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Abstract  

Context: The RANK/RANKL/OPG signalling pathway is important in the regulation of bone turnover, 

with single nucleotide polymorphisms (SNPs) in genes within this pathway associated with bone 

phenotypic adaptations.  

Objective: To determine whether four SNPs associated with genes in the RANK/RANKL/OPG 

signalling pathway were associated with stress fracture injury in elite athletes.  

Design, Participants, and Methods: Radiologically confirmed stress fracture history was reported in 

518 elite athletes, forming the Stress Fracture Elite Athlete (SFEA) cohort. Data were analysed for the 

whole group, and were sub-stratified into male and cases of multiple stress fracture group. Genotypes 

were determined using proprietary fluorescence-based competitive allele-specific PCR assays. 

Results: SNPs rs3018362 (RANK) and rs1021188 (RANKL) were associated with stress fracture injury 

(p<0.05). 8.1% of stress fracture group and 2.8% of the non-stress fracture group were homozygote 

for the rare allele of rs1021188. Allele frequency, heterozygotes and homozygotes for the rare allele 

of rs3018362 were associated with stress fracture period prevalence (p<0.05). Analysis of the male 

only group showed 8.2% of rs1021188 rare allele homozygotes to have suffered a stress fracture 

while 2.5% of the non-stress fracture group were homozygous. In cases of multiple stress fractures, 

homozygotes for the rare allele of rs1021188, and individuals possessing at least one copy of the rare 

allele of rs4355801 (OPG) were shown to be associated with stress fracture injury (p<0.05).    

Conclusions: The data support an association between SNPs in the RANK/RANKL/OPG signalling 

pathway and the development of stress fracture injury. The association of rs3018362 (RANK) and 

rs1021188 (RANKL) with stress fracture injury susceptibility supports their role in the maintenance of 

bone health, and offers potential targets for therapeutic interventions.    

Keywords: stress fracture, bone, athletes, SNPs, genetics 
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1 Introduction  

 

Stress fractures arise from the inability of bone to tolerate repeated mechanical loading, and are 

characterised by damage to the bone’s micro-architecture (1). Repeated mechanical loading can cause 

an uncoupling of osteoblast bone formation and osteoclast bone resorption (1). This can lead to bone 

loss and subsequent micro-damage that can result in localised bone weakening, prompting stress 

fracture development (2). Stress fracture period prevalence in elite athletes and military recruits 

ranges from 14 to 21% (3,4), and most commonly manifests in the lower limbs (5).  

 

In athletes, stress fracture injury is likely to have a complex aetiology involving numerous factors, 

with, for example, prior training (6) and biomechanical variables (e.g., running kinematics) (7) being 

implicated in stress fracture risk (for a wider review of this issue please see Bennell et al., 1999). 

Susceptibility may also have genetic origins, supported by reports of monozygotic twins developing 

similar stress fracture injuries (8), multiple stress fractures occurring in the same individual (9), stress 

fractures occurring in some individuals but not in others undertaking identical training protocols (3,4) 

and a family history of stress fracture injury acting as a risk factor (10).  

 

Genetic associations with stress fracture period prevalence in military personnel have been 

investigated using a variety of single nucleotide polymorphisms (SNPs) previously associated with 

receptors known to influence bone mineralisation, remodelling (11) and endocrine abnormalities (12). 

Associations were shown for SNPs and haplotype blocks within the vitamin D receptor (13) and an 

androgen receptor repeat sequence (14). However, other studies have shown no association for the 

same SNPs in similar military populations (15). The reason for the disparity may be the range of 

SNPs analysed and small numbers of stress fracture cases in some studies (e.g. n=64, 16). There is a 
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need to examine this in a large cohort of elite athletes given that the pathogenesis of stress fracture 

might be different due to the phenotypic differences, training variables and fitness.  

 

Given that disturbances in bone remodelling and the inability of bone to withstand repeated bouts of 

mechanical loading are implicated in the development of stress fracture injury (1), SNPs repeatedly 

shown to be associated with these bone phenotypes in large-scale studies are worthy of focused study. 

As all previous studies have used military personnel, studies involving alternative groups, such as 

athletes with a similarly high period prevalence of stress fracture injury, are required to provide 

further insights into both the aetiology and genetic disposition of stress fracture injury. Furthermore, 

no published literature exists in relation to genetic associations with stress fracture injury risk in elite 

athletes.     

The receptor activator of nuclear factor-KB (RANK), and its ligand (RANKL), a member of the tumour 

necrosis factor (TNF) superfamily, are integral to osteoclastogenesis as they stimulate osteoclast 

activation, formation and differentiation (17).  Osteoprotegerin (OPG) acts as a decoy receptor for 

RANKL leading to the prevention of osteoclast precursor development into mature osteoclasts, 

resulting in the subsequent attenuation of bone resorption (17). These factors in combination make up 

the RANK/RANKL/OPG signalling pathway, an important system in the regulation of bone turnover, 

and in the potential mediation of stress fracture injury development in individuals with a high 

frequency and/or amplitude of mechanical loading.  

The specific mechanisms of how SNPs within the RANK/RANKL/OPG signalling pathway influence 

bone health remain unknown. Several of these SNPs have been associated with bone phenotypic 

alterations, including changes in bone mineral density (BMD) (18, 19, 20, 21), bone cross sectional 

area (22), osteoporotic fracture risk (20) and bone resorption and formation (23), although none of 

these have been established in stress fracture injury.    
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 This study examined whether SNPs within the RANK/RANKL/OPG signalling pathway were 

associated with stress fracture injury in elite athletes.  

2 Methods 

2.1 Participants 

In total a convenience sample of, 518 elite athletes, 449 male and 69 female, were recruited by email 

and word of mouth from professional sports clubs and elite sporting associations based in North 

America and the United Kingdom from 2010-2013 to form the Stress Fracture in Elite Athletes 

(SFEA) group (see Table 1 for participant characteristics). Participating elite athletes competed in 

various sports including, football (n = 218), cricket (n = 156), track and field (n = 67, running events n 

= 62 ), rowing (n = 13), boxing (n = 2), tennis (n = 12), hockey (n = 26) and gymnastics (n = 7), with 

each sport having both stress fracture Cases and non-stress fracture Control participants. Elite athletes 

were mainly white Caucasian (83.2% in the stress fracture Cases and 79.9% in the non-stress fracture 

Controls). Professional athletes were classified as elite due to their full time participation in sport; 

non-professional athletes were classified as elite if they regularly competed at international or national 

level. Each participant completed a statement of informed consent and a health status questionnaire, 

which was followed by an athletic status questionnaire detailing age, playing position if applicable, 

the average hours trained per week, number of appearances for their country, the first time competed 

at an elite level and for how many years. A fracture history questionnaire was also completed 

containing questions on both fracture and stress fracture history, method of stress fracture 

confirmation, time, date, location and treatment of stress fracture, training prior to stress fracture, 

recurrence details and family history. To be classified as a stress fracture case, radiological scan (e.g., 

X-ray, MRI, CT) confirmation was a prerequisite. Participants self-reported radiologically confirmed 

stress fracture injury occurrence, although individual scans were not directly scrutinised by 

experimenters.  In 17 individuals there was a lack of stress fracture history clarity (e.g. reports of 

stress reactions) and thus these participants were removed from the statistical analysis. The control 

group was made up of athletes who had never had a stress fracture injury and had no reported history 
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of stress fracture symptoms or radiological investigations suggestive of a stress fracture. Ethical 

approval was granted by the Nottingham Trent University Ethical Review committee.  

 

Table 1. Characteristics of elite athletes with and without radiologically confirmed stress fracture 

injuries.    

 Characteristics 
Stress fracture 

(n=125) 

Non-stress 

fracture (n=376)  
P-value  

Age (years) 27.7±7.5 24.4±5.4 <0.00001* 

Height (m) 1.82±10 1.81±8.3 0.45 

Body Mass (kg) 77.3±14.5 77.8±10.5 0.72 

BMI 23.2±2.7 23.7±2.2 0.07 

Age at elite (years) 18.2+4.2 17±2.2 0.01* 

Training (h/week) 20±11.3 18.2±10.1 0.12 

Alcohol consumption 

(units/week) 

5.2±6.9 4.1±6.1 0.15 

    Male only 

 

Stress fracture 

(n=98) 

Non-stress 

fracture (n=335)  
P-value  

Age (years) 27.2±6.9 24.2±5.5 <0.000001* 

Height (m) 1.85±7.2 1.82±7.1 0.0005* 

Body Mass (kg) 82.9±10.6 79.6±9.4 0.0063* 

BMI 24.1±2.1 23.9±2.1 0.46 

Age at elite (years) 18.2+4.3 17±2.2 0.009* 

Training (h/week) 21.6±11.9 18.2±10.5 0.01* 

Alcohol consumption 

(units/week) 

5.6±7.3 4.2±6.2 0.12 

Participants’ characteristics. Values are expressed as mean ±SD.  

 

2.2 Procedures  

Genomic deoxyribonucleic acid (DNA) was derived from saliva deposited into a 5mL collection tube 

and subsequently mixed with 2 mL of preservative in accordance with manufacturer guidelines 

(Norgen Biotek Corp, Saliva DNA Collection kit Thorold, Canada). The collection tube was 

incubated in a water bath for 1h at 55oC followed by inversion and gentle shaking. An aliquot of 

500µL was then added to 10µL of proteinase K and mixed by vortex in a 1.5mL tube before 

incubating for a further 30 minutes at 55oC. An equal sample volume of isopropanol was added and 
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mixed by inversion followed by 5 minutes centrifugation at 13,000 x g. The supernatant was then 

removed and replaced by an equal sample volume of 70% ethanol followed by further centrifugation 

for 1 minute at 13,000 x g. The ethanol was then removed and 100µL of 

Tris(hydroxymethyl)aminomethane ethylenediaminetetraacetic acid (TE) buffer was added to 

rehydrate the DNA. The final sample was mixed by vortex for 10 seconds and left overnight at room 

temperature to ensure complete rehydration. Samples were stored at -20oC until subsequent 

genotyping. 

 

Specific genes and SNPs were analysed based on a purported mechanism that might explain an 

association; in the present manuscript we present the findings relating to genes and SNPs analysed in 

relation to the RANK/RANKL/OPG signalling pathway. Four SNPs from the RANK/RANKL/OPG 

signalling pathway (rs3018362 located 27 kb downstream of RANK on chromosome 18q21, 

rs4355801 located on chromosome 8q24 near OPG, rs1021188 located ~20Kb upstream of RANKL 

on chromosome 13q14, rs9594738 located on chromosome 13q14 190kb upstream of RANKL) were 

selected based on their prominence and reproducibility among different populations in Genome wide 

association studies (GWAS) and meta-analyses. Genotyping was conducted using a proprietary 

fluorescence-based competitive allele-specific polymerase chain reaction assay (Local Government 

Chemists (LGC) genomics Herts, UK). LGC genomics staff were blind to the clinical status (Case or 

Control) of the genotyped individuals. 

 

2.3 Statistical Analysis 

Student’s t-test was used for the analysis of descriptive variables. Pearson Chi-square test (χ2) was 

used to assess the observed frequency of each genotype with what would be expected in accordance 

with Hardy-Weinberg equilibrium. Odds ratios and corresponding 95% confidence intervals were 

calculated for stress fracture injury risk. Post hoc logistic regression models were created for each 

individual SNP genotyped, with sex, age at sample collection, age at elite status acting as other 



8 
 

covariates. P <0.05 was considered statistically significant in the principal analysis. Multiple 

comparisons testing was not applied due to the conservative nature of the  Bonferroni correction 

increasing the likelihood of a type I error and the absence of an appropriate statistical test to consider 

previous and future analysis. Due to the relatively low numbers of females in the study, it was decided 

that the entire group and a male only group would be analysed in order to allow for differences in 

stress fracture aetiology that may be gender specific. Data were also sub-stratified into cases of 

multiple stress fractures for the purposes of statistical analysis.  All statistical analyses were 

performed using Statistical Package for the Social Sciences (SPSS) version 13.0 (SPSS, Inc., Chicago, 

IL, USA).      

 

3 Results  

Call rates for RANKL rs1021188, RANKL rs9594738, RANK rs3018362 and OPG rs4355801 were 

96.2%, 96%, 95.8% and 95.6%. All SNPs were within Hardy-Weinberg equilibrium apart from OPG 

rs4355801 (P=0.04). The method of genotyping is robust and a high level of internal validation and 

reliability make errors in genotyping an unlikely reason for the deviance. 

3.1 Participant characteristics 

Analysis was carried out on 125 (98 men and 27 women) athletes with a radiologically confirmed 

stress fracture injury and 376 (335 men and 41 women) athletes who reported no stress related bone 

injury. The stress fracture group were significantly older than the non-stress fracture group at the time 

of collecting the saliva sample and at the age at which the elite level was reached across the whole 

group (p<0.01) (Table 3). These differences remained significant along with height, body mass and 

hours training when only males were analysed (P <0.01).    
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The average age at stress fracture was 19.9±3.9y and occurrence was recorded at various anatomical 

sites; lower limb (56.8%), lumbar spine (33.5%), rib (6.5%) pelvic area (1.6%) and upper limb 

(1.6%). 

 

3.2 Genetic analysis  

3.2.1 RANKL 

A significant association between SNP rs1021188 and stress fracture period prevalence was shown in 

the whole, male only and multiple stress fracture groups (P <0.05). 8.1% (whole group), 8.2% (male 

only) and 10% (multiple stress fracture) of athletes were homozygote for the rare allele in the stress 

fracture injury groups, and in only 2.5% (whole group) and 2.8% (male only) of the non-stress 

fracture groups. No significant associations were shown between RANKL SNP rs9594738 and stress 

fracture injury in the whole, male only or multiple stress fracture groups (P >0.05) (Table 2, 3, 4).        

 

3.2.2 RANK 

A significant association between stress fracture period prevalence and SNP rs3018362 was shown in 

the whole group, and significant associations persisted in the male only group (P <0.05). 

Heterozygotes combined with those homozygous for the rare allele were positively associated with 

stress fracture period prevalence in the whole group (65.2%) and men only sub-stratification (66.0%) 

in comparison to the Control group (55.0% whole group; 54.3% men only)  (P <0.05). A copy of the 

variant A allele was also associated with stress fracture period prevalence in the whole group (41.5%) 

and men only sub-stratification (42.5%) in comparison to the Control group (33.4% and 33.2%)  (P 

<0.05) (Table 2 and 3). No significant associations were shown when comparing the multiple stress 

fracture group to non-stress fractures (Table 4).   
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3.2.3 OPG 

No association was shown between SNP rs4355801 and stress fracture period prevalence in both the 

whole group, and the male only group (P >0.05) (Table 2 and 3). However, individuals possessing at 

least one copy of the rare allele of rs4355801 (OPG) had a greater risk of multiple stress fracture 

injury (76.6%) compared to the non-stress fracture Control group (63.5%) (P <0.05) (Table 4).    

3.2.4 Sport sub-groups  

No association was shown when cricketers were analysed independently, for any of the SNPs. When 

footballers were combined with hockey players (invasion sports), allele frequency of RANKL SNPs 

rs1021188 and rs9594738 were associated with stress fracture injury (P <0.05). RANKL SNP 

rs9594738 was also associated with stress fracture injury when heterozygotes were combined with 

those homozygous for the rare allele (P <0.05). When only runners were analysed individuals 

possessing at least one copy of the rare allele of rs4355801 (OPG) had a greater risk of stress fracture 

(P <0.05). In the same population, heterozygotes combined with those homozygous for the rare allele 

of RANK SNP rs3018362 were positively associated with stress fracture injury (P <0.05). No 

significant associations were shown for any of the other sports analysed.  

 

3.2.5 Logistic regression  

After adjusting for sex, age at elite status and age at sample collection only RANK rs3018362 

remained significantly associated with stress fracture injury (P <0.05; OR 1.42; 95% CI 1.04-1.95).  

 

Table 2. Distribution and percentage of stress fracture Cases and Controls in the whole group. Odds 

ratio (OR) and 95% confidence intervals comparing the most frequent genotype to heterozygotes and 

homozygotes for the variant allele. *indicates significance P<0.05.   

SNP 

Genotype Stress 

fracture 

N (%) 

Non-stress 

fracture 

N (%) 

OR (95% CI) χ2 

p- value 

RANKL        

rs9594738 CC 45(37.2) 114(31.6)    

 

TC 54(44.6) 192(53.2) 0.71 (0.45-1.13)  
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TT 22(18.2) 55(15.2) 1.01 (0.55-1.85) 0.265 

 

TC or TT 76(62.8) 247(68.4) 0.78 (0.51-1.20) 0.256 

 

Allele      

 

C 144(59.5) 420(58.2)    

 

T 98(40.5) 302(41.8) 0.95 (0.70-1.27) 0.674 

 

      

rs1021188 GG 85(69.1) 249(69)    

 

GA 28(22.8) 102(28.3) 0.80 (0.49-1.31)  

 

AA 10 (8.1) 10(2.8) 2.93 (1.18-7.28)  0.024* 

 

GA or AA 38 (30.9) 112(31) 0.99 (0.64-1.55) 0.978 

 

Allele      

 

A 48(19.5) 122(16.9)    

 

G 198(80.5) 600(83.1) 1.19 (0.82-1.73) 0.273 

RANK       

rs3018362 GG 41(34.7) 163(45.0)    

 

GA 56 (47.5) 156(43.1) 1.43 (0.90-2.26)  

 

AA 21 (17.8) 43(11.9) 1.9 (1.04-3.62) 0.084 

 

GA or AA 77 (65.2) 199(55) 1.54 (0.99-2.37)   0.049* 

 

Allele      

 

A 98(41.5) 242(33.4)    

 

G 138(58.5) 482(66.6) 1.41 (1.05-1.91) 0.008* 

OPG       

rs4355801 AA 43 (35.2) 138(38.5)    

 

GA 53 (44.4) 156(43.6) 1.09 (0.69-1.73)  

 

GG 26(21.3) 64(17.9) 1.30 (0.74-2.31) 0.658 

 

GA or GG 79(64.8) 220(61.5) 1.15 (0.75-1.77) 0.518 

 

Allele      

 

A 139 (57)  432 (60.3)   

  G 105 (43) 284(39.7) 1.15 (0.86-1.54) 0.282 

 

Table 3. Distribution and percentage of male stress fracture Cases and Controls. Odds ratio (OR) and 

95% confidence intervals comparing the most frequent genotype to heterozygotes and homozygotes 

for the variant allele. *indicates significance P<0.05.   

 

SNP 

Genotype Stress 

fracture 

N (%) 

Non-stress 

fracture 

N (%) 

OR (95% CI) χ2 

p- value 

RANKL        

rs9594738 CC 37(38.9) 101(31.7)    

 
TC 42(44.2) 168(52.7) 0.68 (0.41-1.13)  

 
TT 16(16.8) 50(15.7) 0.87 (0.44-1.72) 0.265 

 
TC or TT 58(61.1) 218(68.3) 0.73 (0.45-1.17) 0.256 

 
Allele      

 
C 116(61.1) 370(58)    
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T 74(38.9) 268(42) 0.75 (0.47-1.19) 0.674 

 
      

rs1021188 AA 66(68.0) 223(69.0)    

 
GA 23(23.7) 92(28.5) 0.84 (0.50-1.44)  

 
GG 8(8.2) 8(2.5) 3.38 (1.22-9.35) 0.028* 

 
GA or GG 31(32.0) 100(31.0) 1.05 (0.64-1.71) 0.852 

 
Allele      

 
A 155(41.7) 538(39.0)    

 
G 39(58.3) 108(61.0) 1.25 (0.83-1.88) 0.206 

RANK       

rs3018362 GG 32(34.0) 147(45.7)    

 
GA 44(46.8) 136(42.2) 1.49 (0.89-2.48)  

 
AA 18(19.1) 39(12.1) 2.12 (1.08-4.17) 0.072 

 
GA or AA 62(66.0) 175(54.3) 1.63 (1.01-2.63) 0.045* 

 
Allele      

 
A 80(42.5) 214(33.2)    

 
G 108(57.4) 430(66.8) 1.49 (1.07-2.08) 0.006* 

OPG       

rs4355801 AA 35(36.5) 125(39.7)    

 
GA 42(43.8) 134(42.5) 1.12 (0.67-1.87)  

 
GG 19(19.8) 56(17.8) 1.21 (0.64-2.30) 0.825 

 
GA or GG 61(63.5) 190(60.3) 1.15 (0.71-1.84) 0.518 

 
Allele      

 
A 112(58.3) 384(61.0)    

  G 80(41.1) 246(39.0) 1.11 (0.80-1.55) 0.457 

 

Table 4. Distribution and percentage of multiple stress fracture cases. Odds ratio (OR) and 95% 

confidence intervals comparing the most frequent genotype to heterozygotes and homozygotes for the 

variant allele.*indicates significance P<0.05. n/a indicates insufficient sample size to carry out odds 

ratio analysis.      

SNP Genotype 

Stress 

fracture 

N (%) 

OR (95% CI) 
χ2       

p- value  

RANKL  
     

rs9594738 CC 16(33.3) 
 

  
 

TC 23(47.9) 0.85 (0.43-1.68) 
 

 
TT 9(18.7) 1.17 (0.48-2.80) 0.741 

 
TC or TT 32(66.7) 0.92 (0.49-1.75) 0.806 

 
Allele 

    

 
C 55(57.3) 

   

 
T 41(42.7) 1.04 (0.67-1.59) 0.861 

      
rs1021188 GG 38(76.0) 

  
 

 
GA 7(14.0) 0.45 (0.19-1.04) 

 

 
AA 5(10.0) 3.28 (1.06-10.11) 0.006* 

 
GA or 12(24.0) 0.7 (0.35-1.39) 0.310 
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AA 

 
Allele 

    

 
A 12(24.0) 

   

 
G 38(76.0) 1.55 (0.79-3.06) 0.978 

RANK 
     

rs3018362 GG  15(33.3) 

  
 

 
GA 26(57.8) 1.81 (0.92-3.55) 

 

 
AA 4(8.9) n/a n/a 0.175 

 

GA or 

AA 
 30(66.7) 1.64 (0.85-3.15) 0.136 

 
Allele 

    

 
A 34(37.8) 

   

 
G 56(62.2) 1.21 (0.77-1.9) 0.381 

OPG 
     

rs4355801 AA 11(23.4) 

   
 

GA 26(55.3) 2.09 (0.99-4.39) 
 

 
GG 10(21.3) 1.96 (0.79-4.85) 0.127 

 

GA or 

GG 
36(76.6) 2.05 (1.01-4.17) 0.042* 

 
Allele 

    

 
A  48(51.1) 

   
  G 46(48.9) 1.46 (0.95-2.24) 0.076 

 

Exploratory analysis of allele combinations was conducted to examine how potential gene-gene 

interactions may affect stress fracture injury risk. However, the combining of alleles reduced the 

number of participants in each group and meaningful data from this sub-analysis could not be derived.  

 

4 Discussion 

To our knowledge, this is the first study to examine the genetic associations with stress fracture injury 

in elite athletes, with all other studies to date being from cohorts of military personnel. This study is 

the first, from any population, to show that SNPs within the RANK/RANKL/OPG signalling pathway 

are associated with stress fracture injuries; SNPs rs3018362 and rs1021188, which are not in linkage 

disequilibrium (19), located near RANK and RANKL were associated with stress fracture injury in our 

whole cohort, as well as in the men only group. A copy of the minor allele of SNP rs4355801 was 

also associated with increased risk of multiple stress fractures.  
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Although, the specific function of the SNPs genotyped is not known, variant alleles of SNPs within 

the RANK/RANKL/OPG signalling pathway are known to be associated with osteoclast differentiation 

and activation (17) subsequently causing a decrease in bone resorption (23). It has also been 

suggested that allelic differences in the RANK/RANKL/OPG SNP may have a mediatory role in the 

process by which vitamin D up regulates RANKL expression in osteoblast and osteoblast precursor 

cells (24).  RANKL is vital for the differentiation of osteoclasts into mature multi-nucleated cells, as 

well as their activation and longevity (17). The importance of RANKL is highlighted by Denosumab, a 

monoclonal antibody to  RANKL, which has been shown to prevent bone loss in osteoporotic patients 

(25). The association of rs1021188 with stress fracture injury may be explained by the minor allele of 

rs1021188 being associated with increased concentrations of circulating RANKL (19), possibly 

increasing osteoclastogenesis in carriers of the minor allele and, consequently, increasing bone 

resorption. Although speculative, this could suggest an uncoupling of bone turnover resulting from 

increased bone resorption, providing a mechanistic explanation for our findings (26). 

  

As well as being associated with stress fracture injury in the present study, the SNPs analysed have 

previously been associated with other bone phenotypes. The minor allele of SNP rs3018362 has been 

associated with Paget’s disease (27) and lower BMD at the tibia measured by peripheral quantitative 

computed tomography (pQCT) (18), although other studies have reported no associations with 

rs3018362 (20,28). The rare allele of SNP rs1021188 has been shown to be associated with increased 

circulating free RANKL (18), decreased cortical porosity (28) and BMD (18, 28) at the tibia, (all 

measured by pQCT) in meta-analyses of GWAS. Homozygotes for the rare allele of SNP rs4355801 

have also previously been shown to be associated with low BMD and osteoporotic fracture period 

prevalence (21). High recombination rates have been shown between rs9594738 and rs1021188 (18). 

GWAS have previously shown associations between the variant allele of rs9594738 and bone 
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phenotypes such as low BMD (20) and osteoporotic fracture (29), although no significant association 

with rs9594738 and stress fracture injury period prevalence was observed in the present study.  

 

Pathophysiological differences between osteoporotic fracture and stress fracture injury may explain 

why the findings of these studies are not in agreement. Although not associated with stress fracture 

injury in the present study, bone phenotypic associations with rs9594738 have been shown. However, 

these have been in areas mainly consisting of trabecular bone, whereas stress fractures in athletes 

occur predominantly in the tibial diaphysis and metatarsals (30), sites mainly comprised of cortical 

bone. The influence of exercise on the RANK/RANKL/OPG signalling pathway, circulating RANKL 

and OPG concentrations and RANK density may also introduce confounding effects. Circulating free 

RANKL is notoriously difficult to measure (31), whereas the influence of exercise on OPG is more 

widely reported (32, 33). The outcome of exercise on OPG concentrations is variable; concentrations 

of serum OPG have been shown to increase following running of long and short distances in 

recreationally active males (32,33) and elevated in habitually active females (34). Conversely, OPG 

concentrations were unaltered in obese males following a 6-month training programme (35). As the 

SFEA group was comprised of elite athletes from different sports, the different training regimes 

undertaken may have influenced OPG concentrations and therefore confounded any genetic 

associations. There is always the possibility that OPG fluctuations do not solely relate to effects in 

bone, since OPG is not bone specific and can be produced by muscle and endothelial cells (36), as 

well as osteoblasts, which secrete OPG in response to exercise through inflammation or muscle 

damage (37).  

 

There are a lack of studies investigating the association of genotype with stress fracture injury in elite 

athletes, which may relate to the low period prevalence of stress fracture injury in some sports (e.g., 

0.5; 38) and the difficulties associated with obtaining samples from elite athletes due to them 

comprising only a minute proportion of the global population. Stress fracture period prevalence in the 

present study (24.9% in the entire group) was higher than previously reported (0.5% in elite football 

players; 38), although this might be due to the fact that  participation may have been more likely if 
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there was a history of stress fracture injury within their own organisation/club. The predominant site 

of stress fracture was in the lower limb (56.8%), which is consistent with previously published data 

concerning athletes (30). 

 

The stress fracture group were on average 3.3 years older at data collection (Table 1), although we 

suggest that the additional time this allowed to have suffered a stress fracture injury is unlikely to 

have affect the findings of the study given that the average age at stress fracture injury was 20±4 

years. The stress fracture group were also significantly older at the age of achieving elite status. 

Potential explanations for this could be that absence from training might have delayed athletic 

development, given that stress fracture injuries have been shown result in an average of 169 days of 

lost training time (39) a finding supported by the current study, with an average of 110 days of 

training absence reported by participants.  

 

This study is not without its limitations, whilst heterogeneity in sport type and training load are 

acknowledged as variable factors in the present study, it is currently unavoidable given to low number 

of elite athletes available to participate in such studies and the difficulty in recruiting participants due 

to perceived disruption of training schedules. Investigation of single sport groups in future will be 

required to confirm or refute our findings. As with all retrospective studies there is a possibility that 

recall bias may have occurred, although in the present study we believe this unlikely since all stress 

fractures were confirmed radiologically and caused a prolonged absence from training and 

competition, meaning that such events were likely to be well recalled by the athlete. As part of the 

athletic status questionnaire given to participants to provide information on the responder population, 

we recorded sex, age at elite status and age at sample collection. Given the potential for these factors 

to acts as covariates, they were included in a post hoc logistical regression model. After adjusting for 

these covariates, significant associations between stress fracture injury and genotype persisted in 

rs3018362 only. Other factors recorded (e.g., height, weight and hours training) in the questionnaire 
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were not included in the model, as these were not recorded at the time of stress fracture injury. 

Although challenging to undertake, future prospective studies investigating environmental and genetic 

factors associated with stress fracture injury would be useful to further elucidate to factors that might 

mediate genetic associations with stress fracture injury.        

 

After correcting for multiple comparisons none of the data remained significant. However, the 

Bonferroni correction is known to be very conservative and is recognised to be more likely to lead to 

dismissal of a true positive rather than a false one. Given the number of comparisons made it is 

possible that a type II error might have occurred, although we suggest that this is unlikely given that 

the direction of the effects shown are consistent with previously published data related to bone 

phenotypes. If the findings were to have occurred by chance, effects in different directions would be 

expected.    

 

In conclusion, SNPs located near genes in the RANK/RANKL/OPG signalling pathway are 

significantly associated with stress fracture injury. These data together with previously reported 

associations with other bone phenotypes suggest an important role for SNPs within the 

RANK/RANKL/OPG signalling pathway in the regulation of bone strength and the adaptation to 

mechanical loading. Further studies are needed to establish the specific mechanisms of how these 

SNPs are associated with stress fracture injury and how these allelic mutations influence bone 

adaptations and subsequently escalate stress fracture risk.  
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