0.1 mL) were collected from the femoral vein at 9, 11,

and 13 days after the injection of cloprostenol, and the day of ovulation

was determined by measurement of plasma progesterone concen-

trations using an enzyme immunoassay (TOSO Progesterone Kit, TOSO,

Tokyo, Japan) according to the manufacturer’s protocol. Ovulation (day

0) was defined as the day prior to the rise of plasma progesterone levels

above 10 ng/mL (Harlow et al. 1983). Embryos were collected 4--5 days

after ovulation as previously described (Thomson et al. 1994). To obtain

fetuses of uniform size, 2 embryos were nonsurgically transferred to

surrogate mothers that were synchronized with regard to their

ovulation cycles (Marshall et al. 1997).

For embryonic stages E85 and E100, fixed embryonic brains were

obtained from the Wisconsin National Primate Center in Madison, WI

(E85) and the German Primate Center in Götingen, Germany (E100).

The stages of embryos were determined on the basis of breeding time

and embryo size.

Sacrifice and Caesarean Section

For embryo stages E40 and E95, pregnant mothers were anesthetized

with ketamin/xylazin and killed by exsanguination. Embryos were

dissected, and the whole brain was removed from the skull. After

dissection, the brains were immediately put in fixative.

For embryo stages E78 and E92, pregnant mothers were immobilized

by intramuscular injection of 25 lg/head of atropine sulfate (0.5 mg/

mL; Mitsubishi Tanabe Pharma Corporation, Osaka, Japan) and 70 mg/

kg of ketamine hydrochloride (Veterinary Ketalar 50; Sankyo Lifetech

Co., Ltd., Tokyo, Japan). Thereafter, animals were anesthetized by

inhalation of 1--3% of isoflurane (Forane; Abbott Japan, Tokyo, Japan) via

a ventilation mask. Anesthetization management was performed by

spontaneous respiration during the operation, monitoring the heart

rate and the arterial oxygen saturation. The uterus was exteriorized

following midline laparotomy, and the proximal end of the uterus was

incised for the Caesarean section. After the Caesarean section, the

uterus, abdominal muscles, and skin were sutured. Embryonic brains

were dissected in ice-cold phosphate-buffered saline (PBS), removing

the meninges, and transferred to fixative.

Fixation

After dissection, marmoset E40 and E95 brains were immersed in 4%

paraformaldehyde (PFA) (w/v) in PBS and left in fixative for 24 h at 4 �C
with mild agitation. After fixation, the brains were kept at 4 �C in

a mixture of 3 parts PBS containing 0.01% NaN3 and 1 part 4% PFA in

120 mM sodium phosphate buffer pH 7.4.

For marmoset stages E78, E85, E92 and E100, the hemispheres were

immersed in 4% PFA in phosphate buffer. The tissue was left at room

temperature for an hour, transferred to 4 �C, and kept at that

temperature with mild agitation. Brains were maintained in fixative

for 24 h (E78, E92, and E100) or 3 months (E85) and then removed

from fixative, rinsed in 120 mM phosphate buffer, transferred to 0.5%

PFA in phosphate buffer containing 0.01% NaN3, and kept at 4 �C until

processed.

Immunohistochemistry
In addition to marmoset brains fixed as described above, E13.5 mouse

brains and E39 and P1 ferret brains were obtained, PFA fixed and

subjected to immunohistochemistry as described previously (Pulvers

and Huttner 2009; Fietz et al. 2010; Arai et al. 2011). For cryosectioning,
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fixed brains (marmoset, ferret) were cryoprotected, first in 15% sucrose

in PBS and then in 30% sucrose in PBS at 4 �C. Brains were embedded in

Tissue-Tek (Sakura Finetek) and stored at –20 �C. Sections were cut at

10 lm (marmoset E40), 12 lm (marmoset E78 and E92, ferret E39), and

20 lm (marmoset E95, ferret P1) and stored at –20 �C. For vibratome

sectioning, fixed brains (marmoset, mouse, ferret) were embedded in

3% (marmoset E78, E92, E95, mouse E13.5, ferret E39) or 4% (marmoset

E85) low-melting agarose in PBS, cut at 50 lm (marmoset E78, E92), 60

lm (marmoset E85), or 100 lm (marmoset E95, mouse E13.5, ferret

E39), and stored in PBS with the addition of NaN3 until further

processing. Paraffin-embedded brains of marmoset E85 were cut at 5

lm and stored at room temperature until further processing. Cryotome

sections of marmoset E100 tissue were cut at 50 lm.

Cryosections and paraffin sections were washed in PBS and subjected to

antigen retrieval. Antigen retrieval was performed in a water bath in 0.01

M sodium citrate buffer (pH 6.0) supplemented with 10% (v/v) glycerol

for 1 h at 70 �C. Free-floating vibratome sections were heated in 0.01 M

sodium citrate buffer for 30 min at 85 �C. After heating, the sections were

left standing in the antigen retrieval solution for 20 min at room

temperature. Sections were then washed in PBS, permeabilized in 0.3%

Triton X-100 (w/v) in PBS for 30 min at room temperature, quenched

with 0.1 M glycine for 30 min at room temperature, and further subjected

to immunocytochemistry as previously described (Kosodo et al. 2004).

Primary antibodies were incubated overnight at 4 �C and secondary

antibodies were incubated for 1 h at room temperature. The following

primary antibodies were used: rabbit antibodies to Pax6 (Covance, PRB-

278P, 1:200), Tbr2 (Abcam, ab23345, 1:200), Sox2 (Abcam, ab97959,

1:200), glutamate aspartate transporter (GLAST)-1 (Invitrogen, 42-8100,

1:200), proliferating cell nuclear antigen (PCNA) (Abcam, ab2426, 1:200),

phosphohistone H3 (Millipore, 06-570, 1:200), Par3 (Millipore, 07-330,

1:200), Ki67 (Novocastra, NCL-Ki67p, 1:200); mouse monoclonal anti-

bodies to phosphovimentin (Abcam, ab22651, 1:200), PCNA (Chemicon,

MAB424, 1:100), glial fibrillary acidic protein (GFAP) clone G-A-5 (Sigma,

G3893, 1:200), ZO-1 (Invitrogen, 33-9100, 1:200); goat polyclonal antibody

to Sox2 (R&D Systems, AF2018, 1:100); and rat monoclonal antibody to

phosphohistone H3 (Abcam, ab10543, 1:300). Donkey secondary anti-

bodies coupled to Alexa 488, Alexa 555, or Alexa 647 were used

(Molecular Probes, 1:500). All sections were counterstained with 4’, 6-

diamidino-2-phenylindole (DAPI) (Sigma, 1:500). Sections were mounted

in Prolong Gold Antifade reagent (Invitrogen) and kept at 4 �C.

DiI Labeling
DiI labeling was performed as described (Fietz et al. 2010) with minor

modifications. PFA-fixed vibratome sections (100 lm) of E95 marmoset

neocortex in PBS were immobilized in a plastic dish using a metal grid

(Warner Instruments). DiI (Vybrant Multicolor Cell-Labeling Kit, Molec-

ular Probes) was injected under the meninges using a glass capillary and

an Eppendorf Transjector (model 5246) attached to an InjectMan NI2

micromanipulator. Injection was performed under microscopic control

(203, Axiovert 200, Zeiss). Sections were incubated for 6 days in the dark

in 4% PFA in 120 mM sodium phosphate buffer pH 7.4 at 37 �C. After
incubation, sections were washed in PBS, stained with DAPI (1:500 in PBS,

1 h at room temperature), washed in PBS, and mounted as above.

Image Acquisition
Confocal images were acquired using a Zeiss LSM 710 or a Zeiss LSM

700 single-photon point-scanning confocal system using a 203, 403, or

633 objective or a confocal spectral microscope Leica SP2 AOBS.

Images were taken as either 2.4 lm (203), 1.2 lm (403), or 0.9 lm
(633) single optical sections. Images taken as tile scans were stitched

together using the ZEN software (Zeiss) or a stitching plug-in

(Preibisch et al. 2009) in Fiji (http://pacific.mpi-cbg.de). Conventional

fluorescence microscopy images were obtained using a Leica CTR5000

microscope. Quantifications were performed using Fiji software,

ImageJ or Neurolucida. Images are oriented with the apical surface of

the cortical wall facing downwards.

Determination of Layers in the Cortical Wall and Cell Counting
The VZ was identified as a densely packed cell layer lining the ventricle.

The nuclei in this layer exhibited radial morphology, which was more

prominent at earlier embryonic stages. The zone basally adjacent to the

VZ, the SVZ/ISVZ, was identified by a less radial orientation of nuclei as

compared with the VZ and by a distinct pattern of nuclear packing. The

OSVZ was defined as a layer consisting of nuclei more radially aligned

than the ones found in the ISVZ and was also distinguishable by

a different nuclear density as compared with the ISVZ. The in-

termediate zone (IZ) was identified as a cell-sparse layer situated basally

to the SVZ/OSVZ. Similarly, the subplate (SP) was distinguishable as

a layer with distinct nuclear pattern basally to the IZ. The densely

packed zone with distinct nuclear orientation located basally to the IZ

or SP was identified as the cortical plate.

All cell counts were done using Fiji software and a specially

developed Multiclass Cell Counter plug-in. The fluorescence signal

was counted without using pseudocolor. Cell counting was confined to

the dorsolateral telencephalon. Data were further processed using

Prism software (GraphPad Software).

Comparative Phylogenetic Analysis
We collected the gyrification index (GI) values of 23 anthropoid

species (Zilles et al. 1989). In addition, we calculated the GI values for 3

other anthropoid species—Callicebus moloch, Alouatta palliata, and

Mandrillus sphinx—using data published at http://brainmuseum.org.

The latter GI values were calculated as described previously (Zilles

et al. 1988). We used 13--19 coronal Nissl-stained sections, equally

spaced along the anterior--posterior axis of the brain. The outer and

inner contours were traced in Fiji. The GI values of all species analyzed

are listed in Supplementary Table 1.

To infer the ancestral GI values for these species, we required both

phylogenetic topology and branch length information for the extant

species because their membership in the nested hierarchy of

a phylogeny implies that they are not statistically independent.

Therefore, we assembled an anthropoid phylogeny using topology

and branch lengths estimated previously (Perelman et al. 2011) based

on ~8 Mb of genomic sequence (Supplementary Fig. 1; the tree file is

available in Newick format in Supplementary File 1, with branch lengths

equal to maximum likelihood estimates of the number of nucleotide

substitutions per site). When only the genus was known for a particular

GI value, we took the average species branch length for all members of

that genus in the phylogeny. This phylogeny was then converted into

an ultrametric chronogram in which the branch lengths are pro-

portional to evolutionary time using the R package ‘‘APE’’ (Paradis et al.

2004).

The ancestral GI values were then estimated by fitting an

evolutionary model to the GI values for the extant species. This model

assumes that evolutionary change along each branch of the phylogeny

follows a Brownian process in which the change in character value in

any generation is independent of changes at prior generations

(Felsenstein 1985). An additional assumption of the model is that

there is a constant rate of evolution along each branch of the

phylogeny. The model parameters were fitted by maximum likelihood

(Schluter et al. 1997) using the ancestral character estimation (ace)

function in APE.

Results

Abundant Occurrence of Pax6- and Sox2-Expressing
Progenitor Cells in the E95 Marmoset SVZ

Given that Pax6 expression is one of the characteristic features

of bRG cells (Fietz et al. 2010; Hansen et al. 2010; Reillo et al.

2011), we first examined the embryonic marmoset neocortex

for the occurrence of Pax6-positive cells. At any of the 4

developmental stages investigated (E40, E78, E92, and E95),

virtually all cells in the VZ, including cells undergoing mitosis at

the ventricular surface, were Pax6 positive (Fig. 1A,D,H,J,L).

These observations are consistent with the notion that

marmoset neocortical APs express Pax6, as do neocortical

APs in other mammals.
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Figure 1. Distribution of Pax6-, Sox2-, and Tbr2-expressing progenitor cells in the VZ, SVZ, ISVZ, and OSVZ of marmoset neocortex at various embryonic stages. (A,B) E40,
10-lm cryosections. (A) Immunofluorescence for Pax6 (red/white). (B) Double immunofluorescence for Tbr2 (red/white) and phosphohistone H3 (PH3, green). (C--F) E78, 12-lm
cryosections. Double immunofluorescence for Sox2 (red/white) and PH3 (green) (C), Pax6 (red/white) and PH3 (green) (D), and Tbr2 (red/white) and PH3 (green) (E). (F) Double
immunofluorescence for Sox2 (red/white) and PH3 (green/white), showing selected mitotic progenitor cells (arrowheads) in the SVZ (top row) and VZ (bottom row) at higher
magnification. (G) E85, 5-lm paraffin section. Immunofluorescence for Sox2 (red/white). (H) E92, 12-lm cryosection. Double immunofluorescence for Pax6 (red/white) and PH3
(green). (I) E100, 50-lm cryotome section. Immunofluorescence for Tbr2 (red/white). (J--M) E95, 20-lm cryosections. Double immunofluorescence for either Pax6 (red/white)
(J,L) or Tbr2 (red/white) (K,M) and PH3 (green). Panels L and M show selected mitotic progenitor cells (arrowheads) in the SVZ (top row) and VZ (bottom row) at higher
magnification; note the Tbr2-negative mitotic AP (dashed line). (N--P) Quantification of Pax6-positive (Pax6þ) mitoses (N), Sox2-positive (Sox2þ) mitoses (O), and Tbr2-positive
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Regarding the SVZ, at E40, we observed a slender layer of

nuclei basal to the VZ containing nuclei immunoreactive for the

BP marker Tbr2 (Fig. 1B). This layer also appeared to contain

a few Pax6-positive nuclei (Fig. 1A). However, the slenderness of

this layer at this early developmental stage precluded de-

termining whether the latter nuclei belonged to APs or bRG cells.

At E78, an SVZ was well discernible, with most nuclei being

Tbr2 positive (Fig. 1E). Many of the nuclei in the E78 SVZ also

showed Pax6 immunoreactivity, albeit at a lower level than the

VZ nuclei (Fig. 1D). Immunostaining for the transcription

factor Sox2, which is known to be expressed by neocortical

APs (Ellis et al. 2004) and by human bRG cells (Hansen et al.

2010), revealed that many of the E78 SVZ nuclei were also Sox2

positive (Fig. 1C,F), albeit at a lower level than the VZ nuclei, as

was the case for E85 SVZ nuclei (Fig. 1G).

At E92, E95, and E100, the thickness of the SVZ in the radial

dimension had increased substantially and that of the VZ had

decreased as compared with earlier developmental stages

(Fig. 1H--K). Most, if not all, of the nuclei in the E92 and E95

SVZ showed Pax6 immunoreactivity, with the majority at

a level similar to the VZ nuclei (Fig. 1H,J,L). Many of the E92

(data not shown), E95 (Fig. 1K,M), and E100 (Fig. 1I) SVZ

nuclei were also Tbr2 positive.

To corroborate that the Pax6- and Sox2-positive cells in the

embryonic marmoset SVZ were indeed progenitor cells, that is,

undergoing mitoses, we quantified Pax6-positive and Sox2-

positive mitoses and, for comparison, Tbr2-positive mitoses, as

revealed by phosphohistone H3 immunostaining. Interestingly,

at E92, the shape and distribution of nuclei across the SVZ was

consistent with the existence of distinct layers reminiscent of

an ISVZ and OSVZ (Fig. 1H; see also Fig. 4D), as described

previously for other primates (Smart et al. 2002; Lukaszewicz

et al. 2005; Fietz et al. 2010; Hansen et al. 2010; Reillo et al.

2011). The distinction between ISVZ and OSVZ became more

obvious by E95 (Fig. 1J,K; see also Fig. 4E). Thus, in the apical

region of the SVZ (amounting to approximately one-quarter to

one-third of the entire SVZ), tentatively referred to as ISVZ,

nuclei often exhibited a distinct pattern of packing and were

less radially aligned than in the VZ. By contrast, in the basal

region of the SVZ (amounting to approximately 3-quarters to

two-thirds of the entire SVZ), tentatively referred to as OSVZ,

nuclei exhibited a pattern of packing distinct from the ISVZ

and appeared more radially aligned, resembling the VZ. For E92

and E95, we therefore separately quantified Pax6-, Sox2-, and

Tbr2-positive mitoses for the ISVZ and OSVZ.

At E78 through E95, almost all mitoses at the ventricular

surface of the VZ, that is, AP divisions, were Pax6 and Sox2

positive and Tbr2 negative (Fig. 1N--P), in line with data on

neocortical APs in other mammals (Englund et al. 2005;

Kowalczyk et al. 2009; Fietz et al. 2010; Hansen et al. 2010;

Reillo et al. 2011; Arai et al. 2011). Remarkably, almost all

mitoses in the E78 SVZ and E92--E95 ISVZ and OSVZ were Pax6

positive (Fig. 1N). Sox2-positive mitoses accounted for 40--60%

of all mitoses in the E78--E85 SVZ and E92 ISVZ and OSVZ and

increased to almost 80% in the E95 ISVZ and OSVZ (Fig. 1O). In

contrast, the proportion of Tbr2-positive mitoses decreased

from �80% in the E78 SVZ to �40% in the E92--E95 ISVZ and

OSVZ (Fig. 1P). Together, these data raised the possibility that

as much as about half of the progenitor cells in the embryonic

marmoset SVZ are bRG cells (Pax6+/Sox2+/Tbr2–), which

occurred at similar relative abundance in the ISVZ and OSVZ

when these zones were discernible.

Marmoset SVZ Progenitor Cells Express Cytoplasmic
Markers of RG

We sought to obtain further evidence in support of the RG

nature of progenitor cells in the embryonic marmoset SVZ by

immunostaining for GLAST and GFAP, 2 cytoplasmic markers of

canonical RG cells (Kriegstein and Götz 2003) that have

previously been shown to be also expressed in human and

ferret bRG cells (Fietz et al. 2010; Hansen et al. 2010). At E78,

we observed abundant GLAST immunoreactivity in the cell

bodies of VZ progenitors, including mitotic cells at the

ventricular surface (Fig. 2A,B), and in RG fibers extending

toward the basal lamina (Fig. 2A). This indicated that RG cells in

marmoset, as in other mammals, express GLAST. In addition, we

could discern some cell bodies in the SVZ that were GLAST

positive (Fig. 2A,C).

At E95, the occurrence of GLAST immunoreactivity in SVZ

progenitor cell bodies was much more obvious and included

mitotic cells (Fig. 2D,F), as was the case for the VZ (Fig. 2D,E).

The evidence for the expression of RG markers in the SVZ was

particularly strong in the case of GFAP, the level of

immunoreactivity of which was higher in the SVZ than VZ

(Fig. 2D--F). Together, these data indicate that a substantial

proportion of progenitor cells in the marmoset E95 SVZ

express cytoplasmic RG markers, consistent with them

exhibiting properties of bRG cells.

A High Proportion of Progenitor Cells in the E95
Marmoset SVZ Retain a Basal Process at Mitosis

A hallmark of human and ferret bRG cells is the retention of

a basal process throughout the cell cycle, including M-phase

(Fietz et al. 2010; Hansen et al. 2010). If the abundantly

occurring Pax6+/Sox2+/Tbr2–, cytoplasmic RG marker--

expressing progenitors in the E95 marmoset SVZ were bRG

cells, one would expect them to show basal process retention

at M-phase. We investigated this by immunostaining vibratome

sections for phosphovimentin, which has previously been used

to detect basal processes of mitotic neural progenitors

(Howard et al. 2006; Fietz et al. 2010; Hansen et al. 2010).

At E78 and E85, a phosphovimentin-positive basal process

could be detected in only few of the mitotic progenitor cells in

the SVZ, whereas such a process was frequently detected in the

VZ (Fig. 3A--F,L). Interestingly, the frequency of mitotic

progenitor cells retaining a basal process in the marmoset

SVZ increased progressively from E78 to E95, with similar

frequency in ISVZ and OSVZ when these zones were

(Tbr2þ) mitoses (P) at E78, E85, E92, and E95 as indicated, each expressed as a percentage of total mitoses in the VZ (gray), SVZ (light blue), ISVZ (medium blue), and OSVZ
(dark blue). Numbers of quantified cells (marker/total) were as follows: Pax6: E78 (2 brains) VZ 314/327, SVZ 45/48; E92 (1 brain) VZ 88/91, ISVZ 22/29, OSVZ 66/85; E95 (2
brains) VZ 65/66, ISVZ 53/55, OSVZ 101/105. Sox2: E78 (2 brains) VZ 200/201, SVZ 21/37; E85 (3 brains) VZ 356/375, SVZ 45/109; E92 (1 brain) VZ 55/61, ISVZ 6/17, OSVZ 26/
49; E95 (2 brains) VZ 38/40, ISVZ 18/24, OSVZ 72/108. Tbr2: E78 (2 brains) VZ 8/393, SVZ 52/63; E92 (1 brain) VZ 1/106, ISVZ 23/48, OSVZ 54/147; E95 (2 brains) VZ 11/83,
ISVZ 28/57, OSVZ 79/185. E85 Sox2: data are the mean of 3 brains, bars indicate standard error of the mean. E78, E95 Pax6, Sox2, and Tbr2: data are the mean of 2 brains, bars
indicate the variation of the individual values from the mean. All sections were counterstained with DAPI (blue). Cortical plate (CP), SP, IZ, SVZ, OSVZ (O), ISVZ (I) and VZ are
indicated. All panels except G and I are single optical sections: (A--F,L,M) 1.2 lm, (H,J,K) 2.4 lm. Scale bars: 5 lm (F,L,M), 20 lm (A--E,H), and 100 lm (G,I,J,K).
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discernible (Fig. 3L). Thus, not only the majority of mitotic APs

in the VZ but also about �35% of the mitotic progenitor cells in

the ISVZ and OSVZ of E95 marmoset retained a phosphovi-

mentin-positive basal process (Fig. 3G--I,L). Phosphovimentin

immunostaining of cryotome sections indicated that this

proportion increased to �50% for the E100 marmoset OSVZ

(data not shown).

The basal process--bearing mitotic progenitor cells in the E95

marmoset VZ (Fig. 3M) and SVZ (Fig. 3N) were Pax6 positive but

Tbr2 negative, as observed previously for ferret and human

(Fietz et al. 2010; Hansen et al. 2010). Importantly, the

abundance of basal process--retaining mitotic progenitor cells

in the E95 marmoset SVZ was similar to that in the embryonic

ferret and human SVZ (Fig. 3O) (Fietz et al. 2010; Hansen et al.

2010) and markedly different from that in the embryonic mouse

SVZ, in which <5% of mitotic SVZ progenitor cells retain a basal

process (Fig. 3O) (Shitamukai et al. 2011; Wang et al. 2011).

We used DiI labeling from the pial side of E95 marmoset

neocortex to determine whether the basal processes emanat-

ing from cell bodies located in the SVZ actually reached the

basal lamina. This revealed that such processes indeed

extended all the way to the pial surface (Fig. 3J,K). Taken

together, our data on the expression of transcription factors

(Fig. 1) and RG markers (Fig. 2) as well as the presence of

a basal process (Fig. 3A--O) indicate that bRG cells occur in the

E95 marmoset SVZ at relatively high abundance.

Human and ferret bRG cells have previously been shown

to lack apical cell polarity and an apical process extending to

the ventricular surface (Fietz et al. 2010; Hansen et al. 2010;

Reillo et al. 2011). The same was the case for E95 marmoset

neocortex, as no apical process extending to the ventricular

surface could be detected on DiI-labeled basal process--

bearing SVZ cells (Fig. 3J,K). Moreover, immunostaining for

Par3 and ZO-1, 2 apical polarity markers, revealed that E95

marmoset SVZ progenitors lacked apical polarity. Thus, Par3

and ZO-1 immunoreactivity was found to be clustered at the

ventricular surface but was not detectable above background

levels in the SVZ (Fig. 3P). We conclude that, as in the case of

Figure 2. Expression of cytoplasmic markers of RG cells in SVZ progenitor cells of marmoset neocortex at various embryonic stages. (A--C) E78, 12-lm cryosection. Double
immunofluorescence for phosphohistone H3 (PH3, green/white) and GLAST (red/white). Boxes in A indicate areas of the VZ and SVZ shown at higher magnification in B and C,
respectively. Asterisk in C indicates a GLAST-expressing SVZ cell. (D--F) E95, 20-lm cryosections. Triple immunofluorescence for GLAST (red/white), PH3 (green/white), and
GFAP (white). Arrowheads and dashed lines indicate cell bodies of mitotic cells at the ventricular surface (E) and in the OSVZ (F). All sections were counterstained with DAPI
(blue/white). Cortical plate (CP), SP, IZ, SVZ, OSVZ (O), ISVZ (I), and VZ are indicated. All images are single optical sections: (A--C) 1.2 lm, (D) 2.4 lm, and (E,F) 0.9 lm. Scale
bars: 10 lm (B,C,E,F), 20 lm (A), and 100 lm (D).
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Figure 3. Occurrence of basal process--retaining progenitor cells in the SVZ of marmoset neocortex at various embryonic stages. (A--C) E78, 50-lm vibratome section.
Immunofluorescence for phosphovimentin (Ph-vim, green/white). Boxes in A (lower panel) indicate areas of SVZ and VZ shown at higher magnification in B and C, respectively.
Images are maximum intensity projection of 40 1.2 lm--thick single optical sections. Solid arrowhead, basal process--bearing mitotic progenitor cell in SVZ; open arrowhead,
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human and ferret SVZ progenitor cells (Fietz et al. 2010;

Hansen et al. 2010; Reillo et al. 2011), marmoset bRG cells are

monopolar, exhibiting basal but not apical cell polarity (Fietz

and Huttner 2011).

Cytoarchitecture of E92--E100 Marmoset Neocortex
Reveals Existence of an ISVZ and OSVZ

The description, in a gyrencephalic primate, of the OSVZ

as a distinct germinal zone in terms of cytoarchitecture

(Smart et al. 2002) triggered the characterization of bRG

cells as a novel type of neural progenitor as defined by

marker expression and cell biological properties (Fietz et al.

2010; Hansen et al. 2010; Reillo et al. 2011). Given the

abundant occurrence of bRG cells in the E95 marmoset

SVZ, it was therefore of interest to examine whether the

cytoarchitecture of the embryonic marmoset neocortex

would be consistent with the existence of an OSVZ. Indeed,

although the relative abundance of bRG cells in the

apical versus basal regions of the E95 marmoset SVZ was

essentially the same (Figs 1N--P and 3L), DAPI staining, as

well as Tuj1 immunostaining, revealed a cytoarchitecture in

the E95--E100 marmoset SVZ (corroborated as a germinal

layer by PH3, phosphovimentin, PCNA, and/or Ki67 immu-

nostaining [data not shown]) that was reminiscent of an ISVZ

and an OSVZ, each characterized by a distinct pattern of

nuclear packing and alignment (see above) (Fig. 4E--I). At

E92, ISVZ and OSVZ started to become discernible (Fig. 4D).

At the earlier embryonic stages at which the marmoset

SVZ was less developed, such distinct zones were not

obvious (Fig. 4A--C). Our data are consistent with the

presence of ISVZ- and OSVZ-like zones in the E92--E100

marmoset neocortex (even if not all criteria of the original

definition [Smart et al. 2002] may be fulfilled). However,

although bRG cells were originally thought to be character-

istic of the OSVZ (Smart et al. 2002; Fietz et al. 2010; Hansen

et al. 2010; Reillo et al. 2011; Fietz and Huttner 2011), in

light of the data on the quantification of bRG cells in the E95

ISVZ versus OSVZ (Figs 1N--P and 3L), we further conclude

that the existence of an OSVZ does not allow to make

predictions as to the abundance, in the ISVZ versus OSVZ, of

bRG cells as defined by marker expression and cell biological

properties.

Reduced Abundance of Progenitor Cells in M-Phase in the
Embryonic Marmoset Neocortex

In the above shown phosphohistone H3 immunostainings used

to identify progenitor cells in mitosis, we had noticed a relative

scarcity of mitotic progenitors in single optical sections of the

marmoset VZ and SVZ (Figs 1 and 2). We therefore quantified

the proportion of cycling cells and of cells in M-phase in the VZ

and SVZ of E78, E92, and E95 marmoset and, for comparison,

of E39 and P1 ferret, which contains the same principal types of

progenitor cells at similar abundance and develops a brain of

similar size.

For the embryonic marmoset VZ, the proportion of cycling

cells, as revealed by PCNA immunostaining (Fig. 5A,B), was

found to be at least as high as for the VZ in the developing

ferret neocortex (Fig. 5D). In the marmoset SVZ, the pro-

portion of cycling cells was even higher than in the ferret SVZ

(Fig. 5D). By contrast, the proportion of cells in M-phase, as

revealed by phosphohistone H3 immunostaining (Fig. 5A,B),

was lower in the E95 marmoset VZ and SVZ than in the VZ and

SVZ, respectively, of developing ferret neocortex (Fig. 5C).

Accordingly, the marmoset VZ and SVZ exhibited a markedly

lower level of cells in M-phase when expressed as a proportion

of cycling (PCNA-positive) cells than the ferret VZ and SVZ

(Fig. 5E). The same was the case when another marker of

cycling cells, Ki67, was used as denominator (Fig. 5F). On the

assumption that the length of M-phase is similar for marmoset

and ferret neocortical progenitor cells, these data would

suggest that the cell cycle of marmoset neocortical progenitor

cells is longer than that of ferret.

Ancestral GI Estimates Suggest that the Marmoset May Be
Secondarily Lissencephalic

The data obtained on the abundance of bRG cells in the

developing marmoset neocortex (Figs 1--3) prompted us to

explore the possibility that the lissencephaly of the marmoset

may be a secondary trait, that is, may have evolved from

gyrencephaly along the lineage leading to C. jacchus. To this

end, we first collected or determined the GIs of 26 extant

anthropoid species (Supplementary Table 1). We then inferred

the putative GI values of the ancestors of these species by

fitting an evolutionary model to the GI values of the latter

(Fig. 6). This yielded an estimated GI value of 1.75 ± 0.21 for the

mitotic progenitor cell in SVZ lacking a basal process. Note basal processes emanating from mitotic APs in C. (D--F) E85, 60-lm vibratome section. Immunofluorescence for
phosphovimentin (Ph-vim, green/white). Boxes in D (lower panel) indicate areas of SVZ and VZ shown at higher magnification in E and F, respectively. Images were obtained by
conventional fluorescence microscopy. Solid arrowhead, basal process--bearing mitotic progenitor cell in SVZ. Note basal processes emanating from mitotic APs in F. (G--I) E95,
100-lm vibratome section. Immunofluorescence for phosphovimentin (green/white). Boxes in G indicate areas of SVZ and VZ shown at higher magnification in H and I,
respectively. Images are maximum intensity projection of 21 2.4 lm--thick single optical sections. Solid arrowhead, basal process--bearing mitotic progenitor cell in SVZ; open
arrowhead, mitotic progenitor cell in SVZ lacking a basal process. Note basal processes emanating from mitotic APs in I. (J,K) E95, 100-lm vibratome section. DiI labeling (green/
white) from pial side (green arrowhead). Dashed box in J (right panel) indicates the area of the cortical wall shown at higher magnification in K. Note the cell body (solid
arrowhead) in the SVZ extending a basal process (open arrowheads) to the pial surface. Images are maximum intensity projection of 26 2.4 lm--thick single optical sections.
(A,D,G,J) All sections were counterstained with DAPI (blue). Cortical plate (CP), SP, IZ, SVZ, and VZ are indicated. (L) Quantification, after phosphovimentin immunostaining, of
basal process--bearing mitotic cells in the VZ (gray), SVZ (light blue), ISVZ (medium blue), and OSVZ (dark blue) at E78, E85, E92, and E95. Basal process--bearing mitoses are
expressed as a percentage of total mitoses in the respective layer. Numbers of quantified cells (basal process bearing/total) were as follows: E78 (2 brains) VZ 164/446, SVZ 1/
51; E85 (3 brains) VZ 380/598, SVZ 7/49; E92 (1 brain) VZ 83/148, ISVZ 7/30, OSVZ 36/141; E95 (2 brains) VZ 175/303, ISVZ 76/229, OSVZ 242/633. E85: data are the mean of 3
brains, bars indicate standard error of the mean (SEM); E78, E95: data are the mean of 2 brains, bars indicate the variation of the individual values from the mean. (M,N)
Quantification of Pax6 (left bars) and Tbr2 (right bars) expression in phosphovimentin-immunostained basal process--bearing cells in the E95 VZ (gray, M) and SVZ (light blue, N).
Data are from one brain. Numbers of quantified cells (Pax6þ or Tbr2þ basal process--bearing (BPþ) mitoses/total BPþ mitoses) were as follows: Pax6 VZ 91/91, SVZ 48/49;
Tbr2 VZ 1/38, 0/36. (O) Comparison of the relative abundance of basal process--bearing mitotic cells in the SVZ of E13.5 mouse, E39 ferret, 13wpc human, and E95 marmoset.
Basal process--bearing mitoses are expressed as a percentage of total mitoses. Numbers of quantified cells (basal process bearing/total) were as follows: mouse E13.5 (4 brains)
17/431, ferret E39 (1 brain) 49/104, and marmoset E95 (2 brains) 318/862. Mouse E13.5 (M): data are the mean of 4 brains, bars indicate SEM; ferret E39 (F): data are the mean
of 3 sections from one brain, bars indicate SEM; marmoset E95 (Ma): data are the mean of 2 brains, bars indicate the variation of the individual values from the mean. Data for
human 13wpc (H) were taken from Figure 3d of Fietz et al. (2010). (P) E95, 20-lm cryosection. Triple immunofluorescence for Par3 (red/white), ZO-1 (white), and
phosphohistone H3 (PH3, green/white), combined with DAPI staining (blue/white). Upper row, SVZ; lower row, VZ. Note the concentration of markers of apical polarity at the
apical surface. Images are 1.2 lm--thick single optical sections. Scale bars: 5 lm (B,C,E,F,H,I), 10 lm (P), 20 lm (A,D,K), 50 lm (J), and 100 lm (G).
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ancestor of the 26 anthropoid species compared with the GI

value of 1.17 observed for C. jacchus (see Supplementary

Table 2). These data are consistent with the possibility that

during primate evolution, gyrencephaly may have been

secondarily lost in certain lineages including that leading to

C. jacchus.

Discussion

Our study shows that bRG cells occur in the SVZ of marmoset,

a near-lissencephalic primate, at much greater relative abun-

dance than in the SVZ of mouse (Shitamukai et al. 2011; Wang

et al. 2011), a lissencephalic rodent, and at similar relative

abundance as in the SVZ of human (Fietz et al. 2010; Hansen

et al. 2010), a gyrencephalic primate, and ferret (Fietz et al.

2010; Reillo et al. 2011), a gyrencephalic nonprimate. Pre-

viously, the possibility has been discussed that the occurrence

of bRG cells in the SVZ at high relative abundance may be an

underlying cause of gyrencephaly (Fietz et al. 2010; Reillo et al.

2011; Fietz and Huttner 2011). In this regard, the present data

leave us with 2 principal lines of interpretation. First, an

abundance of bRG cells may not be linked to the appearance of

gyrencephaly. Second, an abundance of bRG cells may be

related to the appearance of gyrencephaly, but this relationship

is more complex than previously assumed. Specifically, our

findings are consistent with the concept that an abundance

of bRG cells may be necessary, but is not sufficient, for

gyrencephaly, as will be discussed below.

It has been known that the occurrence of bRG cells at high

relative abundance does not correlate with the extent of

gyrencephaly and of neocortical expansion in general. Thus,

bRG cells occur at similar relative abundance in the embryonic

Figure 4. Cytoarchitecture of marmoset neocortex at various embryonic stages. Immunofluorescence for bIII-tubulin (Tuj1, right panels) combined with DAPI staining (left
panels) at E40 (A, 10-lm cryosection), E78 (B, 12-lm cryosection), E85 (C, 5-lm paraffin section), E92 (D, 12-lm cryosection), E95 (E, 20-lm cryosection), and E100
(F--I, 50-lm cryotome section). Boxes in F (right panel) indicate areas of OSVZ, ISVZ, and VZ shown at higher magnification in G, H, and I, respectively. Cortical plate (CP), SP, IZ,
SVZ, OSVZ, ISVZ, and VZ are indicated. Images are 1.2 lm--thick single optical sections (A,B,D) or are conventional fluorescence microscopy images (C,E--I). Scale bars: 10 lm
(A), 20 lm (B,C), 50 lm (D,G--I), and 100 lm (E,F).
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ferret and human SVZ (�50% in either species) (Fietz et al.

2010; Hansen et al. 2010; Reillo et al. 2011), yet the extent of

gyrencephaly in these 2 mammals is vastly different. It follows

that other parameters, such as the number of cell cycles that

each bRG cell undergoes and/or the population size and cell

cycle number of progenitor cells downstream of bRG cells

(Hansen et al. 2010), critically determine the extent of

gyrencephaly and of neocortical expansion.

Nonetheless, our study offers a possible explanation to

reconcile the near-lissencephalic shape of the marmoset neo-

cortex with the occurrence of bRG cells in the SVZ at similar

abundance as in the gyrencephalic ferret and human neocortex.

Specifically, the marmoset neocortex may be secondarily

lissencephalic, perhaps reflecting the marmoset’s relatively small

body size. In other words, the marmoset may have evolved from

a gyrencephalic ancestor by phyletic dwarfing (Ford 1980) and,

due to the reduction in body size, may have been able to retain

the same cortical surface-to-body volume ratio as its ancestor by

developing a lissencephalic neocortex. Indeed, our analysis of the

relationship between various anthropoid species with regard to

their GI suggests that a common ancestor of these species would

have exhibited a medium-level gyrencephalic neocortex, with

some anthropoid species including marmoset subsequently

becoming less gyrencephalic and others including human

Figure 5. Comparison of cycling cells and cells in M-phase in embryonic marmoset and embryonic/postnatal ferret neocortex. (A,B) Double immunofluorescence for
phosphohistone H3 (PH3) and PCNA of (A) E39 (left, 12-lm cryosection) and P1 (right, 20-lm cryosection) ferret neocortex and (B) E78 (left, 12-lm cryosection) and E95 (right,
20-lm cryosection) marmoset neocortex. All sections were counterstained with DAPI for quantification (data not shown). Cortical plate (CP), IZ, SVZ, and VZ, as well as
ventricular surface (dashed lines), are indicated on PH3 images. Except for marmoset E78, the top margin of the images corresponds to the boundary between IZ and SP/CP.
Arrowheads in B indicate PH3-positive cells. All images are 1.2 lm-- (B, left) or 2.4 lm--thick (A,B, right) single optical sections. Scale bars: 20 lm (B, left), 50 lm (A), and
100 lm (B, right). (C--F) Quantification of cycling and mitotic cells in the VZ (gray) and SVZ (blue) of E39 (2 brains) and P1 (1 brain) ferret (Fer) and E78 (1 brain), E92 (1 brain),
and E95 (C--E, 2 brains; F, 1 brain) marmoset (Mar) neocortex. (C) Quantification of PH3-positive (PH3þ) cells, expressed as percentage of DAPI-stained (DAPIþ) cells. Numbers
of quantified cells (PH3þ/DAPIþ) were as follows: Ferret E39 VZ 17/1392, SVZ 14/2850; ferret P1 VZ 19/1140, SVZ 16/2374; marmoset E78 VZ 58/5050, SVZ 14/2904;
marmoset E92 VZ 31/3604, SVZ 38/5694; marmoset E95 VZ 21/3239, SVZ 35/11226. (D) Quantification of PCNA-positive (PCNAþ) cells, expressed as percentage of DAPI-
stained (DAPIþ) cells. Numbers of quantified cells (PCNAþ/DAPIþ) were as follows: Ferret E39 VZ 1060/1392, SVZ 788/2850; ferret P1 VZ 1351/2335, SVZ 1877/6646;
marmoset E78 VZ 4602/4915, SVZ 1190/2224; marmoset E92 VZ 3278/3604 SVZ 3377/5694; marmoset E95 VZ 2138/3239, SVZ 3903/11226. (E) Quantification of PH3-positive
(PH3þ) cells, expressed as percentage of PCNA-positive (PCNAþ) cells. Numbers of quantified cells (PH3þ/PCNAþ) were as follows: Ferret E39 VZ 17/1060, SVZ 14/788; ferret
P1 VZ 19/785, SVZ 16/739; marmoset E78 VZ 58/4602, SVZ 10/1190; marmoset E92 VZ 31/3278 SVZ 38/3377; marmoset E95 VZ 21/2138, SVZ 35/3903. (F) Quantification of
PH3-positive (PH3þ) cells, expressed as percentage of Ki67-positive (Ki67þ) cells. Numbers of quantified cells (PH3þ/Ki67þ) were as follows: Ferret P1 VZ 18/487, SVZ 23/
655; marmoset E95 VZ 6/318, SVZ 13/868. E39 ferret and E95 marmoset (C--E): data are the mean of 2 brains, bars indicate the variation of the individual values from the mean.
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becomingmore gyrencephalic (Fig. 6). Thus,while themarmoset’s

lissencephaly has been viewed as a primitive trait (Stellar 1960),

our evolutionarymodel suggests that it maywell be a derived trait.

As a corollary of our concept, an abundance of bRG cells may well

be characteristic of primates and other gyrencephalic species if

one assumes that this abundance in the near-lissencephalic

marmoset neocortex is counteracted by changes in other pro-

genitor cell parameters.

Candidates for such parameters include the population size

of neurogenic progenitor cells and the number of neurogenic

divisions that each of these progenitor cells undergoes. In this

context, we found that the proportion of cycling cells that

were in M-phase was lower in embryonic marmoset than

developing ferret neocortex. On the assumption that M-phase

comprises a similar proportion of the cell cycle in marmoset

and ferret neocortical progenitor cells, these data raise the

possibility that the cell cycle of marmoset neocortical pro-

genitor cells may be longer than that of ferret. Given that

alterations in cell cycle length have been implicated in cortical

development and expansion (Götz and Huttner 2005; Dehay

and Kennedy 2007), it will be important to directly determine

the cell cycle length of marmoset neocortical progenitors and

compare it with other, lissencephalic and gyrencephalic,

primate and nonprimate species.

Another candidate parameter contributing to lissencephaly

versus gyrencephaly may be the time course of the change in

the relative proportion of SVZ progenitor cells to VZ pro-

genitor cells during neocortical development. Analyzing pre-

vious (Fietz et al. 2010) and present data, we noticed that the

preponderance of the SVZ over the VZ in terms of radial

thickness follows a different time course in embryonic

marmoset compared with embryonic human or ferret (Fig. 7).

At E92, and even more so at E95 and E100, the cytoarch-

itecture of the marmoset SVZ, as apparent from DAPI and Tuj1

stainings, allowed us to distinguish between an ISVZ and an

OSVZ. Yet, the relative abundance of bRG cells, as apparent

from basal process--bearing/Sox2-positive/Tbr2-negative mito-

ses, was essentially the same for ISVZ and OSVZ. This not only

underscores that referring to these progenitor cells as bRG

cells rather than OSVZ progenitors or outer RG appears to be

appropriate. It also reveals that cytoarchitecture does not

necessarily allow one to make reliable predictions as to the

abundance of a given progenitor type.

On a more general note, our study constitutes an effort to

trace the origins of gross morphological features of the brain to

fundamental cellular properties. Our results are consistent with

the notion that gyrencephaly may be an evolutionarily labile

trait, reflecting, perhaps, the relative ease with which neural

progenitor cell parameters can be modified. This notion would

be in line with the view that evolution often is a process of

‘‘tinkering’’ with available modules rather than inventing de

novo (Jacob 1977). Given that transgenic techniques for the

common marmoset have recently been developed (Sasaki et al.

Figure 6. GI estimates for the ancestors of 26 anthropoid species. Ancestral GI
values are indicated by colored circles at the root and internal nodes of the phylogeny
(see color scale at bottom). For details, see Materials and Methods. Numbers in
colored circles refer to node numbers (for the GI values associated with these nodes,
see Supplementary Table 2), and branches are drawn proportional to time. The
marmoset species analyzed in this study (Callithrix jacchus) is highlighted in red.

Figure 7. Radial thickness ratio of SVZ/VZ during embryonic development of human,
ferret, and marmoset neocortex. Radial thickness of the VZ and SVZ was measured
using the images shown in Figure 1d--k (human, A) and Figure 1n--s (ferret, B) of Fietz
et al. (2010) and Figure 4A--F (marmoset, C). At each developmental stage, radial
thickness values of the VZ (black areas) and SVZ (gray areas) are expressed as
percentage of the sum of VZ þ SVZ.
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2009), the significance of bRG cells for the development of the

marmoset neocortex can be addressed by genetic manipulation

in the future.

Supplementary Material

Supplementary material can be found at: http://www.cercor.

oxfordjournals.org/
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