20 research outputs found

    Sectorización trófica en las rías baixas (NW España): nutrientes en aguas y en macroalgas

    Get PDF
    Marine eutrophication caused by an excess supply of nutrients is a serious problem in many coastal areas throughout the world. In the present study we used the capacity of macroalgae (Ulva and Enteromorpha) to integrate the nutrient regime of a water body in order to examine the trophic categorization in the embayments studied. We found that the trophic categorization established based on nutrient levels in macroalgae differed from that established based on concentrations in the water. The waters of the innermost areas of the inlets were the most nutrient enriched; the algae appeared to be more affected by specific local conditions and did not display the gradient of decreasing nutrient concentrations from inner to outer areas that was observed in the water samples. The lack of correspondence between nutrients in the water and in the algae in the present study may have been due to the heterogeneous nutrient conditions found in coastal areas, so that the intertidal algae did not adequately reflect the nutrient levels of the inner zones of the embayments under study.La eutrofización marina, originada por un excesivo aporte de nutrientes, está considerada actualmente como un grave problema en numerosas áreas costeras de todo el mundo. En este estudio empleamos la capacidad de las macroalgas (Ulva y Enteromorpha) de integrar el régimen nutritivo de un cuerpo de agua para realizar una sectorización trófica de las bahías estudiadas. Los resultados de la sectorización trófica en función de las macroalgas fueron diferentes a la establecida en función de las concentraciones de nutrientes en agua. Las zonas más internas de las rías fueron las más enriquecidas en cuanto a nutrientes en agua, pareciendo estar las algas más afectadas por condiciones locales específicas, éstas no siguen el gradiente de concentración del interior al exterior que se observaba en el agua. La falta de correspondencia entre los nutrientes en agua y algas en este estudio puede ser debido a la gran heterogeneidad en las condiciones nutritivas que encontramos en áreas costeras, de forma que las muestras de algas intermareales no hayan reflejado adecuadamente los niveles de nutrientes del interior de las masas de agua estudiadas

    Spatially valid data of atmospheric deposition of heavy metals and nitrogen derived by moss surveys for pollution risk assessments of ecosystems

    Get PDF
    For analysing element input into ecosystems and associated risks due to atmospheric deposition, element concentrations in moss provide complementary and time-integrated data at high spatial resolution every 5 years since 1990. The paper reviews (1) minimum sample sizes needed for reliable, statistical estimation of mean values at four different spatial scales (European and national level as well as landscape-specific level covering Europe and single countries); (2) trends of heavy metal (HM) and nitrogen (N) concentrations in moss in Europe (1990–2010); (3) correlations between concentrations of HM in moss and soil specimens collected across Norway (1990–2010); and (4) canopy drip-induced site-specific variation of N concentration in moss sampled in seven European countries (1990–2013). While the minimum sample sizes on the European and national level were achieved without exception, for some ecological land classes and elements, the coverage with sampling sites should be improved. The decline in emission and subsequent atmospheric deposition of HM across Europe has resulted in decreasing HM concentrations in moss between 1990 and 2010. In contrast, hardly any changes were observed for N in moss between 2005, when N was included into the survey for the first time, and 2010. In Norway, both, the moss and the soil survey data sets, were correlated, indicating a decrease of HM concentrations in moss and soil. At the site level, the average N deposition inside of forests was almost three times higher than the average N deposition outside of forests

    Modelling spatial patterns of correlations between concentrations of heavy metals in mosses and atmospheric deposition in 2010 across Europe

    Get PDF
    Background: This paper aims to investigate the correlations between the concentrations of nine heavy metals in moss and atmospheric deposition within ecological land classes covering Europe. Additionally, it is examined to what extent the statistical relations are affected by the land use around the moss sampling sites. Based on moss data collected in 2010/2011 throughout Europe and data on total atmospheric deposition modelled by two chemical transport models (EMEP MSC-E, LOTOS-EUROS), correlation coefficients between concentrations of heavy metals in moss and in modelled atmospheric deposition were specified for spatial subsamples defined by ecological land classes of Europe (ELCE) as a spatial reference system. Linear discriminant analysis (LDA) and logistic regression (LR) were then used to separate moss sampling sites regarding their contribution to the strength of correlation considering the areal percentage of urban, agricultural and forestry land use around the sampling location. After verification LDA models by LR, LDA models were used to transform spatial information on the land use to maps of potential correlation levels, applicable for future network planning in the European Moss Survey. Results: Correlations between concentrations of heavy metals in moss and in modelled atmospheric deposition were found to be specific for elements and ELCE units. Land use around the sampling sites mainly influences the correlation level. Small radiuses around the sampling sites examined (5 km) are more relevant for Cd, Cu, Ni, and Zn, while the areal percentage of urban and agricultural land use within large radiuses (75–100 km) is more relevant for As, Cr, Hg, Pb, and V. Most valid LDA models pattern with error rates of < 40% were found for As, Cr, Cu, Hg, Pb, and V. Land use-dependent predictions of spatial patterns split up Europe into investigation areas revealing potentially high (= above-average) or low (= below-average) correlation coefficients. Conclusions: LDA is an eligible method identifying and ranking boundary conditions of correlations between atmospheric deposition and respective concentrations of heavy metals in moss and related mapping considering the influence of the land use around moss sampling sites

    Biomonitorización de la calidad del aire

    No full text
    VI Reunión Nacional de Climatología. Asociación de Geógrafos Españoles. Santiago de Compostela, 14-16 de septiembre de 200

    A meta-analysis approach to the effects of fish farming on soft bottom polychaeta assemblages in temperate regions

    No full text
    Marine fish farms could cause environmental disturbances on the sediment due to uneaten food and fish faeces that impact the marine benthos. Polychaete assemblages are considered good indicators of environmental perturbations. The present study aimed to establish groups of polychaetes as potential indicators of fish farm pollution. This study was carried out in ten fish farms along the Spanish coast. Changes in polychaete assemblage were analyzed with meta-analysis and multivariate techniques. Abundance, richness and diversity showed significant decreases under fish farm conditions. Distribution patterns of polychaetes responded to combinations of physicochemical variables. The main ones are sulfide concentration, silt and clays percentage, and stable nitrogen isotope ratio. The results showed that some families are tolerant, Capitellidae, Dorvilleidae, Glyceridae, Nereididae, Oweniidae and Spionidae; while others are sensitive to fish farm pollution, Magelonidae, Maldanidae, Nephtyidae, Onuphidae, Paralacydoniidae, Paraonide, Sabellidae and also Cirratulidae in spite of being reported as a tolerant family.This study is part of the project “Selección de indicadores, determinación de valores de referencia, diseño de programas y protocolos de métodos y medidas para estudios ambientales en acuicultura marina” and was funded by the “Spanish National Plans of Aquaculture” (JACUMAR)
    corecore