45 research outputs found

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Radiographic case report of a heart transplanted patient suffering from COVID-19

    No full text
    In context of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), patients with certain comorbidities and high age, as well as male sex are considered to represent the risk group for severe course of disease. Corona-virus disease 2019 (COVID-19) typical CT-patterns include bilateral, peripheral ground glass opacity (GGO), septal thickening, bronchiectasis, consolidation as well as associated pleural effusion. We report a 77-year-old heart transplanted patient with confirmed COVID-19 infection and coronary heart disease, diabetes type II and other risk factors. Notably, only slight clinical symptoms were reported and repeated computed tomography (CT) scans showed an atypical course of CT findings during his hospitalization

    Long-term evaluation of pain reduction after vertebroplasty and kyphoplasty

    No full text
    Background: Various studies have been made about the most effective and safest type of treatment for vertebral compression fractures (VCFs). Long-term results are needed for qualitative evaluation. Purpose: The purpose of the study is to evaluate the effectiveness of percutaneous vertebroplasty (PVP) and percutaneous kyphoplasty (PKP) procedures for VCFs. Materials and Methods: Forty-nine patients who received either PVP or PKP between 2002 and 2015 returned a specially developed questionnaire and were included in a cross-sectional outcome analysis. The questionnaire assessed pain development by use of a visual analog scale (VAS). Imaging data (CT scans) were retrospectively analyzed for identification of cement leakage. Results: Patients’ VAS scores significantly decreased after treatment (7.0 ± 3.4 => 3.7 ± 3.4), (p 1.4 ± 1.6), (p = 0.008). Thirty-nine patients reported an increase in mobility (79.6%) and 41 patients an improvement in quality of life (83.7%). Conclusion: Pain reduction by means of PVP or PKP in patients with VCFs was discernible over the period of observation. Percutaneous vertebroplasty and PKP contribute to the desired treatment results. However, the level of low pain may not remain constant

    Evaluation of two different transarterial chemoembolization protocols using Lipiodol and degradable starch microspheres in therapy of hepatocellular carcinoma: a prospective trial

    No full text
    Background: This prospective randomized trial is designed to compare the performance of conventional transarterial chemoembolization (cTACE) using Lipiodol-only with additional use of degradable starch microspheres (DSM) for hepatocellular carcinoma (HCC) in BCLC-stage-B based on metric tumor response. Methods: Sixty-one patients (44 men; 17 women; range 44–85) with HCC were evaluated in this IRB-approved HIPPA compliant study. The treatment protocol included three TACE-sessions in 4-week intervals, in all cases with Mitomycin C as a chemotherapeutic agent. Multiparametric magnetic resonance imaging (MRI) was performed prior to the first and 4 weeks after the last TACE. Two treatment groups were determined using a randomization sheet: In 30 patients, TACE was performed using Lipiodol only (group 1). In 31 cases Lipiodol was combined with DSMs (group 2). Response according to tumor volume, diameter, mRECIST criteria, and the development of necrotic areas were analyzed and compared using the Mann–Whitney-U, Kruskal–Wallis-H-test, and Spearman-Rho. Survival data were analyzed using the Kaplan–Meier estimator. Results: A mean overall tumor volume reduction of 21.45% (± 62.34%) was observed with an average tumor volume reduction of 19.95% in group 1 vs. 22.95% in group 2 (p = 0.653). Mean diameter reduction was measured with 6.26% (± 34.75%), for group 1 with 11.86% vs. 4.06% in group 2 (p = 0.678). Regarding mRECIST criteria, group 1 versus group 2 showed complete response in 0 versus 3 cases, partial response in 2 versus 7 cases, stable disease in 21 versus 17 cases, and progressive disease in 3 versus 1 cases (p = 0.010). Estimated overall survival was in mean 33.4 months (95% CI 25.5–41.4) for cTACE with Lipiosol plus DSM, and 32.5 months (95% CI 26.6–38.4), for cTACE with Lipiodol-only (p = 0.844), respectively. Conclusions: The additional application of DSM during cTACE showed a significant benefit in tumor response according to mRECIST compared to cTACE with Lipiodol-only. No benefit in survival time was observed

    Potential of high dimensional radiomic features to assess blood components in intraaortic vessels in non-contrast CT scans

    No full text
    Background: To assess the potential of radiomic features to quantify components of blood in intraaortic vessels to non-invasively predict moderate-to-severe anemia in non-contrast enhanced CT scans. Methods: One hundred patients (median age, 69 years; range, 19–94 years) who received CT scans of the thoracolumbar spine and blood-testing for hemoglobin and hematocrit levels ± 24 h between 08/2018 and 11/2019 were retrospectively included. Intraaortic blood was segmented using a spherical volume of interest of 1 cm diameter with consecutive radiomic analysis applying PyRadiomics software. Feature selection was performed applying analysis of correlation and collinearity. The final feature set was obtained to differentiate moderate-to-severe anemia. Random forest machine learning was applied and predictive performance was assessed. A decision-tree was obtained to propose a cut-off value of CT Hounsfield units (HU). Results: High correlation with hemoglobin and hematocrit levels was shown for first-order radiomic features (p < 0.001 to p = 0.032). The top 3 features showed high correlation to hemoglobin values (p) and minimal collinearity (r) to the top ranked feature Median (p < 0.001), Energy (p = 0.002, r = 0.387), Minimum (p = 0.032, r = 0.437). Median (p < 0.001) and Minimum (p = 0.003) differed in moderate-to-severe anemia compared to non-anemic state. Median yielded superiority to the combination of Median and Minimum (p(AUC) = 0.015, p(precision) = 0.017, p(accuracy) = 0.612) in the predictive performance employing random forest analysis. A Median HU value ≤ 36.5 indicated moderate-to-severe anemia (accuracy = 0.90, precision = 0.80). Conclusions: First-order radiomic features correlate with hemoglobin levels and may be feasible for the prediction of moderate-to-severe anemia. High dimensional radiomic features did not aid augmenting the data in our exemplary use case of intraluminal blood component assessment

    Single-source chest-abdomen-pelvis cancer staging on a third generation dual-source CT system: comparison of automated tube potential selection to second generation dual-source CT

    Get PDF
    BACKGROUND: Evaluation of latest generation automated attenuation-based tube potential selection (ATPS) impact on image quality and radiation dose in contrast-enhanced chest-abdomen-pelvis computed tomography examinations for gynaecologic cancer staging. METHODS: This IRB approved single-centre, observer-blinded retrospective study with a waiver for informed consent included a total of 100 patients with contrast-enhanced chest-abdomen-pelvis CT for gynaecologic cancer staging. All patients were examined with activated ATPS for adaption of tube voltage to body habitus. 50 patients were scanned on a third-generation dual-source CT (DSCT), and another 50 patients on a second-generation DSCT. Predefined image quality setting remained stable between both groups at 120 kV and a current of 210 Reference mAs. Subjective image quality assessment was performed by two blinded readers independently. Attenuation and image noise were measured in several anatomic structures. Signal-to-noise ratio (SNR) was calculated. For the evaluation of radiation exposure, CT dose index (CTDIvol) values were compared. RESULTS: Diagnostic image quality was obtained in all patients. The median CTDIvol (6.1 mGy, range 3.9-22 mGy) was 40 % lower when using the algorithm compared with the previous ATCM protocol (median 10.2 mGy · cm, range 5.8-22.8 mGy). A reduction in potential to 90 kV occurred in 19 cases, a reduction to 100 kV in 23 patients and a reduction to 110 kV in 3 patients of our experimental cohort. These patients received significantly lower radiation exposure compared to the former used protocol. CONCLUSION: Latest generation automated ATPS on third-generation DSCT provides good diagnostic image quality in chest-abdomen-pelvis CT while average radiation dose is reduced by 40 % compared to former ATPS protocol on second-generation DSCT

    Head and neck single- and dual-energy CT: differences in radiation dose and image quality of 2nd and 3rd generation dual-source CT

    No full text
    Objectives: To compare radiation dose and image quality of single-energy (SECT) and dual-energy (DECT) head and neck CT examinations performed with second- and third-generation dual-source CT (DSCT) in matched patient cohorts. Methods: 200 patients (mean age 55.1 ± 16.9 years) who underwent venous phase head and neck CT with a vendor-preset protocol were retrospectively divided into four equal groups (n = 50) matched by gender and BMI: second (Group A, SECT, 100-kV; Group B, DECT, 80/Sn140-kV), and third-generation DSCT (Group C, SECT, 100-kV; Group D, DECT, 90/Sn150-kV). Assess- ment of radiation dose was performed for an average scan length of 27 cm. Contrast-to-noise ratio measure- ments and dose-independent figure-of-merit calcu- lations of the submandibular gland, thyroid, internal jugular vein, and common carotid artery were analyzed quantitatively. Qualitative image parameters were evalu- ated regarding overall image quality, artifacts and reader confidence using 5-point Likert scales. Results: Effective radiation dose (ED) was not signifi- cantly different between SECT and DECT acquisition for each scanner generation (p = 0.10). Significantly lower effective radiation dose (p 0.06). Conclusion: Contrast-enhanced head and neck DECT can be performed with second- and third-generation DSCT systems without radiation penalty or impaired image quality compared with SECT, while third-generation DSCT is the most dose efficient acquisition method. Advances in knowledge: Differences in radiation dose between SECT and DECT of the dose-vulnerable head and neck region using DSCT systems have not been evaluated so far. Therefore, this study directly compares radiation dose and image quality of standard SECT and DECT protocols of second- and third-generation DSCT platforms

    Quantitative analysis of in-TIPS thrombosis in abdominal CT

    No full text
    Purpose: To identify transjugular intrahepatic portosystemic shunt (TIPS) thrombosis in abdominal CT scans applying quantitative image analysis. Materials and methods: We retrospectively screened 184 patients to include 20 patients (male, 8; female, 12; mean age, 60.7 ± 8.87 years) with (case, n = 10) and without (control, n = 10) in-TIPS thrombosis who underwent clinically indicated contrast-enhanced and unenhanced abdominal CT followed by conventional TIPS-angiography between 08/2014 and 06/2020. First, images were scored visually. Second, region of interest (ROI) based quantitative measurements of CT attenuation were performed in the inferior vena cava (IVC), portal vein and in four TIPS locations. Minimum, maximum and average Hounsfield unit (HU) values were used as absolute and relative quantitative features. We analyzed the features with univariate testing. Results: Subjective scores identified in-TIPS thrombosis in contrast-enhanced scans with an accuracy of 0.667 – 0.833. Patients with in-TIPS thrombosis had significantly lower average (p < 0.001), minimum (p < 0.001) and maximum HU (p = 0.043) in contrast-enhanced images. The in-TIPS / IVC ratio in contrast-enhanced images was significantly lower in patients with in-TIPS thrombosis (p < 0.001). No significant differences were found for unenhanced images. Analyzing the visually most suspicious ROI with consecutive calculation of its ratio to the IVC, all patients with a ratio < 1 suffered from in-TIPS thrombosis (p < 0.001, sensitivity and specificity = 100%). Conclusion: Quantitative analysis of abdominal CT scans facilitates the stratification of in-TIPS thrombosis. In contrast-enhanced scans, an in-TIPS / IVC ratio < 1 could non-invasively stratify all patients with in-TIPS thrombosis

    Virtual non-calcium dual-energy CT: clinical applications

    No full text
    Dual-energy CT (DECT) has emerged into clinical routine as an imaging technique with unique postprocessing utilities that improve the evaluation of different body areas. The virtual non-calcium (VNCa) reconstruction algorithm has shown beneficial effects on the depiction of bone marrow pathologies such as bone marrow edema. Its main advantage is the ability to substantially increase the image contrast of structures that are usually covered with calcium mineral, such as calcified vessels or bone marrow, and to depict a large number of traumatic, inflammatory, infiltrative, and degenerative disorders affecting either the spine or the appendicular skeleton. Therefore, VNCa imaging represents another step forward for DECT to image conditions and disorders that usually require the use of more expensive and time-consuming techniques such as magnetic resonance imaging, positron emission tomography/CT, or bone scintigraphy. The aim of this review article is to explain the technical background of VNCa imaging, showcase its applicability in the different body regions, and provide an updated outlook on the clinical impact of this technique, which goes beyond the sole improvement in image quality

    Dual-energy CT for the detection of portal vein ihrombosis: improved diagnostic performance using virtual monoenergetic reconstructions

    No full text
    Purpose: To investigate the diagnostic performance of noise-optimized virtual monoenergetic images (VMI+) in dual-energy CT (DECT) of portal vein thrombosis (PVT) compared to standard reconstructions. Method: This retrospective, single-center study included 107 patients (68 men; mean age, 60.1 ± 10.7 years) with malignant or cirrhotic liver disease and suspected PVT who had undergone contrast-enhanced portal-phase DECT of the abdomen. Linearly blended (M_0.6) and virtual monoenergetic images were calculated using both standard VMI and noise-optimized VMI+ algorithms in 20 keV increments from 40 to 100 keV. Quantitative measurements were performed in the portal vein for objective contrast-to-noise ratio (CNR) calculation. The image series showing the greatest CNR were further assessed for subjective image quality and diagnostic accuracy of PVT detection by two blinded radiologists. Results: PVT was present in 38 subjects. VMI+ reconstructions at 40 keV revealed the best objective image quality (CNR, 9.6 ± 4.3) compared to all other image reconstructions (p < 0.01). In the standard VMI series, CNR peaked at 60 keV (CNR, 4.7 ± 2.1). Qualitative image parameters showed the highest image quality rating scores for the 60 keV VMI+ series (median, 4) (p ≤ 0.03). The greatest diagnostic accuracy for the diagnosis of PVT was found for the 40 keV VMI+ series (sensitivity, 96%; specificity, 96%) compared to M_0.6 images (sensitivity, 87%; specificity, 92%), 60 keV VMI (sensitivity, 87%; specificity, 97%), and 60 keV VMI+ reconstructions (sensitivity, 92%; specificity, 97%) (p ≤ 0.01). Conclusions: Low-keV VMI+ reconstructions resulted in significantly improved diagnostic performance for the detection of PVT compared to other DECT reconstruction algorithms
    corecore