282 research outputs found

    Genetic association study of UCMA/GRP and OPTN genes (PDB6 locus) with Paget's disease of bone

    Get PDF
    We performed a genetic association study of rare variants and single nucleotide polymorphisms (SNPs) of UCMA/GRP and OPTN genes, in French-Canadian patients with Paget's disease of bone (PDB) and in healthy controls from the same population. We reproduced the variant found in the UCMA/GRP basal promoter and tested its functionality using in vitro transient transfection assays. Interestingly, this SNP rs17152980 appears to affect the transcription level of UCMA/GRP. In addition, we have identified five rare genetic variants in UCMA/GRP gene, four of them being population-specific, although none were found to be associated with PDB. Six Tag SNPs of UCMA/GRP gene were associated with PDB, particularly the SNP rs17152980 (uncorrected P = 3.8 x 10(-3)), although not significant after Bonferroni's correction. More importantly, we replicated the strong and statistically significant genetic association of two SNPs of the OPTN gene, the rs1561570 (uncorrected P = 5.7 x 10(-7)) and the rs2095388 (uncorrected P = 4.9 x 10(-3)), With PDB. In addition, we identified a very rare variant found to be located close to the basal promoter of the OPTN gene, at -232 bp from its distal transcription start site. Furthermore, depending on the type of allele present (G or A), the binding of several important nuclear factors such as the vitamin D or the retinoic acid receptors is predicted to be altered at this position, suggesting a significant effect in the regulation of transcription of the OPTN gene. In conclusion, we identified a functional SNP located in the basal promoter of the UCMA/GRP gene which provided a weak genetic association with PDB. In addition, we replicated the strong genetic association of two already known SNPs of the OPTN gene, with PDB in a founder effect population. We also identified a very rare variant in the promoter of OPTN, and through bioinformatic analysis, identified putative transcription factor binding sites likely to affect OPTN gene transcription. (C) 2012 Elsevier Inc. All rights reserved.Fonds de la Recherche du Quebec - Sante (FRQS), Canada; Portuguese Science and Technology Foundation, Portugal [SFRH/BPD/48206/2008]; Catalyst Grant (Bone Health) from the Canadian Institutes of Health Research (Canada); CHUQ Foundation (Canada); Groupe de Recherche en Maladies Osseuses (Canada); Canadian Foundation for Innovation (Canada); FRSQ (Canada); Laval University (Canada); CHUQ (CHUL) Research Centre (Canada); Centre of Marine Sciences (CCMAR) (Portugal)info:eu-repo/semantics/publishedVersio

    Genetics and Osteoporosis

    Get PDF

    Investigating the role of optineurin in bone biology and Paget's disease of bone

    Get PDF
    Paget’s disease of bone (PDB) is a common disease with a strong genetic component. Approaches such as linkage analysis and candidate gene studies have shown that mutations in Sequestosome 1 (SQSTM1) explain up to 40% of familial cases and 10% of sporadic cases, however the majority of PDB patients have no mutations in this gene. Genome-wide association studies (GWAS) have recently identified new susceptibility loci for PDB including variants at CSF1, TNFRSF11A, OPTN, TM7SF4, PML, NUP205 and RIN3 loci. These loci were confirmed to be associated with PDB in various European populations. OPTN encodes optineurin, a widely expressed protein involved in many cellular processes but its role in bone metabolism is yet unknown. The aim of this PhD thesis was to investigate the role of OPTN in bone metabolism and PDB using in vitro and in vivo studies. In chapter 3, the OPTN rs1561570 identified by previous GWAS was examined for its association with the severity and clinical outcome of PDB in patients without SQSTM1 mutations. The results showed that rs1561570 was significantly associated with total disease severity score so that carriers of the risk allele “T” had higher severity score compared to non-carriers (P < 0.05). A trend for reduced quality of life physical scores (SF36) was also associated with the rs1561570 risk allele, but the relationship was not statistically significant. In order to identify functional variants within OPTN, the coding regions as well as the exon-intron boundaries were sequenced in 24 familial PDB cases and 19 controls. No mutation was found that could be predicted as pathogenic suggesting that disease susceptibility could be mediated by regulatory polymorphisms that influence gene expression. In chapter 4, the role of OPTN was investigated in osteoclast development using in vitro knockdown experiments. Optn was expressed in mouse bone marrow derived macrophages (BMDMs) as well as all stages of osteoclast development and it was significantly increased three days post RANKL treatment. Optn expression was knocked down in BMDMs and cells were induced to form osteoclast in the presence of RANKL and M-CSF. Compared to non-targeted cells, Optn depleted cells formed significantly more and larger osteoclasts (P< 0.05). Optn knockdown was also found to enhance osteoclast survival as well as RANKL-induced NFκB activation. In chapter 5, the role of OPTN was investigated in vitro from cells obtained from knock in mice with a loss-of-function mutation in Optn (OptnD477N/D477N). In agreement with the in vitro knockdown experiments, osteoclasts were significantly higher and larger in mutant mice compared to WT and the NF-B activity measured by luciferase reporter assay was significantly higher in cells from OptnD477N/D477N compared to WT during most stages of osteoclast development. OPTN from mutant and WT mice was co-precipitated with its CYLD binding-partner, which acts as a negative regulator to RANK signalling by inhibiting the TRAF6 downstream signalling. The data from this immunoprecipitation (IP) experiment revealed that defective OPTN interacted less with CYLD from mutant mice compared to WT. This study also showed that OPTN was expressed in osteoblasts and the expression rate did not change during osteoblast development. The data obtained from the mineralization assay revealed no significant difference between OptnD477N/D477N and WT. In chapter 6, I investigated the effect of the D477N loss of function mutation in Optn on bone metabolism. Bone Histomorphometrical analysis of OptnD477N/D477N mice showed higher bone resorption parameters (Oc.N/BS and Oc.S/BS) compared to wild type (WT). Osteoid analysis showed evidence of increased bone formation parameters (OS/BS and OV/BV) in mutant mice compared to WT. Calcein labelling showed a significant difference in mineral apposition rate (MAR) from mutant mice compared to WT. Analysis of serum biomarkers of bone turnover showed evidence of enhanced bone turnover in mutant mice compared to WT. Micro computed tomography (μCT) analysis of 4 and 14 months old mice showed no significant differences in bone morphology between WT and OptnD477N/D477N mice of both sexes. In conclusion, this study has shown for the first time that OPTN plays a role in regulating bone turnover by acting as a negative regulator of osteoclast differentiation. The data obtained from this study strongly suggest the crucial role of OPTN in RANK signalling. The effect of OPTN on osteoblast activity may be direct or indirect compensation for increased osteoclast activity. Further detailed studies will be required to explore the underlying mechanism of OPTN including downstream RANK signalling and a complete knockout model to corroborate these findings

    Reduced expression of PML predisposes to Paget's disease of bone by increasing osteoclast differentiation and bone resorption

    Get PDF
    Paget's disease of bone (PDB) is characterized by focal increases in bone remodelling. Genome-wide association studies identified a susceptibility locus for PDB tagged by rs5742915, which is located within the PML gene. Here, we have assessed the candidacy of PML as the predisposing gene for PDB at this locus. We found that the PDB-risk allele of rs5742915 was associated with lower PML expression and that PML expression in blood cells from individuals with PDB was lower than in controls. The differentiation, survival and resorptive activity of osteoclasts prepared from Pml-/- mice was increased compared with wild type. Furthermore, the inhibitory effect of IFN-γ on osteoclast formation from Pml-/- was significantly blunted compared with wild type. Bone nodule formation was also increased in osteoblasts from Pml-/- mice when compared with wild type. Although microCT analysis of trabecular bone showed no differences between Pml-/- mice and wild type, bone histomorphometry showed that Pml-/- mice had high bone turnover with increased indices of bone resorption and increased mineral apposition rate. These data indicate that reduced expression of PML predisposes an individual to PDB and identify PML as a novel regulator of bone metabolism. This article has an associated First Person interview with the first author of the paper

    Genetic Susceptibility to Infectious Diseases in the Qatari Population

    Get PDF
    Background: Infectious diseases (IDs) account for 8% of deaths annually in Qatar, and therefore, represent a significant challenge for public health. Interestingly, the spread and severity of viral infections vary considerably between individuals and populations. The most recent example is SARS-CoV-2, which ranges from mild/asymptomatic to a severe respiratory syndrome. It has been previously reported that polymorphisms in genes linked to immunity can influence individuals' responses to infections as observed in tuberculosis, influenza, and HIV; however, studies exploring causal host genetic variants in IDs are still limited and dramatically skewed with regard to population inclusion. In fact, the genetic susceptibility to IDs in the Qatari population is largely unknown. Aim: To perform a comprehensive genetic screening to investigate the presence and frequency of variants previously associated with various infections in the Qatari population. Methods: Whole-genome sequencing was previously performed for 18,000 QBB participants using Illumina HiSeq X Ten1 sequencers. The initial data processing and quality assessment of the raw data has also been performed and variant calling files (VCF) were created. We were granted the access to the VCF files of 6,218 sequenced samples. The genetic variant data was then converted to PLINK file format using PLINK-1.9. Standardized quality-assurance and quality control (QA/QC) methods were followed to generate high quality and confidence on both SNPs and sample levels. The final file used for calculating allele frequency contained 6,047 subjects. Additionally, list of infections-related SNPs that were previously reported in the literature and deposited in GWAS catalog was extracted and used to calculate and compare the allelic frequency in the Qatari genomes compared to other populations. Results: The frequency of infections-related SNPs in the Qatari population was significantly lower for most infections. Most variants (78%) showed negative fold change in the Qatari genomes. Only 22% of all variants were more prevalent in Qatari population compared to others. The most significant differences were observed in genes related to TB and HIV (200-940 and 160-710 fold change, respectively). Conclusion: This study reports a lower susceptibility of the Qatari population to IDs in general. Nonetheless, this might also indicate the presence of unknown Qatari-unique variants and hence, highlights the need for further investigation in future GWAS

    RANK/RANKL/OPG pathway: genetic associations with stress fracture period prevalence in elite athletes

    Get PDF
    Context: The RANK/RANKL/OPG signalling pathway is important in the regulation of bone turnover, with single nucleotide polymorphisms (SNPs) in genes within this pathway associated with bone phenotypic adaptations. Objective: To determine whether four SNPs associated with genes in the RANK/RANKL/OPG signalling pathway were associated with stress fracture injury in elite athletes. Design, Participants, and Methods: Radiologically confirmed stress fracture history was reported in 518 elite athletes, forming the Stress Fracture Elite Athlete (SFEA) cohort. Data were analysed for the whole group, and were sub-stratified into male and cases of multiple stress fracture group. Genotypes were determined using proprietary fluorescence-based competitive allele-specific PCR assays. Results: SNPs rs3018362 (RANK) and rs1021188 (RANKL) were associated with stress fracture injury (p<0.05). 8.1% of stress fracture group and 2.8% of the non-stress fracture group were homozygote for the rare allele of rs1021188. Allele frequency, heterozygotes and homozygotes for the rare allele of rs3018362 were associated with stress fracture period prevalence (p<0.05). Analysis of the male only group showed 8.2% of rs1021188 rare allele homozygotes to have suffered a stress fracture while 2.5% of the non-stress fracture group were homozygous. In cases of multiple stress fractures, homozygotes for the rare allele of rs1021188, and individuals possessing at least one copy of the rare allele of rs4355801 (OPG) were shown to be associated with stress fracture injury (p<0.05). Conclusions: The data support an association between SNPs in the RANK/RANKL/OPG signalling pathway and the development of stress fracture injury. The association of rs3018362 (RANK) and rs1021188 (RANKL) with stress fracture injury susceptibility supports their role in the maintenance of bone health, and offers potential targets for therapeutic interventions

    Host Genetic Variants Potentially Associated With SARS-CoV-2: A Multi-Population Analysis.

    Get PDF
    Clinical outcomes of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) showed enormous inter-individual and inter-population differences, possibly due to host genetics differences. Earlier studies identified single nucleotide polymorphisms (SNPs) associated with SARS-CoV-1 in Eastern Asian (EAS) populations. In this report, we aimed at exploring the frequency of a set of genetic polymorphisms that could affect SARS-CoV-2 susceptibility or severity, including those that were previously associated with SARS-CoV-1. We extracted the list of SNPs that could potentially modulate SARS-CoV-2 from the genome wide association studies (GWAS) on SARS-CoV-1 and other viruses. We also collected the expression data of these SNPs from the expression quantitative trait loci (eQTLs) databases. Sequences from Qatar Genome Programme (QGP, = 6,054) and 1000Genome project were used to calculate and compare allelic frequencies (AF). A total of 74 SNPs, located in 10 genes: , -γ, , , , , , , and promoter, were identified. Analysis of Qatari genomes revealed significantly lower AF of risk variants linked to SARS-CoV-1 severity (, , , , and ) compared to that of 1000Genome and/or the EAS population (up to 25-fold change). Conversely, SNPs in , -γ, , and were more common among Qataris (average 2-fold change). Inter-population analysis showed that the distribution of risk alleles among Europeans differs substantially from Africans and EASs. Remarkably, Africans seem to carry extremely lower frequencies of SARS-CoV-1 susceptibility alleles, reaching to 32-fold decrease compared to other populations. Multiple genetic variants, which could potentially modulate SARS-CoV-2 infection, are significantly variable between populations, with the lowest frequency observed among Africans. Our results highlight the importance of exploring population genetics to understand and predict COVID-19 outcomes. Indeed, further studies are needed to validate these findings as well as to identify new genetic determinants linked to SARS-CoV-2.This work was supported by the Qatar University High Impact Grant (Grant Number: QUHI-BRC-20_21-1). OA was supported by a startup grant from the College of Health and Life Sciences, Hamad Bin Khalifa University. This work makes use of data generated by the Qatar Genome Programme (QGP) and Qatar Biobank (QBB), which are funded by Qatar Foundation for Education, Science and Community

    Metabolic GWAS of elite athletes reveals novel genetically-influenced metabolites associated with athletic performance

    Get PDF
    Genetic research of elite athletic performance has been hindered by the complex phenotype and the relatively small effect size of the identified genetic variants. The aims of this study were to identify genetic predisposition to elite athletic performance by investigating genetically-influenced metabolites that discriminate elite athletes from non-elite athletes and to identify those associated with endurance sports. By conducting a genome wide association study with high-resolution metabolomics profiling in 490 elite athletes, common variant metabolic quantitative trait loci (mQTLs) were identified and compared with previously identified mQTLs in non-elite athletes. Among the identified mQTLs, those associated with endurance metabolites were determined. Two novel genetic loci in FOLH1 and VNN1 are reported in association with N-acetyl-aspartyl-glutamate and Linoleoyl ethanolamide, respectively. When focusing on endurance metabolites, one novel mQTL linking androstenediol (3alpha, 17alpha) monosulfate and SULT2A1 was identified. Potential interactions between the novel identified mQTLs and exercise are highlighted. This is the first report of common variant mQTLs linked to elite athletic performance and endurance sports with potential applications in biomarker discovery in elite athletic candidates, non-conventional anti-doping analytical approaches and therapeutic strategies
    corecore