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INVESTIGATING THE ROLE OF OPTINEURIN IN BONE 

BIOLOGY AND PAGET’S DISEASE OF BONE 

Rami Obaid 

School of Molecular, Genetic and Population Health Sciences 

University of Edinburgh 

ABSTRACT 

 

      Paget’s disease of bone (PDB) is a common disease with a strong genetic 

component. Approaches such as linkage analysis and candidate gene studies have 

shown that mutations in Sequestosome 1 (SQSTM1) explain up to 40% of familial 

cases and 10% of sporadic cases, however the majority of PDB patients have no 

mutations in this gene. Genome-wide association studies (GWAS) have recently 

identified new susceptibility loci for PDB including variants at CSF1, TNFRSF11A, 

OPTN, TM7SF4, PML, NUP205 and RIN3 loci. These loci were confirmed to be 

associated with PDB in various European populations. OPTN encodes optineurin, a 

widely expressed protein involved in many cellular processes but its role in bone 

metabolism is yet unknown. The aim of this PhD thesis was to investigate the role of 

OPTN in bone metabolism and PDB using in vitro and in vivo studies. In chapter 3, 

the OPTN rs1561570 identified by previous GWAS was examined for its association 

with the severity and clinical outcome of PDB in patients without SQSTM1 mutations. 

The results showed that rs1561570 was significantly associated with total disease 

severity score so that carriers of the risk allele “T” had higher severity score compared 

to non-carriers (P < 0.05). A trend for reduced quality of life physical scores (SF36) 

was also associated with the rs1561570 risk allele, but the relationship was not 

statistically significant. In order to identify functional variants within OPTN, the 

coding regions as well as the exon-intron boundaries were sequenced in 24 familial 

PDB cases and 19 controls. No mutation was found that could be predicted as 

pathogenic suggesting that disease susceptibility could be mediated by regulatory 

polymorphisms that influence gene expression. In chapter 4, the role of OPTN was 
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investigated in osteoclast development using in vitro knockdown experiments. Optn 

was expressed in mouse bone marrow derived macrophages (BMDMs) as well as all 

stages of osteoclast development and it was significantly increased three days post 

RANKL treatment. Optn expression was knocked down in BMDMs and cells were 

induced to form osteoclast in the presence of RANKL and M-CSF. Compared to non-

targeted cells, Optn depleted cells formed significantly more and larger osteoclasts (P< 

0.05). Optn knockdown was also found to enhance osteoclast survival as well as 

RANKL-induced NFκB activation. In chapter 5, the role of OPTN was investigated in 

vitro from cells obtained from knock in mice with a loss-of-function mutation in Optn 

(OptnD477N/D477N). In agreement with the in vitro knockdown experiments, osteoclasts 

were significantly higher and larger in mutant mice compared to WT and the NF-B 

activity measured by luciferase reporter assay was significantly higher in cells from 

OptnD477N/D477N compared to WT during most stages of osteoclast development. OPTN 

from mutant and WT mice was co-precipitated with its CYLD binding-partner, which 

acts as a negative regulator to RANK signalling by inhibiting the TRAF6 downstream 

signalling. The data from this immunoprecipitation (IP) experiment revealed that 

defective OPTN interacted less with CYLD from mutant mice compared to WT. This 

study also showed that OPTN was expressed in osteoblasts and the expression rate did 

not change during osteoblast development. The data obtained from the mineralization 

assay revealed no significant difference between OptnD477N/D477N and WT. In chapter 

6, I investigated the effect of the D477N loss of function mutation in Optn on bone 

metabolism. Bone Histomorphometrical analysis of OptnD477N/D477N mice showed 

higher bone resorption parameters (Oc.N/BS and Oc.S/BS) compared to wild type 

(WT). Osteoid analysis showed evidence of increased bone formation parameters 

(OS/BS and OV/BV) in mutant mice compared to WT. Calcein labelling showed a 

significant difference in mineral apposition rate (MAR) from mutant mice compared 

to WT. Analysis of serum biomarkers of bone turnover showed evidence of enhanced 

bone turnover in mutant mice compared to WT. Micro computed tomography (µCT) 

analysis of 4 and 14 months old mice showed no significant differences in bone 

morphology between WT and OptnD477N/D477N mice of both sexes.  
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      In conclusion, this study has shown for the first time that OPTN plays a role in 

regulating bone turnover by acting as a negative regulator of osteoclast differentiation. 

The data obtained from this study strongly suggest the crucial role of OPTN in RANK 

signalling. The effect of OPTN on osteoblast activity may be direct or indirect 

compensation for increased osteoclast activity. Further detailed studies will be 

required to explore the underlying mechanism of OPTN including downstream RANK 

signalling and a complete knockout model to corroborate these findings. 
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1. Introduction 
 

1.1 Bone 

     Bone together with cartilage makes up the skeletal system (Post et al., 2010). Bone 

is a dynamic multifunctional connective tissue, which consists of an organic matrix 

and inorganic elements. It plays a role in mechanical support, hematopoiesis, mineral 

homeostasis, protection of the internal organs, and is considered part of the endocrine 

system (Burr and Akkus, 2014; Kular et al., 2012). 

     During embryogenesis and after birth, skeletal development occurs through two 

different processes, namely, intramembranous ossification and endochondral 

ossification. The intramembranous ossification involves a condensation of 

mesenchymal stem cells that differentiate directly into bone cells. Flat bones, such as 

the clavicle and scapula, and most of the skull bones are formed through this process  

(Allen and Burr, 2014a). The endochondral ossification is a process whereby a hyaline 

cartilage template is produced by chondrocytes and replaced by bone over time. This 

process leads to the formation of long bones such as the tibia, femur, humerus and 

radius (Allen and Burr, 2014a).     

      At macroscopic level, bone can be divided into cortical (compact) bone and 

trabecular (cancellous, spongy) bone. These two categories of bone are distinguished 

from each other by their porosity, location and function.  Cortical bone constitutes 80% 

of the skeleton and is the primary structure of the diaphysis (shaft) of short and long 

bones, surrounding the marrow cavity (Burr and Akkus, 2014; Post et al., 2010).  Due 

to its high density and low surface area, this type of bone provides protection to the 

vital organs as well as playing a major role in mechanical strength and body 

movements (Post et al., 2010). The cortical bone is composed of secondary structures 

called Haversian systems (osteons), which represent units of bone remodelling. The 

osteons comprise concentric lamellae of bone tissue surrounding a central canal which 

houses the blood vessel, nerve and lymphatics (Burr and Akkus, 2014). The second 

category of bone, the trabecular bone, constitutes 20% of the skeletal mass but 
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represents 80% of the bone surface of the skeleton (Post et al., 2010). Trabecular bone 

is found in the metaphyses of long bones, flat bones and vertebrae. It is composed of 

interconnected trabeculae, separated by spaces and filled with bone marrow. Like 

cortical bone, trabecular bone is lamellar, but its structure runs parallel to the trabecular 

surface (Burr and Akkus, 2014). In contrast to cortical bone, trabecular bone has a 

large surface area, lower density and higher remodelling rate. These structural 

differences therefore make the trabecular bone metabolically more active and loss of 

bone due to any reason will be more obvious in these areas under high bone turnover 

conditions (Ralston, 2013a) (Figure 1-1).  

      Bone is composed of an organic matrix, water, and minerals. The bone mineral, 

which accounts for 65% of the weight of bone, is composed of calcium and phosphate 

bound together to form crystals of hydroxyapatite. Water makes up 10% of the bone 

and the remaining 25% is the organic part of the bone. The organic part of the bone 

matrix consists of type I collagen in a proportion of 90%, while the remaining 10% 

contains non-collagenous proteins such as versican, alkaline phosphatase, vitronectin, 

bone sialoprotein, osteopontin, osteocalcin and osteonectin. Of these, 85% are 

extracellular and the rest are found within bone cells. Non-collagenous proteins play 

an important role in regulating collagen formation, mineralization and cell adhesion to 

the matrix (Burr and Akkus, 2014). 
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Figure 1-1: (A) Representative image of micro computed tomography (µCT) obtained from 
a WT male BL6 showing a coronal cross-section of tibia and illustrating 3D reconstructed 
images of the cortical and trabecular bone structure. (B) Schematic overview of bone tissue 
at microscopic level . See text for description. The original image in panel B was taken from 
(Meng Bao et al., 2013). 
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1.2 Bone Remodelling  

     Due to its dynamic nature and its role in preserving skeletal size, shape, and 

structural integrity, bone undergoes modelling and remodelling in order to maintain 

the skeletal system. Bone remodelling is a complex, tightly regulated process that 

combines bone resorption with bone formation in order to maintain skeletal integrity 

during adult life (Kular et al., 2012; Post et al., 2010). Bone remodelling occurs at 

basic multicellular units (BMUs), whereby a series of distinct types of cells, including 

osteoblasts, osteoclasts, osteocytes, bone-lining cells, osteomacs and endothelial cells, 

collaborate together to accomplish this task (Figure 1-2). The remodelling cycle 

consists of five sequential phases: activation, resorption, reversal, formation and 

termination [reviewed in (Y. et al., 2013) and (Kular et al., 2012)] (Figure 1-3). 

 

 

1.2.1 Activation Phase 

     This phase of bone remodelling is initiated by detecting signals, which may be 

activated by several events, including micro-damage, mechanical stress or osteocyte 

apoptosis. Such signals have been described as key signals for the remodelling process. 

Studies on rodents showed that micro-damage results in disruption of the osteocyte 

network where the affected osteocytes undergo apoptosis. Prior to dying, the 

Figure 1-2: The basic multicellular unit compartments. The BMU compartments consist of 
osteoblasts, osteoclasts, osteocytes, bone-lining cells and endothelial cells, which 
cooperate with each other to maintain bone remodelling (adapted from (Kular et al., 2012). 
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osteocytes start producing cytokines that recruit the osteoblast lineage and the 

osteoclast precursors to the remodelling site (Kular et al., 2012; Y. et al., 2013).  

1.2.2 Resorption Phase  

     In this phase, the osteoblast lineage controls the formation and activity of mature 

osteoclasts by producing the main osteoclastogenesis cytokines, namely, macrophage 

colony stimulating factor (M-CSF), receptor activator of nuclear factor B ligand 

(RANKL) and osteoprotegerin (OPG). When mature osteoclasts are formed, bone-

lining cells retract allowing osteoclasts to attach to the bone surface and become 

polarized. Following the polarization, osteoclasts tightly seal the remodelling site and 

start acidifying the area by releasing protons (H+ ions) and proteolytic enzymes (e.g. 

cathepsin K), which degrade mineral bone and release collagen fragments. These 

collagen fragments are used as biomarkers to assess the bone remodelling by 

measuring them in blood and urine. Throughout this phase, the recruitment of new 

osteoclasts at the resorption site to replace dead ones is ongoing. The duration of the 

resorption phase at a given BMU is estimated to be around 20 to 40 days (Y. et al., 

2013).       

1.2.3 Reversal phase  

     After the resorption phase reaches the maximum eroded depth, the reversal phase 

starts and lasts for nearly 9 days. In this phase, osteoclasts prepare the resorbed area 

for osteoblasts by undergoing apoptosis. In the meantime, the bone-lining cells enter 

the eroded lacuna and start cleaning the residual bone matrix. In addition, these cells 

deposit the initial collagenous layer and form a cement line that facilitates the 

attachment of osteoblasts (Y. et al., 2013).  

1.2.4 Formation phase 

     The formation phase is the longest stage of bone remodelling. During this phase, 

osteoblasts differentiate and proliferate, laying down an un-mineralized organic matrix 

(osteoid). Osteoid formation is followed by mineralisation, during which the 

composition and organisation of the extracellular matrix go through a series of 
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modifications. Mineralisation is a long process, which lasts for more than a year. The 

early stage of mineralization lasts for 2-3 weeks and starts when calcium and 

phosphate ions become incorporated into the collagen matrix, accounting for 70% of 

the final mineral content. The later stage of mineralization starts when hydroxyapatite 

crystal deposition turns osteoid into mature mineralised matrix and gives bone its 

rigidity and stiffness. The formation stage is completed when an equal quantity of 

resorbed bone has been replaced by new bone (Y. et al., 2013). 

1.2.5 Quiescence phase 

    The last stage of the remodelling cycle is the quiescence phase, in which bone-lining 

cells cover the bone surface, entering the state of quiescence (resting) (Y. et al., 2013).  

 

 

 

Figure 1-3: Bone remodelling cycle. Micro-damage or mechanical stress initiates the 
remodelling cycle by recruiting mature osteoclasts to the affected site and the resorption 
phase take place. Resorption is followed by recruitment of osteoblasts, which proliferate 
and differentiate into mature osteoblasts. Osteoblasts then fill the resorption cavity with 
osteoid, thereby initiating the bone formation phase. The new osteoid subsequently 
mineralizes to generate new bone, which is covered by bone-lining cells. Bone enters the 
resting phase and this completes the remodelling cycle (adapted from (Ralston, 2013a).   
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1.3 Basic Multicellular Unit (BMU) Compartments  

1.3.1 Osteoclasts 

      Osteoclasts are the primary cells of hematopoietic origin which are involved in 

bone resorption. Osteoclast activity is crucial for bone modelling and remodelling. 

Therefore, any disruption of this activity can result in reduced or increased bone mass, 

depending on whether osteoclast activity is increased or decreased (Bellido et al., 

2014). However, as part of the growing field of osteoimmunology, recent research has 

shown that osteoclasts have a regulatory role in autoimmune and inflammatory 

diseases affecting the skeleton (Boyce et al., 2012). Several overlapping signalling 

pathways control the osteoclastogenesis and malfunction of the key components of 

such pathways leads to bone diseases. 

      The osteoclasts derived from the hematopoietic monocyte-macrophage lineage and 

the earliest nonspecific osteoclast precursors (OCPs) are colony-forming units of 

granulocyte-macrophages (CFU-GM), which require specific cytokines, transcription 

factors and signalling molecules to stimulate them to form osteoclasts.  

Haematopoietic precursors in the bone marrow or circulation proliferate to early OCPs 

that already express receptor activator of nuclear factor B (RANK) (Boyce and Xing, 

2008). The differentiation of these precursors into committed osteoclasts occurs when 

they enter the bone marrow and are exposed to RANKL. Subsequently, committed 

osteoclasts are recruited to the bone modelling/remodelling sites under the control of 

quiescent osteoblasts (bone-lining cells) and other factors, including 

osteocyte/osteoblast-derived cytokines, calcium gradients and matrix 

metalloproteinases. The committed OCPs then fuse into mature multinucleated cells. 

Cellular polarization takes place when these multinucleated cells attach to the bone-

forming specialized functional structures as part of  the resorption process (Bellido et 

al., 2014) (Figure 1-4). 
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      The earliest identifiable non-specific transcription factors of the differentiation 

process toward osteoclast/macrophage lineage are PU.1 and Pax5. Research has shown 

that PU.1-/- and Pax5 -/- mice have severe osteopetrosis without osteoclast formation. 

PU.1 and microphthalmia-induced transcription factor (MITF) regulate the expression 

of c-fms (M-CSF receptor) in the osteoclast precursors (Boyce et al., 2012). M-CSF is 

a macrophage proliferation and survival cytokine which, alongside RANKL, is 

considered to be an important cytokine for osteoclast formation. M-CSF is expressed 

by a number of cells, including osteoblasts, bone marrow stromal cells and osteocytes. 

M-CSF attachment to its receptor c-fms in osteoclasts leads to the activation of several 

signalling cascades that are required for survival and proliferation; additionally, by 

activating the c-fos transcription factor, this process also induces the expression of 

RANK.  These signalling cascades include phosphatidylinositol-3-kinase/protein 

kinase B (PI3K-Akt) and extracellular regulated kinase (ERK) signalling pathways 

(Bellido et al., 2014). Animal models with naturally occurring mutations in M-CSF, 

such as the osteopetrotic op/op mouse or the toothless tl/tl rat, have been observed to 

develop osteopetrosis due to decreased osteoclast numbers. The same osteopetrotic 

phenotype is exhibited by the CSF1 (gene coding for M-CSF) knockdown model.  

However, compensatory cytokines enabled these osteopetrotic mice to recover with 

age.   

 

Figure 1-4: Regulation of osteoclast formation and differentiation. PU.1 and MITF are the 
earlier transcriptions that drive the common myeloid precursors toward osteoclast 
formation. The expression of PU.1 and MITF regulate the expression of c-fms, the 
receptors for M-CSF and RANK in OCPs, thus priming them for further differentiation when 
they encounter RANKL. The committed osteoclasts then fuse to form multinucleated 
polarized osteoclasts that are capable of resorbing bone. 
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       The RANK/RANKL signalling pathway was discovered in the late 1990s and 

since then it has been considered the key element in bone remodelling as it mediates 

multiple aspects of osteoclast function including osteoclast differentiation from 

mononucleated precursors to multinucleated cells, resorption and survival (Kong et 

al., 1999; Yasuda et al., 1998). RANK is expressed in OCPs, mature osteoclasts, 

dendritic cells, and breast epithelial cells as well as in some cancers such as breast and 

prostate (Boyce et al., 2012). RANK gene mutations are associated with several PDB-

like syndromes, which will be discussed later on.  RANKL is expressed by several 

cells, including osteoblasts, bone marrow stromal cells, osteocytes, and T and B cells. 

The expression of RANKL is induced by parathyroid hormone (PTH), vitamin D, IL-

1, IL-6 and IL-11. RANK-/- and RANKL-/- mice develop severe osteopetrosis due to 

the lack of osteoclast formation (Kong et al., 1999; Yasuda et al., 1998). Ubiquitination 

is a complex biochemical process, where attachment of ubiquitin regulates cellular 

processes through non-proteasomal modifications, such as protein–protein interactions 

or subcellular localization, or through termination of target proteins by proteasomal 

degradation. Ubiquitin harbours seven lysine residues, but only one ubiquitin molecule 

is linked by covalent binding of the C-terminal glycine of another ubiquitin to form 

ubiquitin chains (polyubiquitin) (Davis and Gack, 2015). Among them are K48-linked 

ubiquitination, which targets proteins for proteasomal degradation, and K63-linked 

polyubiquitination, which is involved in other cellular processes such as vesicular 

trafficking and inflammation. Deubiquitinating (DUB) enzymes, such as 

cylindromatosis (CYLD) and the NFκB negative regulator A20 (TNFAIP3), 

counteract the NFκB signalling activity by removing K63-linked polyubiquitin chains 

(Davis and Gack, 2015). The downstream targets to RANK/RANKL signalling 

include NFB, the three components of mitogen activated protein kinase (MAPK), 

namely, c-jun N-terminal kinase (JNK), proto-oncogene protein (c-myc) and tyrosine-

protein kinase (Src). NFB remains inactive in the cytoplasm as long as it is attached 

to the inhibitory protein IκB.  RANK is activated when it interacts with RANKL, 

which in turn recruits TNF receptor-associated factor 6 (TRAF6) to the cytoplasmic 

domain of RANK. TRAF6 becomes ubiquitinated and then recruited to the 

transforming growth factor  activated kinase-1-TAK1-binding protein 2 (TAK1–
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TAB2) complex, which facilitates TAK1 phosphorylation and activation. This results 

in K63-polyubiquitination of NEMO and subsequent phosphorylation of IKK, which 

in turn phosphorylates the inhibitory protein IB, targeting it for proteasomal 

degradation (Mellis et al., 2011). Activated TRAF6 also stimulates NFκB activity by 

activation of the Iκ-B kinase (IKK) complex through atypical protein kinase c (aPKC), 

which phosphorylates IKKβ that in turn triggers the phosphorylation of  the inhibitory 

protein IκBα, targeting it for proteasomal degradation (Li et al., 2014). Subsequently, 

the degradation of IκBα liberates the NFB to enter the nucleus in order to activate the 

expression of its target genes. NFB has two signalling pathways (Mellis et al., 2011), 

namely, the RelA/p50 canonical pathway and the RelB/p52 non-canonical 

(alternative) pathway. RANKL stimulates both pathways, as well as activating the 

three members of MAPK in osteoclasts or osteoclast precursors, including ERK, C-

Jun N-terminal kinase (JNK), and p38.  Activator protein-1 (AP-1) transcription 

factors are activated by phosphorylation of ERK and JNK, while MITF is activated by 

phosphorylation of p38. The nuclear factor of activated T-cells, cytoplasmic 1 

(NFATc1), is considered one of the main targets of RANK/RANKL signalling 

pathway and is up-regulated by NFB, AP-1 complex and elevated level of cytosolic 

calcium. The activated NFB, AP-1 complex and MITF transcription factors in 

conjunction with NFATc1 then enter the nucleus to promote the expression of genes 

that are involved in osteoclast differentiation, resorption and survival, including 

tartrate resistant acid phosphatase (TRAcP), cathepsin K, matrix metalloproteinase 9 

(MMP9), dendritic cell-specific transmembrane protein (DC-STAMP), calcitonin 

receptor, osteoclast-associated receptor (OSCAR), chloride channel 7 (CLC-7), and 

3 integrins (Abu-Amer, 2013; Mellis et al., 2011) (Figure 1-5). OPG is another 

crucial element in osteoclast function due to its role as a decoy receptor that prevents 

RANKL from interacting with RANK. OPG-/- mice were shown to have osteopenia 

due to increased osteoclastogenesis and mutation in this gene was reported to cause a 

PDB-like syndrome called juvenile Paget’s disease (Boyce et al., 2012).   

      Mature osteoclasts are characterized by several important structures which are 

essential for the resorption process.  An earlier feature displayed by the mature 
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osteoclast is multinucleation, which is determined by the fusion of osteoclast 

precursors (Bellido et al., 2014). Numerous proteins, such as DC-STAMP, OC-

STAMP, Atp6v0d2 (a subunit of V-ATPase), and CD9 (member of the transmembrane 

4 superfamily) are implicated in the fusion process (Boyce et al., 2012). Mature 

osteoclasts become activated when they attach to αVβ3 (the integrin vitronectin 

receptor) at the exposed bone surface after the bone-lining cells that cover quiescent 

bone surfaces retract their cytoplasm. As a result, several Src signalling pathways 

become activated  (Boyce et al., 2012). The osteoclast becomes polarized and forms a 

tight seal, where protons and proteases are secreted to demineralise and degrade the 

bone matrix.   At this stage, the osteoclast membrane exhibits three distinct regions, 

which are the sealing zone (SZ), the ruffled border (RB), and the functional secretory 

domain (FSD). During polarization, the osteoclast’s actin cytoskeleton is rearranged 

to form the F-actin ring (SZ). The SZ contains podosomes that facilitate the osteoclast 

attachment to and detachment from the bone surface. The second region is the RB, 

where the protons and proteolytic enzymes are released. Carbonic anhydrase (CA) 

produces the (H+) protons, which are transported to RB through the vacuolar-type 

proton ATPase (V-ATPase). Chloride ions (Cl-) are also secreted at the RB and are 

controlled by the H/Cl exchange transporter 7 (CIC-7) (Mellis et al., 2011). A coupled 

activity of bicarbonate HCO3/ Cl- exchanger maintains intracellular electron neutrality 

at the basolateral membrane. The formation of HCl in the resorption lacuna acidifies 

the area and dissolves the bone matrix. Subsequently, the organic matrix (mainly type 

1 collagen) of the dissolved bone is enzymatically digested by the action of secreted 

cathepsin K (Cat K) and matrix metalloproteases (MMPs) (Mellis et al., 2011). TRAcP 

is also secreted but its role is still unclear. It is thought that TRAcP facilitates the 

dephosphorylation of osteopontin and bone sialoprotein, which are essential for 

normal endochondral bone formation and play a role in matrix degradation. Studies 

have reported that TRAcP knockout mice developed normally but adults showed mild 

osteopetrosis, deformity of the long bones and increased mineral density and bone 

tissue, which revealed its role in skeleton. Furthermore, TRAcP is used in histology as 

a cellular marker of osteoclasts (Hayman and Cox, 2003; Hayman et al., 2001).  After 

bone is degraded, the resorbed products are removed and degraded by lysosomes or 
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by transcytosis to be secreted across FSD towards the basolateral membrane (Mellis 

et al., 2011)  (Figure 1-6). 

 

  

Figure 1-5: RANKL and M-CSF are the main signalling cytokines in osteoclasts, regulating 
their proliferation, differentiation, and survival.  (A) PU.1 is the earliest transcription factor 
in the osteoclast lineage and stimulates the expression of the CSF1R receptor in the 
osteoclast precursors. Once M-CSF binds to its receptor, M-CSF signalling starts 
promoting macrophage proliferation and survival by stimulation of several signalling 
proteins. MITF expression is enhanced by M-CSF and through the stimulation of Bcl2 
stimulates macrophage survival. M-CSF and PU.1 also induce the expression of the 
receptor RANK. (B) RANKL binds its receptor RANK,  resulting in the recruitment of TRAF6 
and p62, which together create a platform for the assembly of the TAB2/3-TAK1 complex. 

Once TAK1 becomes phosphorylated, the NFB inhibitory protein IB  subsequently 
undergoes phosphorylation as well, targeting it for degradation. Additionally, RANKL 
activates MAPKs, leading to the phosphorylation of p38 that activates MITF,  ERK and 
JNK, which in turn  activate AP-1 transcription factors. Following activation, these 

transcription factors (NFB, MITF, AP-1) enter the nucleus and promote the expression of 
genes required for osteoclast survival and differentiation. (Mellis et al., 2011). 
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1.3.2 Osteoblasts  

     Osteoblasts are the bone formation cells that are responsible for bone matrix 

secretion and bone mineralization. Osteoblasts lie on the surface of bone and secrete 

osteoid, which consists of type 1 collagen as well as other specialized matrix proteins. 

Osteoblasts also secrete a great amount of osteocalcin and alkaline phosphatase and 

their levels in circulation reflect the bone formation rate. Osteocalcin regulates bone 

formation, while alkaline phosphatase is essential in bone mineralization (Bellido et 

al., 2014). In addition to their role in bone homeostasis, osteoblasts have other roles in 

haematopoiesis, bone metastasis, phosphate and glucose metabolism (Boyce et al., 

2012). Furthermore, osteoblasts are involved in bone modelling and remodelling tasks, 

which is regulated by interaction with osteoclasts. Osteoblasts originate from the 

mesenchymal stem cells (MSCs), which also differentiate into other cells including 

chondrocytes, myocytes, and adipocytes. Osteoblasts have different fates upon 

Figure 1-6: Schematic illustration of a resorbing osteoclast. Following contact with bone, 
the osteoclast becomes polarised and forms several regions including the sealing zone 
(SZ), ruffled border (RB), transition zone (TZ), nuclei,  resorption lacuna, and apical domain 
directed toward the bone surface. Hydrogen and chloride ions (H+ and Cl-) are secreted 
across the ruffled membrane into the Howship’s lacuna by means of vacuolar proton pumps 
(V-ATPases) and chloride channels (ClC7), respectively. Furthermore, Cathepsin K, 
TRAcP and MMP-9 are also secreted across the ruffled membrane into the Howship’s 
lacuna by secretory transport. Bone degradation products are endocytosed through the 
ruffled border into the cytoplasm toward the basolateral membrane or degraded via the 
lysosomes. Adapted from (Bellido et al., 2014). 
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completion of bone matrix formation; some cover the bone surface as bone-lining 

cells, others get entrapped into the bone as osteocytes and the remaining die by 

apoptosis. Histologically, osteoblasts, osteocytes and bone-lining cells are stained 

positively for alkaline phosphatase, but only mature osteoblasts have a cuboidal shape 

with large nuclei located near the basal membrane, Golgi apparatus on the apical 

surface, and large endoplasmic reticulum (Bellido et al., 2014).  

     The commitment of mesenchymal progenitors to osteoblast precursors and 

osteoblast differentiation and function is controlled by an array of factors including 

Runx2, osterix, Wnt signalling and Notch, in addition to growth factors, cytokines, 

and the endocrine system. Runx2 is a member of the Runt-related transcription factor 

and one of the earliest transcription factors that is responsible for establishing the 

osteoblastic lineage. Research has demonstrated that lack of osteoblasts and bone 

mineralisation results in the prenatal death of Runx2 knockout mice.  The second 

earlier transcription factor downstream to Runx2 is the Sp7/osterix. Conditional 

deletion of osterix in postnatal mice revealed its multiple role in bone growth and 

homeostasis. In addition, conditional deletion of osterix in mature osteoblasts leads to 

decreased osteoblast activity with mild bone phenotype in adult mice suggesting its 

role in bone formation. Both Runx2 and osterix are responsible for the expression of 

genes that control bone formation and remodelling, including osteocalcin, osteopontin, 

collagenase 3, OPG, and RANKL (Boyce et al., 2012).  

     A crucial role in osteoblast differentiation is played by bone morphogenetic 

proteins (BMPs) which regulate the Runx2 expression through their canonical and 

non-canonical pathways. Multiple BMPs have been identified, but only five have been 

involved in bone formation (BMPs 2, 4, 5, 6, and 7). Experiments showed that BMP2, 

4 and 7 regulate limb development and single knockout of BMP4 or 7 did not affect 

normal limb development. On the other hand, BMP2-deficient mice showed 

osteoporosis with spontaneous fracture and inability to start fracture repair (Boyce et 

al., 2012).  
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     Similar to BMPs, Wingless (Wnts) is a key signalling molecule that stimulates not 

only the commitment of MSCs towards the osteoblastic lineage, but also preosteoblast 

differentiation. Moreover, Wnt ligands prevent apoptosis in osteoblastic cells through 

their β-catenin canonical and non-canonical pathways. In addition, Wnt signalling 

inhibits osteoclast development by increasing the expression of OPG. Low-density 

lipoprotein receptor-related protein 5 (LRP5) and frizzled proteins are receptors for 

Wnt ligands. Activating mutations of LRP5 leads to high bone mass phenotype in 

humans and mice. These mutations also reduce the ability of LRP5 to bind to the Wnt 

antagonist sclerostin, which is secreted by osteocytes and induces osteoblast apoptosis. 

Conversely, mice lacking the Wnt antagonist frizzled- related protein 1 (sFRP-1) 

showed increased bone formation and decreased osteoblast and osteocyte apoptosis 

(Bellido et al., 2014).  

     Notch is a family of four transmembrane receptors, which are activated by five 

different ligands. Notch signalling is critical for maintaining a pool of mesenchymal 

progenitors and inhibiting osteoblastic differentiation. It has been found that in vivo 

depletion of Notch in genetically modified mice resulted in increased bone mass in 

young mice followed by development of osteopenia as they aged (Boyce et al., 2012).  

Furthermore, Notch was found to inhibit the osteoclastogenesis because Notch-

depleted mice showed increased osteoclastogenesis as a result of low production of 

OPG. Dysregulation of Notch signalling has been reported to lead to several diseases, 

including Alagille syndrome and spondylocostal dysostosis (Boyce et al., 2012).  

     The transforming growth factor-β (TGF-β) was observed to have an effect on both 

osteoblasts and osteoclasts, and therefore it is considered to play a crucial role in bone 

remodelling. It was found to stimulate the early differentiation of osteoblasts and 

inhibit them at a later stage. PTH stimulates TGF-β production in osteoblasts, which 

means that it cross-talks with TGF-β. During resorption, osteoclasts release and 

activate the latent TGF-β in the bone matrix, which in turn stimulates osteoblast 

formation. The insulin-like growth factor-I (IGF-I) pathway stimulates osteoblast 

proliferation, function, and survival. IGF-I-depleted mice showed severe reduction in 

bone mineral density. Fibroblast growth factors (FGFs) regulate bone osteoblast 
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differentiation and survival. Studies also showed that FGFs interact with Wnt and 

BMPs in regulation of bone formation (Plotkin and Bivi, 2013).  

      The endocrine system is involved in osteoblastogenesis due to the participation of 

several hormones, including parathyroid hormone (PTH), oestrogen, glucocorticoid, 

calcitonin and 1,25-dihydroxyvitamin D3 (1,25-(OH)2 vitamin D3) (Boyce et al., 

2012). PTH stimulates osteoblast differentiation by activating the Runx2. In addition, 

PTH increases osteoblast proliferation and survival by activating the MAPK and PI3K 

signalling. The induction of IGF-I by PTH enhances osteoblast proliferation, 

differentiation and activity. Similar to PTH, 1,25-(OH)2 vitamin D3 stimulates 

osteoblast differentiation by up-regulating Runx2. Furthermore, as a calcium-

regulating hormone, 1,25-(OH)2 vitamin D3 acts on intestinal calcium and phosphate 

absorption. Glucocorticoids display a dual effect, stimulating osteoblast differentiation 

during development and increasing bone resorption by promoting calcium absorption 

and sex hormone production. Oestrogen is an important systemic hormone involved in 

the regulation of normal bone turnover. Oestrogen deficiency was found to increase 

bone resorption and decrease bone mass, which indicates a defect in bone formation. 

Calcitonin is a potent inhibitor of osteoclast activity and used clinically for treating 

bone diseases (Y. et al., 2013).  

1.3.3 Osteocytes  

      One of the fates of osteoblasts is to become osteocytes, which are entrapped in the 

newly formed bone matrix. The smaller size and lack of several cytoplasmic organelles 

is what differentiates osteocytes from osteoblasts. Osteocytes are the most abundant 

cells distributed through the matrix and they have been recently shown to regulate 

osteoblast and osteoclast functions in response to micro-damage or mechanical stress. 

Subsequently, osteocytes undergo apoptosis and activate osteoclasts by enhancing the 

production of RANKL. Recently, osteocytes were found to produce RANKL, M-CSF 

and OPG, which in turn regulate bone remodelling (Bonewald, 2011). In addition to 

their role in osteoclasts, osteocytes were also noted to regulate the osteoblasts through 

the production of sclerostin, which inhibits bone formation and enhances osteoclast 
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function. Osteocyte numbers reduce with aging as a result of apoptosis, which may 

alter remodelling and thereby contribute to the low bone mass in old people (Kular et 

al., 2012; Onal et al., 2013).  

1.3.4 Other BMUs compartments  

      Additional BMU components that participate in bone remodelling include bone-

lining cells, osteomacs, and vascular endothelial cells. The bone-lining cells have been 

proposed to attract the osteoclast precursors via the action of collagenase, which 

digests the non-mineralised thin layer of bone exposed underneath the mineralised 

matrix. Osteomacs are macrophages found near the periosteal and endosteal surfaces 

of bones and are often associated with bone-lining cells. These macrophages have been 

suggested to regulate osteoblast mineralization and thus play a role in bone 

homeostasis. Another BMU compartment is made up of vascular endothelial cells 

which constitute a source of oxygen and nutrients, playing a vital role in bone 

formation, remodelling and healing, as well as being involved in the removal of 

resorption waste products (Kular et al., 2012).  

1.4 Osteoblast-Osteoclast Crosstalk  

      As previously mentioned, osteoblasts play a major role in the regulation of 

osteoclasts. Osteoblasts produce the main cytokines for osteoclast differentiation, 

namely, M-CSF and RANKL. RANKL is also produced in response to bone resorption 

factors such as PTH, 1,25-(OH)2 vitamin D3, interleukin 11 (IL-11), IL-6 and 

prostaglandin E2 (PGE2). At the same time, osteoblasts express OPG as well, which 

blocks the RANK/RANKL interaction and thus inhibits osteoclastogenesis. In 

addition, osteoblasts also express Sema3A, which hinders OCPs from turning into 

osteoclasts through the inhibition of immunoreceptor tyrosine-based activation motif 

(ITAM) co-stimulatory signalling. Furthermore, osteoblasts produce Wnt5a, while 

osteoclast precursors express the Wnt5a co-receptor tyrosine kinase-like orphan 

receptor 2 (Ror2). Through Wnt5a-Ror2 signalling, osteoblasts stimulate RANK 

expression in osteoclasts (Yamashita, 2012).  
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     Osteoclasts, on the other hand, have been suggested to regulate osteoblasts in 

different ways. Osteoclasts secrete Sphingosine 1-phosphate (S1P), which binds to its 

receptor in osteoblasts, enhancing the survival and migration of osteoblasts as well as 

increasing the production of RANKL. Another ligand which is expressed by 

osteoclasts and binds to its receptor EphB4 on osteoblasts is Ephrin B2. On the one 

hand, this interaction results in bi-directional signalling by promoting the osteoblast 

differentiation and bone formation and on the other hand, it supresses osteoclast 

differentiation. Semaphorin 4D has been identified recently as a coupling factor 

expressed by osteoclasts which  suppresses  bone formation through interaction with 

its receptor on osteoblasts (Kular et al., 2012).  

1.5 Diseases Arising from Abnormal Bone Remodelling 

 

      The maintenance of skeletal integrity during adult life is dependent on the balance 

of bone resorption and bone formation during bone remodelling. A number of bone 

diseases occur due to the imbalance of cellular activities of bone remodelling. For 

instance, osteoporosis arises as a result of the net loss of bone with age, which leads to 

a reduction in bone mass with a consequent increase in bone fragility and susceptibility 

to fractures. This disease is most prevalent among postmenopausal women due to 

deficiency in oestrogen, which causes increased bone turnover due to increased levels 

of circulating cytokines such as IL-1, IL-6, TNFα, and granulocyte macrophage colony 

stimulating factor (GM-CSF) (Kular et al., 2012; Ralston, 2013a). Another example of 

disease related to bone remodelling is osteopetrosis, which occurs as a result of 

mutations in genes responsible for osteoclast differentiation and function. Mutations 

in RANKL and RANK genes give rise to osteoclast poor forms of osteopetrosis. On 

the other hand, osteoclast-rich forms of osteopetrosis occur as a result of mutations in 

genes responsible for the acidification machinery of osteoclasts, such as TCIRG1 

(encode a3 subunit of V-ATPase), CAII (encode carbonic anhydrase type II), and ClC-

7 (Kular et al., 2012; Ralston, 2013a). Paget’s disease of bone (PDB) is a condition 

associated with dysfunctional bone remodelling. This disease is discussed in more 

detail in the next section.     



Chapter 1: Introduction  

20 

 

1.6 Paget’s Disease of Bone  

     PDB was first described in 1877 when Sir James Paget noticed progressive skeletal 

deformities upon post-mortem examination of a patient he had followed for over 20 

years. In a related paper, Paget named this condition osteitis deformans, which was 

later renamed Paget’s disease of bone (Paget, 1877).  

1.6.1 Clinical features  

     PDB is a late-onset disease (classical form) characterized by abnormal bone 

remodelling with increased bone resorption and disorganized bone formation in the 

resorbed focal areas (Ralston, 2013b). This disease affects primarily the axial skeleton 

including the skull, pelvis, femur, tibia and the lumbar spine. The histological findings 

from PDB cases showed increased bone resorption, with the activated osteoclasts at 

the lesion sites exhibiting a larger size and a greater number of nuclei than normal 

osteoclasts. This is accompanied by other abnormalities such as marrow fibrosis, 

increased vascularity of bone and excessive bone formation with disorganized pattern. 

As a result, bone production takes on a mosaic appearance, consisting of a mixture of 

woven and lamellar bone. Bone with such disorganized structure has impaired 

mechanical strength, which in turn increases the risk of developing bone deformities 

and fractures (Ralston et al., 2008). The other histological finding is the intranuclear 

inclusion bodies that resemble the paramyxovirus nucleocapsids. This finding suggests 

that viral infection may be involved in the aetiology of this disease (Harvey et al., 

1982). However, these inclusion bodies  have been recently suggested to occur as a 

result of  abnormal protein aggregates (Daroszewska et al., 2011). PDB has a variety 

of complications ranging from asymptomatic conditions to more severe complications 

including deafness, osteosclerosis, high-output cardiac failure, vascular calcification, 

and osteosarcoma (rarely). Excessive bone formation also results in bone expansion, 

which may lead to complications such as spinal stenosis, osteoarthritis, or pseudo-

fracture (Ralston et al., 2008) (Figure 1-7). 
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Figure 1-7: (A) The x-ray picture displays the difference between normal bone (left) and 
Pagetic bone (right).  Pagetic bone shows two distinct areas, namely, sclerotic area (dense 
with too much bone) and lytic area (with thin and little bone). (B) The left image is a normal 
osteoclast containing three nuclei from a WT mouse, while the right image is a large 
osteoclast within a lesion, containing 10 nuclei, from a P394+/+ mouse. (C) The left image 
is a transmission electron micrograph (TEM) image showing nuclear inclusions of 
osteoclast nucleus from a focal bone lesion in a P394+/+. The right image is a high-power 
transmission electron microscopy (TEM) image of the nuclear inclusion.  

(A) Reproduced from 

 http://depts.washington.edu/bonebio/ASBMRed/diseases/Pagets/Pagets2.html.  

(B) and (C) reproduced from (Daroszewska et al., 2011). 

http://depts.washington.edu/bonebio/ASBMRed/diseases/Pagets/Pagets2.html
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1.6.2 Osteoclast and osteoblast phenotype  

     Previous studies showed that Pagetic osteoclasts are hypersensitive to RANKL and 

1,25-(OH)2 vitamin D3 (Cheikh Menaa et al., 2000a, 2000b). The transcription 

activating factor 12 (TAF12; formerly known as TAFII-17) protein is a member of the 

transcription factor IID (TFIID) transcription initiation complex. TAF12 was found to 

interact with vitamin D receptor (VDR) when osteoclast precursors derived from 

Pagetic patients and MVNP-transduced osteoclast precursors were incubated with a 

GST-VDR chimeric protein, and thus TAF12 was implicated in PDB. In this study, 

the hypersensitivity to 1,25-(OH)2 vitamin D3 was associated with MVNP expression 

in osteoclast precursors from PDB patients carrying P392L mutation, and when 

MVNP was knocked down, the hypersensitivity to 1,25-(OH)2D3 was lost (Kurihara 

et al., 2004). It has also been observed that osteoclast precursors from Paget’s patients 

carrying the P394L mutation of Sequestosome 1 (SQSTM1) did not show elevated 

levels of TAF12 expression (Kurihara et al., 2007). These findings suggest that 

elevated TAF12 levels in osteoclast precursors may be specific to the over-expression 

of MVNP in osteoclast precursors. Comparison of gene expression profile between 

osteoclast cultures from PDB patients and healthy controls in one study showed that 

Pagetic osteoclasts exhibited down-regulation in TNFRSF11A, which encodes RANK 

(Michou et al., 2010). Michou et al. also noted that genes such as CTSK (encoding 

cathepsin K) and ACP5 (encoding TRAcP), which are involved in the bone resorbing 

function of osteoclasts, had decreased expression. These findings were surprising as 

osteoclasts are characteristically overactive in PDB and suggest that the hyperactivity 

of Pagetic osteoclasts may be caused by additional factors. In the same study, genes 

involved in apoptosis such as CASP3 (encoding caspase) and TNFRSF10A (encoding 

TRAIL), also exhibited decreased expression (Michou et al., 2010). Another study 

found enhanced expression of anti-apoptotic Bcl2 gene in Pagetic osteoclasts 

(Brandwood et al., 2003). Collectively, these findings implicate apoptosis in the 

pathogenesis of PDB. What is more, by comparison to healthy controls, the gene 

expression profile of peripheral blood monocytes and lymphocytes derived from 

Pagetic cases revealed higher expression of IFN, IFN and IFN (Nagy et al., 2007).  
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It has been reported that, compared to non-Pagetic osteoclasts, Pagetic osteoclasts 

manifested upregulation of c-fos expression (Hoyland and Sharpe, 1994).  

     The excessive bone formation in PDB at lesion sites may occur not only due to the 

impaired osteoclast function but also due to the impaired function of osteoblasts. It has 

been found that Pagetic osteoblasts from bone lesions express higher osteoclastogenic 

cytokines such as, IL-1, IL-6, and Dickkopf1 (Naot et al., 2006). These findings led 

the authors to speculate that overexpression of these cytokines would result in 

stimulation of osteoclast activity, which in turn would lead to the formation of lytic 

bone lesions. When osteoblast activity is enhanced, Dickkopf1 and IL-6 may also 

stimulate bone formation, leading to the conversion of lytic lesions to sclerotic lesions. 

Naot et al. further observed that alkaline phosphatase (ALP) was upregulated while 

bone sialoprotein and osteocalcin were downregulated in Pagetic osteoblasts. These 

findings are consistent with their circulating levels in Pagetic patients (Naot et al., 

2006).  

1.6.3 Cytokines and growth factors  

     Interleukin-6 (IL-6) has been implicated in PDB as a result of studies which showed 

Paget’s patients have elevated IL-6 levels in their bone marrow plasma and blood 

samples (Roodman et al., 1992). Based on in situ hybridisation, Hoyland et al. reported 

that, by comparison to control samples, PDB bone samples had increased expression 

of IL-6, IL-6 receptor and nuclear factor IL-6 (Hoyland et al., 1994). However, another 

study did not find evidence of increased expression of IL-6 using RT-PCR in PDB 

bone samples versus control (Ralston et al., 1994). In addition, genetic variation of the 

IL-6 gene or variation of other genes that encode other components of the IL-6 

signalling pathway have not been reported to be involved in the pathogenesis of PDB 

(Vallet and Ralston, 2015). Several results have been reported concerning the effects 

of IL-6 on osteoclastogenesis and bone. One result indicated that IL-6 blocking 

antibodies inhibited osteoclastogenesis in bone marrow cultures from PDB patients 

but not control cultures, whereas addition of IL-6 to normal marrow enhanced RANKL 

induced osteoclastogenesis (C Menaa et al., 2000). Indeed, several studies 
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demonstrated that the stimulatory effects of IL-6 on osteoclastogenesis are indirect and 

mediated by the production of RANKL by osteoblasts (Palmqvist et al., 2002; Tamura 

et al., 1993). Another study found that addition of IL-6 may act to directly inhibit 

RANKL-induced osteoclastogenesis in several cell types, including RAW 264.7 cells, 

mouse bone marrow, and human blood monocytes (Duplomb et al., 2008). The role of 

IL-6 on osteoclastogenesis has also been reported in a study using measles virus 

nucleocapsid protein (MVNP) mouse model of PDB (Kurihara et al., 2011). The 

findings of this study revealed that mice with MVNP overexpression had high levels 

of IL-6 and the crossing of these mice with IL-6 deficient mice resulted in the 

inhibition of Pagetic osteoclast development both in vivo and in vitro.  However, in 

the same study, osteoclasts from knock-in mice of the P394L mutation did not express 

high levels of IL-6, suggesting that elevated IL-6 levels induced by MVNP in 

osteoclast precursors may be specific to this mouse model (Kurihara et al., 2011). 

Indeed, a very recent study used over-expressed IL-6 mice crossed with P394L knock-

in mice and found  that elevated IL-6 levels in osteoclasts from knock-in mice was not 

sufficient to induce Paget’s‐like osteoclasts or bone lesions in vivo (Teramachi et al., 

2014).  

     Peripheral blood monocytes and lymphocytes derived from Pagetic patients also 

displayed overexpression of IFN, which was present in high amounts in Pagetic serum 

as well (Nagy et al., 2007). Controversial studies have been reported concerning the 

effect of IFN on osteoclastogenesis, but it seems that IFN may act directly to 

suppress osteoclast activity and indirectly by promoting osteoclastogenesis in vivo and 

in vitro (Gao et al., 2007). Moreover, IFN has been shown to suppress 

osteoclastogenesis in vitro (Takayanagi et al., 2000). Other studies revealed that IFN 

decreases serum calcium and bone resorption in nude mice (Sato et al., 1992). In 

addition, IFN has been shown to directly inhibit osteoclastogenesis by degradation of 

TRAF6 and by antagonizing RANKL-stimulated cathepsin K (Pang et al., 2005). 

Furthermore, IFN has been reported to inhibit bone resorption by inducing apoptosis 

of osteoclast progenitors and suppressing osteoclast activity (van’t Hof and Ralston, 

1997). In contrast to previous studies, IFN has been found to enhance the formation 



Chapter 1: Introduction  

25 

 

of osteoclasts in cultures of peripheral blood from osteopetrotic patients (Madyastha 

et al., 2000). Additional studies revealed that IFN-producing human T cells enhance 

the differentiation of human monocytes into osteoclasts via the expression of RANKL 

(Kotake et al., 2005). Vermeire et al. documented accelerated collagen-induced 

arthritis and bone resorption in mice with IFN receptor deficiency (Vermeire et al., 

1997). Furthermore, IFN was found to enhance bone resorption in oestrogen-deficient 

mice by inducing T cells to secrete osteoclastogenic factors RANKL and TNF-α 

(Cenci et al., 2003). 

     Circulating levels of M-CSF were increased in Paget’s patients compared to 

controls (Neale et al., 2002). Variable results of serum levels of RANKL and OPG 

have been obtained from different studies. In one, elevated levels of RANKL and OPG 

were found in PDB cases compared with those in controls (Martini et al., 2007). Other 

studies reported increased level of OPG, whereas RANKL levels were normal 

(Alvarez et al., 2003; Mossetti et al., 2005). Furthermore, levels of OPG have been 

shown to increase or decrease following antiresorptive therapy but RANKL levels 

remained unchanged (Alvarez et al., 2003; Martini et al., 2007). Further details 

concerning these osteoclastogenic cytokines (M-CSF, RANKL and OPG) see sections 

1.3.1 and 1.6.13. Circulating levels of FGF-2 were also found to be elevated in PDB 

cases compared to controls. Mouse model with deleted Fgf-2 gene showed a 

significant decrease in trabecular bone volume, mineral apposition, bone formation 

rates and decreased mineralization of bone marrow stromal cultures. These findings 

suggested that FGF-2 is an important regulator of bone formation (Montero et al., 

2000). Interestingly, studies also found that heat-shock factor-2 (HSF-2) and signal 

transducer and activator of transcription 1 (STAT1) are downstream targets of FGF-2 

signalling and that elevated levels of FGF-2 stimulate RANKL expression in PDB 

(Sundaram et al., 2009). 
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1.6.4 Treatment  

     Bisphosphonates is the first treatment choice for PDB. Bisphosphonates act as anti-

remodelling drugs that suppress the increased bone turnover in Paget’s disease and 

eventually induce osteoclast apoptosis. In cases where bisphosphonates are 

contraindicated, calcitonin can be used instead. Calcitonin is also known to inhibit 

bone turnover and can relieve bone pain in PDB patients. Other drugs, along with 

antiresorptive therapy, are also used in clinical practice to control the pain suffered by 

Paget’s patients, including analgesic agents, anti-inflammatory drugs, and anti-

neuropathic agents. What is more, patients with Paget’s disease may benefit from non-

pharmacologic therapy such as physiotherapy, acupuncture, transcutaneous electrical 

nerve stimulation and hydrotherapy (Ralston, 2013b).   

1.6.5 Epidemiology  

     There are marked ethnic differences and unusual geographical distribution in the 

prevalence of PDB. Caucasians have the highest susceptibility to the disease and the 

highest prevalence of PDB was recorded in the UK, where 1-2% of white adults over 

55 years of age develop the disease. The incidence increases with age to affect 5% of 

women and 8% of men at 80 years of age. PDB is also common in France, the 

Netherlands, Italy, Australia, New Zealand, and North America, but is rare in 

Scandinavia, Africa, and Asia (Ralston, 2008). Archaeological studies show that cases 

that meet modern PDB diagnostic criteria were restricted to Western Europe, with the 

greatest concentration being located in England, suggesting that PDB originated in the 

UK and that the prevalence of this disease has not  changed over the past 500 years 

(Mays, 2010). In the last 25 years, the prevalence of PDB in the UK and New Zeeland 

appears to have declined, while in other countries it has either remained unchanged 

(e.g. the USA) or has increased (e.g. Italy) (Ralston, 2008). 
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1.6.6 Genetic architecture of PDB 

     Familial aggregation of PDB has been reported in several studies and the risk of the 

patients’ first degree relatives to develop Paget’s disease was 6-10 times greater than 

the rest of the population (Siris et al., 1991; Sofaer et al., 1983). The familial clustering 

varies from 5% as in Holland to about 50% in French-Canadian population. These 

differences in familial clustering possibly reflect a founder effect of high penetrance 

variants in some populations,  other environmental factors that trigger the disease 

incidence or  variations between countries in determining the disease (Ralston and 

Albagha, 2013). The involvement of genetic factors in susceptibility to this disease is 

also supported by the documented variation in geographical prevalence of PDB among 

different ethnicities (Ralston and Albagha, 2011). In addition, the disease was found 

to be prevalent among migrants from high prevalence regions like Europe to regions 

where PDB is rare in their original population such as Australia and New Zealand 

(Barker, 1984). Further evidence is the mode of inheritance of classical PDB, which is  

autosomal dominant with a penetrance of about 80% and 90% by the seventh decade 

(Ralston and Albagha, 2011). However, recessive inheritance in some families has 

been reported, with only siblings developing the disease. In this regard, the most likely 

reason for disease development is the fact that a parent had an asymptomatic form of 

Paget’s disease (Ralston and Albagha, 2013).  

1.6.7 PDB-like syndromes 

     There are several rare familial forms of disorders that share the main clinical 

features with the classical PDB but with some phenotypic variations such as the age 

of onset and the type of affected bone. These PDB-like syndromes are inherited in a 

Mendelian manner and are caused by mutations in genes involved in the RANKL-

RANK-NFκB signalling pathway. These genes are considered candidate genes for 

PDB due to their involvement in the NFκB signalling and their mutant form  causes 

syndromes to manifest some common clinical signs with Paget’s disease (Ralston and 

Albagha, 2011). Mutations in the TNF receptor superfamily 11A (TNFRSF11A) gene, 

which encodes RANK, causes familial expansile osteolysis (FEO) (Hughes et al., 

2000), expansile skeletal hyperphosphatasia (ESH) (Whyte et al., 2000), and early 
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onset PDB (ePDB) (Nakatsuka et al., 2003). These syndromes are inherited in an 

autosomal dominant manner and the onset starts during childhood or early adulthood, 

being associated with tooth loss, deafness, and osteolytic expansile bone lesions. Other 

mutations in TNFRSF11B, which encodes OPG, lead to juvenile Paget’s disease (JPD) 

(Whyte et al., 2002). This syndrome is inherited in an autosomal recessive manner, 

which is characterized by bone pain, enlargement, deformity with mixed lytic and 

sclerotic lesions and fractures during childhood, in addition to a generalized increase 

in bone turnover (Ralston and Albagha, 2011). Mutations of valosin-containing protein 

(VCP), which codes for p97, cause a rare syndrome known as inclusion body 

myopathy, Paget's disease, and frontotemporal dementia (IBMPFD) (Watts et al., 

2004). The causal locus for this disease was identified by genome-wide linkage 

analysis to be located on chromosome 9p21. Afterward, positional cloning linked this 

locus to VCP and several missense mutations at the CDC48 domain have been 

identified as the cause of the disease. IBMPFD is an autosomal dominant progressive 

disease, characterised by the gradual occurrence of symptoms over time. Myopathy is 

highly penetrant, displays a bone phenotype similar to PDB and the age on onset is 40-

50 years old. Meanwhile, in 40% of cases, dementia develops around 50-60 years of 

age (Ralston and Albagha, 2013). Most recently, unique 12 bp duplication in the signal 

peptide region of TNFRSF11A was reported in a patient with a severe panostotic 

expansile bone disease associated with multiple bone deformities and a massive jaw 

tumour (Schafer et al., 2014). Histopathology revealed that the tumour consisted of 

woven bone and fibrous tissue. Furthermore, activating duplication of TNFRSF11A 

was recently reported in a patient with JPD, being known to develop due to mutations 

of TNFRSF11B (Whyte et al., 2014). These findings expand the range and overlap of 

phenotypes among conditions with known constitutive activation of RANK signalling 

and highlight the significance of mutation analysis to improve diagnosis. Recently, 

cases of osteoclast-poor autosomal recessive osteopetrosis (ARO) have been identified 

with a total of 12 novel mutations in TNFRSF11A, including missense and nonsense 

mutations, and a single-nucleotide insertion (Guerrini et al., 2008; Pangrazio et al., 

2012). Some of these mutations cause amino acid substitutions in the extracellular 

domain or intracellular domain and these mutations are likely to affect the binding to 
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RANKL. Other mutations including nonsense mutations and the insertion cause stop 

mutations/frameshift mutation within the intracellular domain, which may lead to the 

production of truncated forms of RANK protein (Guerrini et al., 2008; Pangrazio et 

al., 2012). The patients with these mutations display from a very young age clinical 

features such as osteopetrotic bone phenotype, bone fractures, skull deformities and 

other clinical features including impairment of immunoglobulin-production, 

hypocalcaemia, gastroesophageal reflux and blindness. 

1.6.8 Linkage studies  

      The documentation of familial aggregation of PDB prompted the undertaking of 

linkage studies with the purpose of identifying the common genetic factors shared by 

families. Linkage analysis was developed to detect the segregation of genes and 

genetic markers, which are inherited together because of their proximity on the same 

chromosome in certain pedigrees (Xavier and Rioux, 2008). Studies aimed at 

establishing linkage between a genetic marker and disease locus usually resulted in the 

identification of a large genomic region with poor genetic resolution. Following the 

identification of the linked loci in a pedigree, different approaches are used to identify 

the underlying genes behind the disease, such as candidate gene linkage studies and 

positional cloning (Bailey-Wilson and Wilson, 2011). For PDB, seven potential 

susceptibility loci (PDB1-7) that predispose to late onset PDB have been identified 

using the linkage approach (Table 1-1). The first locus PDB1 was identified by 

candidate gene linkage studies and has been linked to the human leukocyte antigen 

(HLA) region on chromosome 6. So far, PDB1 is considered a false positive since 

none of the replicated studies have confirmed its candidacy to PDB. The other loci 

(PDB2-7) were identified by genome wide linkage studies (Ralston and Albagha, 

2013). PDB2 locus was first identified  by positional cloning, being  linked to the 

TNFRSF11A gene in patients with FEO (Hughes et al., 2000). Two different 

subsequent studies linked this locus to familial PDB (Ralston and Albagha, 2013). 

Furthermore, the locus  has been recently confirmed with genome wide association 

studies (Albagha et al., 2010). Following the identification of PDB3, two independent 

genome wide linkage studies applied the positional cloning strategy and successfully 
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identified the Sequestosome 1 gene (SQSTM1) as a causative gene for PDB (Hocking 

et al., 2001; Laurin, 2002; Laurin et al., 2001). Mutations in SQSTM1 have been 

confirmed in different populations and are responsible for about 40% of familial cases 

and 10% of sporadic cases (Ralston and Albagha, 2011). PDB4 was strongly linked to 

PDB in French-Canadian families with low probability of linkage to SQSTM1. 

However, this locus did not emerge as a significant linkage to PDB in a British cohort 

or in genome-wide association studies. PDB5 was described in British families with 

PDB, while  PDB7 was identified in PDB cases among an Australian cohort (Good et 

al., 2004; Hocking et al., 2001). However, it is now likely that these loci constituted 

false positives because subsequent genome wide scan in the same British families 

without SQSTM1 mutations found no evidence of linkage to PDB5 or PDB7 (Lucas et 

al., 2007). The other possibility is that PDB5/7 loci may contain modifier genes that 

cooperate with SQSTM1 to cause the disease. Interestingly, this study found strong 

evidence in support of the linkage to the PDB6 locus that was subsequently identified  

by GWAS to harbour the optineurin (OPTN) gene, which will be described later 

(Albagha et al., 2010; Lucas et al., 2007).  

 

Table 1-1: Linkage studies in PDB showing the chromosomal position and the gene directly 
involved. 

Locus Chromosome Gene 

PDB1 6p21.3 HLA 

PDB2 18q21 TNFRSF11A 

PDB3 5q35 SQSTM1 

PDB4 5q31 ??? 

PDB5 2q36 ??? 

PDB6 10p13 ??? 

PDB7 18q23 ??? 
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1.6.9 Candidate-gene association studies 

      Candidate gene approaches have been applied in several studies in order to identify 

PDB susceptibility genetic variants in selected genes based on their function in bone 

metabolism or relationship with bone diseases (Chung and Van Hul, 2012). The first 

PDB-associated candidate gene was SQSTM1. Three single nucleotide polymorphisms 

(SNPs) were screened for the association with PDB in Belgian PDB patients without 

SQSTM1 mutations and none of these SNPs was associated with PDB (Beyens et al., 

2004). No correlation with PDB in a Belgian population was found in the case of SNPs 

associated with IL6 and TNFSF11 (RANKL) either (Chung et al., 2011).  Another 

PDB-associated candidate gene was VCP. The VCP variants were reported to be 

associated with PDB in a Belgian cohort (Chung et al., 2011), whereas the association 

was not found in a British population (Lucas et al., 2006). Donath et al. screened a 

Hungarian population for PDB-associated variants of vitamin D receptor (VDR) gene, 

calcium-sensing receptor (CaSR) gene and oestrogen receptor 1 (ESR1) gene. The 

VDR polymorphisms did not show association with PDB, while the other two genes, 

CaSR and ESR1, appeared to be associated with PDB in the same cohort (Donath et 

al., 2004). Variants of the TNFRSF11B gene were reported to be a PDB-associated 

candidate gene in several populations including British and Belgian cohorts. Among 

these variants, some polymorphisms in TNFRSF11B revealed a female-specific effect 

(Beyens et al., 2007; Daroszewska et al., 2004; WUYTS et al., 2001). For the 

TNFRSF11A, variants were found to be significantly associated in different 

populations including Belgian, British and Dutch cohorts, with a major effect among 

females (Chung et al., 2010b, 2009).  

1.6.10  Genome-wide association studies (GWAS) 

     GWAS are “studies in which a dense array of genetic markers (SNPs), which 

captures a substantial proportion of common variation in genome sequence, is typed 

in a set of DNA samples that are informative for a trait of interest” (McCarthy et al., 

2008). Although genotyping the marker SNPs might not directly detect the disease-

causing SNP at a specific locus, it would be possible to detect the associations between 

genotype frequency and trait status by using the linkage disequilibrium (LD) between 
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these marker SNPs and by fine mapping with their associated SNPs (Duncan and 

Brown, 2013). Hence, GWAS represent an impartial approach to the identification of 

common genetic variants that may be involved in the disease in populations sharing 

the same ethnicity. In addition, GWAS also identify novel pathways not previously 

implicated in the disease and are hypothesis free, without dependence on knowledge 

of disease pathology (Kitsios and Zintzaras, 2009). Nevertheless, GWAS are not 

without limitations. Firstly, the loci identified by GWAS have weak predictive power 

for a specific phenotype, which limit these findings to be used in clinical field. 

Secondly, the difficulty to conduct a functional analysis of the non-coding loci findings 

is another limitation, especially if they are located far from genes. The third limitation 

is the lack of power of GWAS to identify rare variants that may predispose to the 

disease. In addition, not all GWAS findings can be replicated. Furthermore, the 

majority of the GWAS findings are statistical signals either to known genes with 

known implications or to novel genes that have not been related to a particular disease 

before, which need further analysis to confirm the functional association with the 

disease (Ward and Kellis, 2012). 

      Recently, GWAS conducted on people of European descent identified 5 candidate 

genes (CSF1, TNFRSF11A, OPTN, TM7SF4 and RIN3) and 2 loci 7q33 and 15q24 

(Table 1-2). These findings have been replicated in other European populations 

(Albagha et al., 2011a, 2010; Chung et al., 2010a). CSF1 is the gene coding for M-

CSF, TNFRSF11A encodes RANK and TM7SF4 is the gene coding for DC-STAMP. 

These three genes have a known role in osteoclast function.  By contrast, the function 

of the other loci in bone biology remains unknown so far. 

1.6.11 Somatic mutations  

      One of the characteristics of PDB is the resorbed focal area, which cannot be 

explained by germline mutations. This gave rise to the possibility that these focal areas 

are caused by somatic mutations. Recent studies which have investigated the 

occurrence of somatic mutations have produced conflicting results. One of these 

studies detected the P392L mutation of SQSTM1 in the Pagetic bone tissue from some 



Chapter 1: Introduction  

33 

 

sporadic cases of PDB, but not in their blood samples. In addition, the P392L SQSTM1 

mutation was found in some tissues from PDB patients with osteosarcoma while the 

adjacent tissues were normal (Merchant et al., 2009). In contrast, another study has 

sequenced cDNA samples from osteoblasts and bone marrow culture derived from 

PDB patients with P392L mutation and found no evidence for somatic mutations 

(Matthews et al., 2009). Therefore, further studies are required to confirm the 

implication of somatic mutation in the incidence of PDB. 

 

Table 1-2: Summary of the PDB findings of genome-wide association studies 

Locus Nearest gene(s) SNPs Candidate protein 

1p13 CSF1 rs10494112 M-CSF 

10p13 OPTN rs4294134 Optineurin 

18q21 TNFRSF11A rs2458413 RANK 

8q22 TM7SF4 rs1561570 DC-STAMP 

15q24 

PML 

GOLGA6A 

rs10498635 

Inducer of promyelocytic leukemia 

Golgin Subfamily A, member 6 

14q32 RIN3 rs5742915 Ras Rab interactor 3 

7q33 

CNOT4 

NUP205 

SLC13A4 

rs3018362 

CCR4-NOT Transcription Complex Subunit 

Nucleoporin 205 

Solute Carrier Family 13, member 4 
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1.6.12  Environmental factors and PDB  

      Based on the findings of several studies, it has been proposed that environmental 

factors may act side by side with genetic factors in the development of PDB. The role 

of environmental factors in disease aetiology is strongly supported by a change in 

disease prevalence in certain populations (see section 1.6.5) (Ralston, 2008). 

      Viral infection was suggested as a factor implicated in PDB due to the presence of 

nuclear inclusion in Pagetic osteoclasts, which are similar to the paramyxovirus 

nucleocapsids (Mills & Singer 1976). Earlier studies identified the measles virus (MV) 

and the respiratory syncytial virus (RSV) in Pagetic osteoclasts using 

immunohistochemistry directed against their antibodies (Mills et al., 1994, 1981). 

Further studies using in situ hybridisation were positive for MV in Pagetic bone and 

in peripheral blood cells from Paget’s patients (Baslé et al., 1986; Reddy et al., 1999). 

Studies have also detected the canine distemper virus (CDV) in bone samples from 

British PDB patients using in situ hybridization, reverse-transcription/PCR-in situ 

hybridisation (RT/PCR-ISH) and RT/PCR (Gordon et al., 1992, 1991; Mee et al., 

1998). On the other hand, comprehensive studies undertaken by other researchers have 

failed to detect paramyxovirus expression in bone, bone marrow cells, or peripheral 

blood cells from PDB cases using RT-PCR–based methods (Birch et al., 2009; Ooi et 

al., 2000). A possible explanation for this conflict could be differences in the 

sensitivity of RT-PCR methods for virus detection.  In an attempt to resolve this 

conflict, Ralston et al. sent bone and blood samples derived from PDB patients blindly 

to different laboratories in order to compare the sensitivity of different RT-PCR–based 

techniques for detecting MV and CDV. In this study they found no evidence to support 

the fact that laboratories that failed to detect viral transcripts in PDB samples had less 

sensitive RT-PCR assays than those which successfully detected viral transcripts. In 

addition, this study failed to detect paramyxovirus transcripts in Paget’s samples using 

the most sensitive assays evaluated (Ralston et al., 2007). Irrespective of this conflict, 

the role of viral proteins in modulating osteoclast differentiation and function cannot 

be neglected. In one study, osteoclast formation was increased in vitro when canine 

bone marrow cells were infected with CDV (Mee et al., 1995). Another study also 
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noticed an increase in osteoclast formation and activity in vitro when they infected the 

bone marrow of the hCD46 transgenic mice that overexpressed the cellular receptors 

for MV (Reddy et al., 2001). In the same context, increased bone turnover was found 

in the histological analysis of the vertebrae derived from mice with overexpression of 

the measles virus nucleocapsid (MVNP). It was found that the osteoclasts derived from 

those mice not only had greater sensitivity to 1,25(OH)2 vitamin D3, but were also 

hyper-nucleated and produced higher amounts of interleukin-6 (IL-6) in vitro 

compared to WT. When the cells were treated with IL-6 antibody, osteoclast formation 

was inhibited. This suggests that increased osteoclast formation and activity is mostly 

due to MVNP-induced IL-6 overproduction (Kurihara et al., 2011). However, all these 

data do not necessarily imply that viral infection is a direct cause to PDB since other 

viral proteins HTLV-Tax are also capable of stimulating  bone turnover (Ruddle et al., 

1993). In addition, recent studies have suggested that the formation of inclusion bodies 

is due to autophagical malfunction (Hocking et al., 2012).  

      Mechanical loading has been suggested as a triggering factor that may determine 

the affected bone in Paget’s disease. For instance, it has been reported that the main 

reason why a billiards player developed Paget’s disease in his hands was the pressure 

associated with the use of the cue (Solomon, 1979). Similarly, Gasper (1979) proposed 

a direct correlation between the development of Paget’s disease in the right leg of an 

elderly woman and her occupation as wristband maker (Gasper, 1979). However, these 

findings need to be confirmed experimentally.  

      Additional environmental factors which have been suggested to be involved in 

PDB include vitamin D deficiency, dietary calcium deficiency, and the association of 

the disease with rural life and exposure to toxins. An important epidemiological 

finding regarding Paget’s disease was related to calcium intake. By evaluating  milk 

consumption during childhood and adolescence, it was found that milk consumption 

was lower in patients than in controls (Siris, 1994). On the basis of distribution 

similarities between Paget’s disease and rickets, another epidemiological study 

suggested that vitamin D deficiency in childhood was a predisposing factor of PDB 

(Barker and Gardner, 1974). Studies from Spain and Italy have emphasized the 
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correlation between the risk of developing PDB and the rural lifestyle involving 

frequent contact with animals such as pigs and cattle or their products (Merlotti et al., 

2005). Exposure to toxins such as arsenic-based pesticides has also been proposed as 

a factor that predisposed to PDB, since workers in  cotton mills were exposed to high 

level of these pesticides (LEVER, 2002). However, to confirm the correlation of these 

factors with PDB, further investigation is required.  

The next section will describe the possible molecular implication of the up-to-date 

candidate genes for PDB which have been identified by various studies. 
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1.6.13 Molecular genetics  

 

1.6.13.1 CSF1  

      CSF1 is the gene coding for the cytokine M-CSF, which has an important role in 

macrophage and osteoclast differentiation and survival (see the osteoclast section 

(1.3.1) for the role of M-CSF). The strongest association identified by GWAS was 

rs484959 SNP, which is situated 87kb upstream of CSF1. CSF1 is a strong candidate 

to PDB as PDB patients showed increased level of serum M-CSF compared to 

controls. However, the mechanism through which the genetic variants at the CSF1 

locus contribute to the disease is still unknown (Ralston & Albagha 2013).     

1.6.13.2 TNFRSF11A 

     TNFRSF11A encodes RANK, the receptor activator of NK-B ligand (RANKL).  

RANK/RANKL signalling plays an important role in osteoclast differentiation, 

resorption and survival, as described previously.  Linkage analysis first identified this 

gene as being implicated in the PDB-like syndrome FEO  (Hughes et al., 2000, 1994). 

Mutations causing syndromes are heterozygous tandem duplication of a certain 

number of base pairs (84dup18bp as in FEO, 84dup27bp as in ePDB and 84dup15bp 

as in ESH). The overexpression of these mutations was shown to cause a constitutive 

activation of NFB signalling in vitro and this finding was interpreted as the reason 

behind the presence of focal osteolytic lesions in vivo (Hughes et al., 2000). However, 

other studies showed that these mutations in RANK prevent the normal cleavage of 

RANK signal peptide, which leads to the accumulation of RANK in the endoplasmic 

reticulum, thereby preventing the cells from being directly activated by RANKL. 

Homozygote mice for these mutations developed osteopetrotic phenotype, while 

heterozygote mice developed severe osteolytic lesions similar to those observed in 

ePDB patients (Crockett et al., 2011). However, mutations in RANK have not been 

detected in late onset PDB patients, although TNFRSF11A locus was identified as a 

strong candidate gene for PDB by GWAS. In addition, polymorphisms at the 

TNFRSF11A locus have been associated with PDB by a candidate gene study of Dutch, 

Belgian and British cases. Therefore, further investigations are required to determine 
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how variants at the TNFRSF11A locus are implicated in classical PDB (Ralston and 

Albagha, 2013).       

1.6.13.3 TNFRSF11B 

      TNFSF11B encodes the OPG protein, which a cytokine that acts as a decoy 

receptor for RANKL. OPG-deficient mice were observed to develop severe 

osteoporosis with increased bone turnover. Several mutations for TNFRSF11B have 

been reported in JPD (Cundy et al., 2002; Middleton-Hardie et al., 2005; Whyte et al., 

2002). The first mutation was a homozygous deletion of 100bp of TNFRSF11B gene 

that resulted in the absence of OPG in the circulation of patients with increased bone 

turnover. The second mutation was found in an Iraqi family which displayed a 

homozygous 3bp deletion that affected the aspartate residue. Functional studies 

showed that deletion of aspartate in OPG led to a loss of function mutation that 

impaired the binding to RANKL. The other mutations were missense mutations 

affecting the binding of OPG to RANKL. However, mutations of TNFRSF11B have 

not been detected in classical PDB and this gene did not emerge as a candidate gene 

in recent GWAS (Ralston and Albagha, 2013).   

1.6.13.4 VCP 

      As mentioned before, mutations of the VCP gene (p97) cause IBMPFD (Watts et 

al., 2004). VCP is a member of the type II AAA-ATPase family with a high level of 

expression. From an evolutionary perspective, this protein is highly conserved and 

plays an essential role in a variety of cellular process, such as cell cycle, membrane 

fusion, DNA damage repair, and organelle biogenesis.  It also has a role in protein 

degradation through the ubiquitin-proteasome system (UPS), endoplasmic reticulum-

associated degradation (ERAD) and autophagy. However, it remains unclear through 

which mechanisms VCP causes IBMPFD. However, the role of VCP in IB turnover 

links this protein to the NFB pathway, a crucial signalling pathway in osteoclasts. 

Furthermore, mutations of VCP impair its role in autophagy, which leads to 

accumulation of non-degrative autophagosome and vacuolation. Mutations of VCP 

have not been reported in classical PDB, although a study on a Belgian cohort showed 

an association between VCP polymorphism and PDB (Chung et al., 2011). In contrast 
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to this finding, a study on a British cohort showed no evidence in support of the 

association of VCP variants and PDB. Since the other feature of the IBMPFD 

syndrome is absent in PDB cases, it is unlikely that common variants of VCP are 

involved in the pathogenesis of PDB (Ralston and Albagha, 2013).    

 

1.6.13.5 TM7SF4 

      The transmembrane 7 superfamily member (TM7SF4) polymorphisms associated 

with PDB were identified recently by GWAS. This gene encodes a transmembrane 

protein known as dendritic cell-specific transmembrane protein (DC-STAMP), which 

plays an essential role in the fusion of the osteoclast precursors and macrophages. 

Furthermore, DC-STAMP is stimulated by RANKL to enhance the formation of 

mature osteoclasts. Therefore, this gene is a strong candidate gene for PDB since the 

osteoclasts from the PDB cases are hypernucleated and larger compared to the 

osteoclasts from controls but further analysis is required to confirm this hypothesis 

(Ralston and Albagha, 2013).  

1.6.13.6 RIN3 

      RIN3 is a member of the RIN family of Ras interaction-interference proteins, 

which are binding partners to the RAB5 small GTPases. This gene was identified 

recently by GWAS but its role in bone metabolism is unknown (Albagha et al., 2011a). 

However, RIN3 might be involved in bone resorption since small GTPases have a role 

in osteoclast function through effects on vesicular trafficking (Taylor et al., 2011). 

Most recently, genetic analysis has identified 13 rare missense variants, which were 

over-represented among PDB cases (Vallet et al., 2015). In this research, in silico 

studies have identified two groups of variants; those found in structured domains of 

the protein (SH2 and VPS9) and those situated within the proline-rich domain. Most 

of these were rare variants but one common missense variant (R279C) located within 

the proline-rich domain was strongly associated with PDB. Furthermore, the 

expression of RIN3 was detected in bone tissue and it was higher in osteoclasts 

compared with osteoblasts (Vallet et al., 2015). Collectively, these findings suggest 

that genetic variants in RIN3 may predispose to PDB by affecting osteoclast function.    
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1.6.13.7 7q33 Locus  

      Recent GWAS indicated the 7q33 locus as a genetic determinant of PDB. This 

locus contains three genes (CNOT4, NUP205, and SLC13A4) and two predicted 

coding transcripts (PL-5283 and FAM180A). CONT4 encodes the CCR4subunit of the 

CCR4-NOT complex, which is implicated in transcriptional regulation of RNA 

deadenylation. Furthermore, this protein was reported to have E3 ubiquitin ligase 

activity (Mersman et al., 2009). The NUP205 gene encodes the protein nucleoporin 

205, which plays a role in the regulation of cellular trafficking between the cytoplasm 

and nucleus (Albagha et al., 2011a). SLC13A4 (Solute Carrier Family 13 

(Sodium/Sulfate Symporter), Member 4) is a protein-coding gene and may play a 

major role in sulfate incorporation in high endothelial venules (Girard et al., 1999). 

None of these genes have been implicated in bone biology and any one of them could 

be responsible for the development of PDB (Ralston and Albagha, 2013).  

1.6.13.8 15q24 Locus 

      Two candidate genes within the 15q24 locus were identified by GWAS. The 

strongest association SNP is located within PML and causes a phenylalanine to leucine 

change at amino acid 645. Previous studies have shown that PML plays a role in 

regulating cell growth, apoptosis, senescence, and TGF- signalling. PML has 

unknown function in bone metabolism and might be involved in the pathogenesis of 

PDB because of its role in regulating TGF- and, thus, bone turnover. The role of this 

gene in apoptosis also strengthens its association with PDB since cultured osteoclasts 

from PDB patients survived longer than the osteoclasts from controls. The second gene 

in this locus is GOLGA6A which encodes a member of the golgin family of proteins 

that are associated with the structure of the Golgi apparatus. Like PML, GOLGA6A 

has unknown function in bone biology and any one of these two candidate genes could 

be involved in the development of PDB (Ralston and Albagha, 2013).  
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1.6.13.9 SQSTM1  

     As previously mentioned, the interaction between RANKL and RANK stimulates 

downstream molecules to express osteoclast-specific genes, thus promoting 

osteoclastogenesis. Experiments on mice showed that absence of different components 

of this process caused the onset of osteopetrosis. SQSTM1 has multiple binding 

partners and acts as scaffold for multiprotein complexes in response to different types 

of stimuli (Figure 1-8). SQSTM1 is a TRAF6 binding partner and regulates the RANK 

signalling downstream of TRAF6. PDB patients have been found to have more than 

20 SQSTM1 mutations. The most common mutation was P392L, which caused a 

proline to leucine change at position 392 of the gene product. Other mutations were 

found clustering in the UBA domain of SQSTM1 protein while a few mutations were 

reported outside this region (Rea et al., 2013).  

 

 

     Several mouse models for SQSTM1-induced PDB were generated in order to 

examine the effect of the SQSTM1 mutations on the bone phenotype of these mice. 

The first model was generated by overexpressing the P392L mutation in mice 

(Kurihara et al., 2007). The osteoclast precursors from these mice were hypersensitive 

to RANKL and TNF and were larger and hypernucleated compared to control 

Figure 1-8: Domain structure of SQSTM1/p62 and its interacting partners. p62 is a 
scaffolding protein with multiple interaction domains necessary for its interaction with 
specific proteins and regulation of downstream signaling pathways. The N-terminal Phox 
and Bem1p (PB1) domain that interacts with aPKC, ERK, Nbr1 (neighbour of BRCA1), 
MEKK3 (mitogen-activated kinase kinase 3) and MEK5 ( mitogen-activated protein kinase 
5), whereas zinc finger (ZZ) binds to RIP, the TF6-b sequence (TBS) interacts with TRAF6, 
p38 binding sequence (p38BS) binds p38, LC3-interacting region (LIR) interacts with LC3, 
and the Keap-interacting region (KIR) interacts with Keap1, two PEST sequences (P1 and 
P2), Lim protein binding region (LB) and a carboxy-terminal UBA domain. p62-binding 
partners are indicated above the appropriate domain. The numbers represent the numbers 
of amino acid residues. Adapted from (Rea et al., 2013). 
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osteoclasts. In addition, it was found that P392L mutant animals showed reduced bone 

volume in older mice compared to WT without evidence of developing skeletal 

phenotype of PDB. Subsequently, two models with germline knock-in of P394L, 

which is the mouse equivalent of the human P392L mutation, were generated. Based 

on radiological and histological findings, Daroszewska et al. concluded that SQSTM1 

mutations were sufficient to cause PDB (Daroszewska et al., 2011). They found that 

Sqstm1 P394L knock-in mice developed focal bone lesions mainly targeting the lower 

limbs. The bone lesions from mutant mice contained larger and more multinucleated 

osteoclasts than normal and some of these osteoclasts were seen to contain nuclear 

inclusion bodies. Histological examination also showed increased bone turnover with 

increased bone resorption and bone formation and accumulation of woven bone. On 

the other hand, using the same germline mutation (SqstmlP394L), Hiruma et al. argued 

that SQSTM1 mutations were not enough to develop the disease alone in vivo, despite 

predisposing to PDB (Hiruma et al., 2008). In this study they found that osteoclasts 

from mutant mice were hyper-responsive to RANKL and TNF but not 1,25(OH)2 

vitamin D3. Co-culture of Sqstm1P394L stromal cells formed more osteoclasts than the 

co-culture of WT cells. However, histological examination of the lumbar spine from 

mutant mice showed normal bone. The reasons behind the difference in skeletal 

phenotype between the two studies may be explained by the different techniques used 

(Ralston and Albagha, 2013). Kurihara et al. conducted experiments on double knock-

in mice with Sqstm1P394L and overexpression of MNVP (Kurihara et al., 2011). These 

mice developed focal lesions in the spine similar to PDB. The osteoclasts precursors 

obtained from this model were hyper-responsive to both RANKL and 1,25(OH)2 

vitamin D3, with increased numbers of formed osteoclasts which were larger than 

either Sqstm1P394L knock-in mice or WT mice. The expression of IL-6 production was 

also found to be significantly increased. This finding was in agreement with previous 

studies where IL-6 was increased in MVNP-overexpressing mice in addition to the 

high level of IL-6 reported in PDB. They also found that when Sqstm1P394L mice bred 

with mice with overexpressed MNVP, the hypersensitivity to 1,25(OH)2 vitamin D3 

in vitro was abolished. These results suggest that the IL-6 is a crucial contributor to 

the Pagetic osteoclast phenotype. Sqstm1-deficient mice also had impaired 
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osteoclastogenesis in vitro and in vivo. Histological analysis of these mice was similar 

to the WT, suggesting that loss of Sqstm1does not affect basal osteoclastogenesis. 

However, when Sqstm1-deficient mice were treated with parathyroid hormone-related 

protein (PTHrP) to induce osteoclastogenesis, they showed mild alteration in the bone 

histological analysis (Durán et al., 2004). Collectively, these findings emphasise the 

role of SQSTM1 in the pathogenesis of PDB.  

1.6.13.9.1 Role of SQSTM1 in NFB signalling pathway 

     Among the major factors implicated in osteoclastogenesis is NFB signalling, 

including both NFB canonical and non-canonical pathways. Overexpression of 

SQSTM1 was found to inhibit NFB activity. At the same time, overexpression of 

mutant SQSTM1 was  enhanced the activity of the NFB pathway (Rea et al., 2013). 

These findings revealed the role of SQSTM1 in NFB signalling. The deubiquitinating 

enzyme CYLD was identified to inhibit NFB signalling and it has been observed to 

interact with the UBA domain of SQSTM1, which in turn promoted the binding of 

CYLD with TRAF6. When the UBA domain was removed, SQSTM1 failed to form a 

complex with TRAF6 and CYLD, and  NFB signalling was enhanced (Jin et al., 

2008). Furthermore, SQSTM1 and TRAF6 were upregulated and formed a ternary 

complex together with aPKC in response to RANKL stimulation, while  genetic 

inactivation of Sqstm1 in mice led  to impaired osteoclastogenesis (Durán et al., 2004).  

1.6.13.9.2 Role of SQSTM1 in protein degradation  

     The main components of the protein degradation system are autophagy and UPS, 

which cooperate to maintain cellular homeostasis by clearing damaged organelles, 

intracellular pathogens and protein aggregates. Abnormal or overexpressed protein 

aggregates are sequestered within the cells and form what are called inclusion bodies. 

A hallmark of neurodegenerative diseases, inclusion bodies are also one of the clinical 

features that characterise Pagetic osteoclasts. SQSTM1 was found to accumulate in 

theses inclusion bodies, suggesting its implication in the protein degradation system 

(Rea et al. 2013). Studies investigating the causative effect of SQSTM1 mutations on 

Paget’s disease have reported impaired autophagic flux. Furthermore, the expression 
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of ubiquitin-proteasome system (UPS) and autophagy-related proteins was found to be 

high in osteoclasts from Pagetic bone biopsies (Hocking et al., 2012). Several studies 

have explored the role of SQSTM1 in UPS. SQSTM1 was reported to shuttle the 

ubiquitinated substrates to the UPS for degradation. The PB1 domain of SQSTM1 was 

noted to be essential for interaction with the proteasome. At the same time, SQSTM1 

was found to be degraded by both the UPS and autophagy. Another study reported that 

clearance of ubiquitinated proteins by UPS was suppressed due to accumulation of 

SQSTM1 after autophagy inhibition. This suggests the implication of SQSTM1 in the 

UPS as well as crosstalk between autophagy and UPS (Rea et al., 2013).  

     The role of SQSTM1 in autophagy was highlighted by several studies. Komatsu et 

al. showed that inhibition of SQSTM1 by RNA interference (RNAi) led to suppression 

of inclusion body formation (Komatsu et al., 2007). In another study, SQSTM1 was 

found to interact with ALFY (autophagy-linked FYVE domain-containing protein) 

and this interaction was obvious as a result of nutrient deprivation, which induced 

autophagy. This interaction organised misfolded, ubiquitinated proteins into 

aggregates to be degraded by autophagy (Hocking et al., 2010). Recently, SQSTM1 

was also found to interact with light chain 3 (LC3) during the autophagy process and 

LC3 was observed to be localize at the ruffled border in osteoclasts, alongside  Atg5 

and Atg7 (DeSelm et al., 2011; Rea et al., 2013). Collectively, these findings point to 

the critical role of SQSTM1 in autophagy.  

1.6.13.9.3 Role of SQSTM1 in apoptosis  

     Beside its function in the protein degradation system, SQSTM1 is also involved in 

apoptosis through the regulation of the apoptotic upstream protease, caspase-8. TNF-

related apoptosis-inducing ligand (TRAIL) signals the apoptosis process through the 

cell-surface death receptors (DRs), which in turn stimulate the formation of a death-

inducing signalling complex (DISC) (Rea et al., 2013). These signals require caspase-

8 aggregation and activation, which is facilitated by SQSTM1. Inhibition of SQSTM1 

by RNAi was found to attenuate the TRAIL and decrease the activity of caspase-8 as 

well as downstream caspase-3 and 7 (Rea et al., 2013).   
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1.6.13.9.4 Role of SQSTM1in pathogen infection 

     Thanks to its multiple protein domains, SQSTM1 can act as a scaffold for the 

formation of multi-protein complexes in response to viral infection. In this context, 

levels of SQSTM1 were found higher in Epstein-Barr virus lymphocytes from PDB 

cases either with or without SQSTM1 mutations compared with healthy controls. In 

addition, overexpression of the viral protein significantly reduced NFB signalling in 

WT compared to PDB cases with mutant SQSTM1. Based on such observations, it was 

concluded that SQSTM1 is involved in viral infection (Rea et al., 2013). The ubiquitin 

system has been found to play a crucial role in the recognition of bacterial pathogens 

in the cells’ cytoplasm. The cytosolic receptor NDP52 identifies ubiquitin-coated 

Salmonella and recruits TBK1 and LC3 targeting the bacteria to autophagic clearance. 

The role of SQSTM1 in bacterial infection has been established by the fact that its 

ubiquitin-binding domain (UBD) targets bacteria to autophagy by interacting with 

LC3 (Shaid et al., 2012). 

  



Chapter 1: Introduction  

46 

 

1.7 Optineurin 

1.7.1 Molecular structure  

     Optineurin (OPTN), a 67 kDa protein, was first isolated as a binding partner of the 

adenoviral protein E3–14.7K in a yeast two hybrid screening and was given the name 

14.7K-interacting protein-2 (FIP2). Furthermore, due to its strong homology with the 

NFκB essential molecule (NEMO), OPTN is also known as the NEMO-related protein 

(NRP). In addition, according to the binding partners with which it interacts, OPTN is 

referred to as transcription factor IIIA-interacting protein (TFIIIA-INTP) and 

Huntingtin-interacting protein 7 (HIP7). The name Optineurin was derived from “optic 

neuropathy-inducing” based on the link with  primary open-angle glaucoma (POAG) 

(Kachaner et al., 2012).  

      In humans, the OPTN gene spans the 37kb genomic region on chromosome 10p13 

(10:13142082-13180276, gene ID: 10133). The human OPTN contains 3 noncoding 

exons in the 5-UTR region and 13 exons that encode for a 577 amino acid protein. 

Alternative splicing at the 5'UTR generates four different transcripts 

(NM_001008211.1, NM_001008212.1, NM_001008213.1, and NM_001008214.1), 

but all share the same open reading frame (Figure 1-9)   

(http://www.ncbi.nlm.nih.gov/nuccore/?term=optn). 

 

 

  

Figure 1-9: A schematic representation of the genomic structure of OPTN. OPTN is located 
on chromosome 10p13 and consists of 3 non-coding exons and 13 coding exons. 

http://www.ncbi.nlm.nih.gov/nuccore/?term=optn
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     The detailed promoter structure regulating OPTN expression is so far unknown. 

However, one of the studies that discovered the relationship between OPTN and NFB 

has cloned 1077 bp of DNA fragment upstream of the human OPTN cDNA sequence 

(Sudhakar et al., 2009). This putative promoter includes 221bp of exon 1, which is 

present in all OPTN transcripts. Analysis of this promoter revealed several putative 

Sp1 sites and one NFB site located immediately upstream of the transcription start 

site. No TATA box or initiator element is present in this promoter. Other putative 

binding sites were also identified, including the heat shock factors, HSF1 and HSF2, 

MyoD, neuron-restrictive silencing factor (NRSF), and cyclic AMP response element-

binding protein (CREB). This promoter was activated in HeLa and A549 cells upon 

treatment with TNF. A smaller promoter size (360bp) was also made in the same 

study, which included the putative Sp1 sites and NFB site, and found to be activated 

in HeLa and A549 cells by TNF as well. Interestingly, the smaller promoter size 

showed more basal activity than the larger promoter size, suggesting that a negative 

regulatory element exists upstream of the smaller promoter (Sudhakar et al., 2009). 

IFN was reported to enhance the OPTN protein and mRNA through a mechanism 

which is as yet unknown (Schwamborn et al., 2000). IFN activates the expression of 

several genes through the interferon regulatory factor 1 (IRF-1) and STAT1 

transcription factors. A very recent study identified a mechanism of regulation of 

OPTN expression by IFN through the induction of IRF-1, which in turn bound to its 

responsive sites in the first intron of OPTN. The study revealed that IRF-1 was a strong 

activator of OPTN promoter activity and mutational analysis of OPTN promoter 

caused a loss of activation of the promoter by IRF-1 or IFN. They also found that 

TNF cooperated with IFN to activate the two transcription factors IRF-1 and NFB, 

which synergistically induced the OPTN promoter (Sudhakar et al., 2013).   
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1.7.2 Protein characteristics  

      OPTN is ubiquitously expressed in several tissues including the brain, heart, 

placenta, skeletal muscle, pancreas, liver, kidney, adrenal cortex, and the eye 

(Kachaner et al., 2012). A high amino acid sequence homology in optineurin protein 

has been identified in other species, including chimpanzee, cow, dog, rat, mouse, 

chicken, and zebrafish. The structural domain of OPTN includes NEMO-like domain, 

N-terminal region containing a putative leucine zipper (LZ), 2 coiled-coil motifs, an 

UBD, LC3-interacting motif (LIR) and a carboxyl (C)-terminal ubiquitin-binding zinc 

finger (ZF) (Kachaner et al., 2012) (Figure 1-10). Studies showed that endogenous 

OPTN was neither a membrane nor a secreted protein but rather it was found localized 

in the cytoplasm with a diffuse distribution pattern (Kroeber et al., 2006; Park et al., 

2006). Post-translational modification studies demonstrated that OPTN was neither N- 

nor O-glycosylated protein (Schwamborn et al., 2000; Ying et al., 2010). Most 

recently, it was reported that endogenous or ectopically-expressed OPTN interacts 

with itself and exists as oligomers in cultured cells under physiological conditions 

(Gao et al., 2014). In addition, most OPTN was found to be present in protein 

complexes with a high molecular weight and H2O2 stimulation induced it to form 

nondisulfide-linked covalent trimer (Gao et al., 2014). Furthermore, endogenous 

OPTN was found phosphorylated by TRAF family member-associated NFκB activator 

(TANK) binding kinase 1 (TBK1) at Ser177, which enhances LC3 binding affinity 

and selective autophagy (Wild et al., 2011). Overexpression after transfection causes 

OPTN to take the form of dots known as foci. A subsequent study further investigated 

the effect of phosphorylation on crystal structures of the autophagy modifier LC3B in 

the complex LIR domain of OPTN. The results demonstrated that LC3B recognised 

phosphorylated OPTN, which in turn enhanced the affinity for OPTN-based selective 

autophagy, while  mutational analysis weakened its interaction with LC3B (Rogov et 

al., 2013). Turnover experiments revealed that the endogenous OPTN was a short-

lived protein, with a half-life of approximately 8 hours (Ying et al., 2010). The UPS 

was identified to be the major pathway for endogenous optineurin processing in 

neuronal cells, while autophagy and lysosomes were found to have a minor role (Shen 

et al., 2011).  
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1.7.3 Optineurin-binding partners 

1.7.3.1 Rab8 

     The RAB8 (MEL) gene, which encodes Rab8, was isolated as a transforming gene 

following transfection of NIH3T3 mouse fibroblasts with DNA from a human 

melanoma cell line (Nimmo et al., 1991). Rab8 is a member of large families of 

guanosine triphosphatases (GTPases) that participate in and regulate vesicular 

trafficking between the trans-Golgi network and the plasma membrane. In addition, 

Rab8 promotes changes in cell shape by reorganizing actin and microtubules in 

fibroblast (Peränen et al., 1996). Rab8 interacts with N-terminal region of OPTN that 

contain a LZ at the amino acids numbers 141–209 (Hattula and Peränen, 2000). 

Furthermore, the Rab8-mediated endocytic trafficking of transferrin receptor was 

observed to be inhibited by a Rab GTPase-activating protein known as TBC1 Domain 

Family, Member 17 (TBC1D17). Interestingly, OPTN is a binding-partner of 

TBC1D17 and acts as an adaptor that mediates the interaction of TBC1D17 with Rab8 

(Chalasani et al., 2009; Vaibhava et al., 2012).    

 

Figure 1-10: The structural domain of OPTN and its binding partners (adapted from 
(Rezaie, 2002).   



Chapter 1: Introduction  

50 

 

1.7.3.2 Huntingtin (Htt) 

      The gene locus of the human Huntingtin (Htt), which is associated with Huntington 

disease, was discovered near the tip of the short arm of chromosome 4 in 1983 and ten 

years later, in 1993, the gene was cloned for the first time  (Cheng et al., 1989; The 

Huntington’s Disease Collaborative Research Group, 1993). Htt is expressed 

throughout the body but at varying levels depending on cell type. It is implicated in 

many cellular processes, including development of the nervous system, immunity, 

transcription and intracellular signalling, intracellular transport, the secretory pathway, 

endocytic recycling, mitochondrial impairment,  cell adhesion, and its ability to 

influence brain-derived neurotrophic factor (BDNF) production and transport 

(Zuccato and Cattaneo, 2014). It has been shown that Htt interacts with OPTN at the 

C-terminal region at the amino acid numbers 411–461. In addition, OPTN colocalizes 

with Htt in the Golgi apparatus, linking Htt to Rab8. Furthermore, co-expression of 

OPTN and Htt enhances the interaction of Htt to Rab8- positive vesicular structures, 

while cells expressing mutant Htt have impaired post-Golgi trafficking to lysosomes 

by delocalizing the OPTN/Rab8 complex from the Golgi apparatus (del Toro et al., 

2009).  

1.7.3.3 Myosin VI 

       In humans, the proximal tubule cells of the kidney represented the location where 

Myosin VI was first identified (Hasson and Mooseker, 1994). Myosin VI is a 

multifunctional motor protein that attaches to the actin and has been found in a number 

of intracellular compartments including endocytic vesicles, membrane ruffles, Golgi 

complex, and secretory vesicles (Hasson and Mooseker, 1994; Rock et al., 2001). 

Furthermore, Myosin VI was observed to interact with the OPTN C-terminal between 

amino acid numbers 412 and 520. Myosin VI and OPTN work together in organising 

the Golgi apparatus while also taking part in the fusion of secretory vesicles at the 

plasma membrane (Sahlender et al., 2005).  
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1.7.3.4 Transferrin receptor 

     The recognition by monoclonal antibody (OKT9) of an antigen on the cell surface 

of human leukemic cells led to the discovery of the transferrin receptor (TFRC), which 

is a membrane carrier protein for transferrin. Subsequently, the OKT-9 antigen was 

immunoprecipitated in the presence of radio-labelled transferrin, resulting in specific 

precipitation of transferrin. The OKT9 antibody did not bind transferrin itself, which 

indicated that the antigenic structure recognized by this antibody was presumably the 

transferrin receptor (Sutherland et al., 1981).  OPTN is required for transport of 

transferrin receptor from the recycling endosome to plasma membrane (Nagabhushana 

et al., 2010). Although the binding site for OPTN is yet to be determined, the 

transferrin receptor displays interaction with OPTN, prompting assumptions about its 

role in endocytic recycling (Park et al., 2010).  

1.7.3.5 Metabotropic glutamate receptors 1 and 5 (mGluR1 and mGluR5) 

     Glutamate is the primary neurotransmitter that mediates the postsynaptic excitation 

of neural cells and is important for higher brain functions such as memory and 

learning, sensory pathways and cytotoxicity and neuronal death (Romano et al., 1996). 

Glutamate receptors are classified into two classes: the ionotropic glutamate receptors 

(iGluRs) and the metabotropic glutamate receptors (mGluRs) (Masu et al., 1991). The 

latter are classified into different groups. Among them are mGluR1 and mGluR5, 

which belong to  group 1 of the subfamily of G-protein-coupled receptors (Conn and 

Pin, 1997) and are linked to the inhibition of phospholipase C (PLC) and inositol 1,4,5-

triphosphate (IP3), which regulate the release of Ca2+ stores inside the cells (Conn and 

Pin, 1997). OPTN has been found to be a group 1 mGluR-interacting protein (Anborgh 

et al., 2005), antagonising the agonist-stimulated mGluR1a signalling when it is 

expressed in HEK 293 cells (Anborgh et al., 2005).    

1.7.3.6 Transcription factor IIIA (TFIIIA) 

     TFIIIA was first isolated in eukaryotes from Xenopus laevis using ion exchange 

chromatography (Engelke et al., 1980). Its main function is the activation of 5S 

ribosomal RNA gene transcription in eukaryotes by RNA polymerase III. OPTN was 

identified using yeast two-hybrid systems to screen for TFIIIA-interacting proteins of 
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Xenopus. The interaction of OPTN with TFIIIA was verified by chromatography and 

by coimmunoprecipitation in vitro, results showing that the location of this interaction 

was the central leucine domain (Moreland et al., 2000). However, the role of OPTN in 

the 5S ribosomal RNA gene transcription is yet to be identified (Moreland et al., 2000). 

1.7.3.7 Serine/threonine kinase receptor-interacting protein 1 (RIP1) 

RIP1 was partially isolated after screening the cytoplasmic domain of surface cytokine 

receptors (FAS) using a yeast two-hybrid system (Stanger et al., 1995). In a subsequent 

study, a full-length RIP cDNA was isolated by screening human umbilical vein 

endothelial cell cDNA library (Hsu et al., 1996). RIP1 is part of the TNFα-induced 

NFκB pathway. Binding of TNFα to its receptor (TNFR) results in recruitment of 

signal transducers that activate TNF receptor-associated factor 2 (TRAF2), TNF 

receptor-associated death domain (TRADD) and RIP1 (Hsu et al., 1996; Zhu et al., 

2007). RIP1 becomes ubiquitinated with K63-linked polyubiquitin chains and binds 

the UBD of IKKγ (NEMO). This leads to phosphorylation of IKKα which in turn 

phosphorylates the inhibitory protein IκBα, targeting it for proteasomal degradation 

and subsequent translocation of NFκB to nucleus in order to activate the expression of 

its target genes. OPTN has been found to compete with NEMO to bind with 

ubiquitinated RIP, which in turn inhibits the NFκB activation induced by TNFα (Zhu 

et al., 2007).    

1.7.3.8 Cylindromatosis (CYLD) gene 

     The gene responsible for familial Cylindromatosis was identified by positional 

cloning (Bignell et al., 2000). CYLD encodes for a cytoplasmic protein, which acts as 

a deubiquitinating enzyme that negatively regulates the NFB signalling pathway (Jin 

et al., 2008; Trompouki et al., 2003). Empirical evidence highlighted the interaction of 

CYLD with the UBA domain of SQSTM1. This binding facilitates the recruitment of 

CYLD to bind with TRAF6. On the other hand, this latter binding of CYLD to TRAF6 

has a negative effect on the regulation of RANK signalling by inhibiting TRAF6 

ubiquitination and, implicitly, the downstream signalling events (Jin et al., 2008). 

CYLD was reported to be a OPTN-interacting protein due to its interaction with the 

C-terminal region of OPTN that contains an UBD domain between the amino acids 
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424–509 (Nagabhushana et al., 2011). Furthermore, OPTN was suggested to recruit 

the CYLD to facilitate deubiquitination of ubiquitinated RIP, which in turn inhibits the 

TNF-induced NFB signalling (Nagabhushana et al., 2011).  

1.7.3.9 A20  

      The zinc finger protein A20 (TNFAIP3) was one of six genes that have been 

identified after analysing the genes which respond to the exposure of endothelial cells 

to TNFα (Dixit et al., 1990). A20 is involved in regulation of inflammation by 

inhibiting NFB signalling in response to several proinflammatory cytokines 

(Shembade et al., 2010). Sustained NFB activation and increased serum levels of 

inflammatory cytokines have been reported in myeloid A20-deficient mice which 

developed erosive polyarthritis resembling rheumatoid arthritis (Matmati et al., 2011). 

A20 is also one of the OPTN-binding partners and future studies are required to 

evaluate the role of this interaction in different signalling pathways (Chalasani et al., 

2009). 

1.7.3.10 TRAF-associated NFB activator binding kinase 1 (TBK1) 

     Degenerate primers based on sequences shared by IKKα and IKKβ together with 

screening of foetal brain cDNA library were used to isolate TBK1 (Tojima et al., 

2000). TBK1 is a member of the IKK subfamily of protein kinases. TBK1 is triggered 

in response to lipopolysaccharide or viral double-stranded DNA and subsequently it 

activates the transcription factor interferon regulatory factor 3 (IRF3) and IFN in 

order to stimulate the downstream antiviral signalling (Gleason et al., 2011). The 

involvement of TBK1 in the NFB pathway has also been suggested (Sun et al., 2013). 

TBK1 was found to interact with the N-terminal region of OPTN between residues 1-

127 of OPTN. In addition,  TBK1-binding domain located between residues 78-121 of 

OPTN was found to be homologous to the TBK1-binding domain present in three other  

binding partners for TBK1, namely,  TANK, NAP1 (NAK-associated protein 1) and 

SINTBAD (similar to NAP1 TBK1 adaptor) (Morton et al., 2008). OPTN has also 

been shown to bind to the C-terminal region of TBK1 and therefore deletion of the C-

terminal residues of TBK1 abolishes the interaction with OPTN and TANK (Morton 

et al., 2008).  
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1.7.3.11 TAX1, TAX2 and TAX1BP1 

     TAX1 of the human T-cell leukaemia virus type 1 (HTLV-1) is a transcriptional 

activator for viral gene expression (TAX2 is the equivalent of HTLV-2). Both TAX1 

and TAX2 act at the same time as a transforming protein by inducing the expression 

of several cellular genes. In addition, TAX1 has been reported to activate  NFB 

signalling through its binding to NEMO (Harhaj and Sun, 1999). OPTN has been 

reported to coprecipitate with both transcription factors and the UBD of OPTN is 

necessary for the interaction with TAX1 (Journo et al., 2009). Tax1-binding protein 1 

(TAX1BP1) is a binding partner of TAX1. Two different studies using a yeast two-

hybrid screen have isolated TAX1BP1 cDNA by screening of a HeLa cell cDNA 

library (De Valck et al., 1999; Ling and Goeddel, 2000). The first study used a mouse 

fibrosarcoma library with A20 as bait and the second study used TRAF6 as bait. It has 

been shown that overexpression of TAX1BP1 led to apoptosis of NIH 3T3 cell lines 

and apoptosis induced by TNF led to TAX1BP1 degradation (De Valck et al., 1999). 

A different study observed that TAX1BP1 was responsible for downstream signalling 

activation by binding TRAF6 after stimulation of the cells with Interleukin-1 (IL-1) 

and TRAF6, but not with TAX1BP1 (Ling and Goeddel, 2000). Furthermore, A20 was 

found to interact with TAX1BP1 and together they triggered their ubiquitination and 

proteasomal degradation, leading to the inhibition of inflammatory signaling pathways 

(Shembade and Harhaj, 2010). Interestingly, interaction between TAX1BP1 and 

OPTN has also been observed (Journo et al., 2009). The mechanism by which OPTN 

exerts its effect on such signalling is complex but it appears to induce NFκB activation 

when OPTN interacts with TAX1 and to inhibit the inflammatory signalling pathways 

when present with A20 and TAX1BP1. 

1.7.3.12 LC3/GABARAP 

     Microtubule-associated protein 1 light chain 3 (LC3) was identified as one of three 

light chains (LC1, LC2, and LC3) associated with purified neuronal microtubule-

associated proteins MAP1A and MAP1B (Mann and Hammarback, 1994). LC3 is an 

autophagy protein required in the formation of autophagosomal membrane (Kabeya et 

al., 2000). -Aminobutyric acid receptor-associated protein (GABARAP) is also an 

autophagy protein which was identified by yeast two-hybrid screening (Wang et al., 
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1999). GABRAP has been shown to play a role in neuronal cells by linking GABAA 

receptors and cytoskeleton. This interaction is important for clustering of GABAA 

receptors on neuronal cell surfaces.  In addition, GABRAP was reported to be involved 

in apoptosis as well as playing an essential role at a later stage in the autophagosome 

maturation (Lee et al., 2005). Recently, OPTN was identified to be a LC3/GABARAP 

binding partner through its LIR motif, which is located among the coiled-coil domains 

of OPTN between amino acids 169-209 (Wild et al., 2011). This study provided 

evidence that during bacterial infection OPTN acted as an autophagy receptor. 

1.7.3.13 TNF receptor-associated factor 3 (TRAF3) 

      TRAF3 was identified by performing a yeast two-hybrid screen on a CD40 

cytoplasmic domain cDNA library and it was given the name of CD40-binding protein 

(Hu et al., 1994). TRAF3 is a critical signalling molecule for regulating the IFN 

production in response to virus infection. It links the TLR and downstream regulatory 

kinases important for interferon regulatory factor 3 and 7 (IRF3/7), which regulate  

IFN activity (Oganesyan et al., 2005). Furthermore, it has been observed that TRAF3 

negatively regulates both MAPK activation and non-canonical NFB signalling (Hu 

et al., 2013; Matsuzawa et al., 2008).  TRAF3 is a binding-partner for TANK and 

TBK1 while, interestingly, it also interacts with OPTN. Moreover, TRAF3 may be 

involved in the polyubiquitylation of OPTN-binding partners in the antiviral signalling 

pathway (Mankouri et al., 2010).   

1.7.3.14  Others 

       Other OPTN-binding partners displayed weaker interaction with OPTN including 

ubiquitously expressed transcript (UXT), zinc finger and BTB domain containing 33 

(ZBTB33) and GPANK1 (G Patch Domain and Ankyrin Repeats 1) or BAT4 

(Chalasani et al., 2009). Future investigations will be required to reveal the 

physiological significance of the interaction of these proteins with OPTN. 
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1.7.4 Animal models 

1. B1-crystallin-OPTN mice and B1-crystallin-TGF1/ B1-crystallin-OPTN 

double transgenic mice: These mice were developed to study the overexpression 

of OPTN in mice lens and to assess the effect of transgenic OPTN on apoptosis 

in vivo. This model did not support the anti-apoptotic effect of OPTN, which was 

previously suggested by other experiments (Kroeber et al., 2006).   

2. Human OPTN (E50K) transgenic mice: This model was designed by 

overexpression of WT and mutated human OPTN (E50K) with the purpose of 

evaluating the impact of this overexpression on the phenotypic characteristics in 

the retina. They found that the introduction of E50K mutation disrupted the 

OPTN interaction with Rab8, which in turn led to retinal degeneration in mice 

(Shen et al., 2011).  

3. OptnD477N/D477N knock-in mice: The creation of these mice involved the use of 

C57/B16 background mice which were inoculated with a polyubiquitin binding-

defective point mutation corresponding to an Asp-477 to Asn mutation in exon 

12 of the human OPTN. This model was generated in order to assess the 

involvement of the ubiquitin-binding of OPTN in regulating TBK1 and IFN 

production. It was found that TBK1 production was reduced in knock-in mice 

compared to WT, which in turn impaired the production of IFN (Gleason et al., 

2011). In the present project, this model has been used to evaluate the role of 

OPTN in PDB and bone metabolism.  

4. Optn470T knock-in mice: This model was recently generated by removing the 

entire UBD thereby resembling OPTN mutations found in certain 

neurodegenerative disorders. This is the first model showing OPTN 

insufficiency as well as lack of ubiquitin-binding to assess the role of OPTN in 

vivo. This model was used to evaluate the major immune cell types including 

macrophages, dendritic cells, B-cells and T-cells in response to optineurin 

insufficiency. Munitic et al. found that Optn470T knock-in mice did not affect the 

NFB activity in immune cells when compared to WT but instead it impaired 

the interferon regulatory factor 3 (IRF3) in these cells (Munitic et al., 2013).  
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1.7.5 OPTN and bone metabolism - is there a link?  

     The role of OPTN in PDB or bone metabolism is unknown. However, the findings 

of previous studies suggest that OPTN may play a critical role in the pathogenesis of 

PDB and in regulation of bone metabolism. As mentioned before, OPTN is located on 

chromosome 10p13 region, which was previously linked to PDB but the causative 

gene has not been identified despite positional cloning efforts. In addition, locus 

rs1561570 was the top GWAS hit and is located within OPTN, finding which was 

replicated in different populations. Furthermore, OPTN has been implicated in 

different signalling pathways and aetiological factors which were suggested for PDB, 

such as NFκB signalling pathway, viral infection and autophagy. In the following part, 

arguments are provided in support of the idea that OPTN is a highly plausible candidate 

gene for PDB on the basis of the related data and information from the available 

literature.  

1.7.5.1  Role of OPTN in NFB signalling  

     One major signalling pathway involved in skeletal development is the transcription 

factor NFB. Following a number of activator signals including RANKL, TNFα, 

interleukin- 1 (IL-1), CD40L, bacterial endotoxins, Toll-like receptor (TLR) ligands, 

and oxygen radicals, NFB kinase complexes (IKK, IKK, IKK/NEMO, TAK1and 

NIK) become activated and phosphorylate the NFκB inhibitory protein, IBα. The 

latter undergoes proteosomal degradation allowing the NFκB dimers to translocate to 

the nucleus and activate their target genes (Abu-Amer, 2013). Ubiquitination is a 

posttranslational modification that plays a central role in NK-B signalling pathway. 

Polyubiquitin chains can be linked through several internal lysine (K) residues, most 

commonly K63 and K48. K63-linked polyubiquitination mediate activation of the 

NFB IKKs and TAK1. K48-linked polyubiquitination targets substrates (e.g. IB) 

for proteasomal degradation (Abu-Amer, 2013).  

     The role of OPTN as a negative regulator of NFB signalling has been proposed 

by several studies. Firstly, OPTN has been found to have an UBD similar to that 

present in IKK (NEMO), which enables the OPTN to compete with NEMO’s binding 
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for ubiquitinated RIP1 following TNFα stimulation. Furthermore, it was found that 

knockdown of OPTN increased the NFB basal activity in non-stimulated cells (Zhu 

et al., 2007). In a different study, Sudhakar et al. recognised NFB binding sites in the 

OPTN promoter (Sudhakar et al., 2009). They also noticed a negative feedback loop 

in which TNF-induced NFB activity mediated the expression of OPTN, which in 

turn negatively regulated NFB signalling. Overexpression of OPTN in the previous 

two studies was found to inhibit the TNF-induced NFB activity. Furthermore, 

Nagabhushana et al. also found that OPTN mediated the interaction of CYLD with 

RIP1 and this interaction was essential for deubiquitination of RIP1 by CYLD 

(Nagabhushana et al., 2011). The consistent increase in the NFB basal activity was 

an additional important observation of this study. OPTN depletion in this study 

resulted in the accumulation of higher levels of ubiquitinated RIP1. These findings led 

the authors to suggest that, due to the accumulation of higher levels of ubiquitinated 

RIP1 in OPTN-depleted cells, CYLD was unable to associate with ubiquitinated RIP1 

and thus enhancing the NFB activity. They also proposed this model as explanation 

for the elevated NFB basal activity in non-stimulating OPTN-depleted cells 

(Nagabhushana et al., 2011). Another study showed that OPTN is an adaptor protein 

that interacts with TAX1BP1 and TAX1 leading to sustained NFκB activation by 

increasing the polyubiquitination of TAX1 (Journo et al., 2009). OPTN also interacts 

with A20, a deubiquitinating enzyme that downregulates the NFB signalling by 

inhibiting the TRAF6 and RIP1 ubiquitination (Chalasani et al., 2009; Harhaj and 

Dixit, 2010). In addition to the previous findings, OPTN was also found to interact 

with the co-activator of NFB FUS, also known as translocated in liposarcoma (TLS) 

(Ito et al., 2011). FUS binds NFB p65 through its C-terminal domain and mediates 

the NFB activity (Uranishi, 2001).  TBK1 is another OPTN-binding partner which 

has been observed to be recruited to the TNF receptor complex in response to TNF, 

thus enhancing the NFB signalling. Interestingly, E50K OPTN has been found to 

facilitate the binding of OPTN to TBK1 (Morton et al., 2008).  All these findings 

strongly suggest that OPTN is a regulatory factor for NFB signalling. However, very 

recent studies have found that OPTN is dispensable for NFB activation in 
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macrophages in response to TLR or TNF but necessary for the activation of IRF3 

and IFN production (Gleason et al., 2011; Munitic et al., 2013). The reason for these 

conflicting findings may be due to the type of cells or stimulants used. This calls for 

further analysis to confirm these findings.  

1.7.5.2 Role of OPTN in vesicular trafficking 

     As previously mentioned, VCP is implicated in vesicular trafficking. In light of the 

fact that VCP mutations are involved in the PDB-associated disease IPMPFD, 

vesicular trafficking has been proposed to contribute to the molecular pathology of 

PDB. IPMPFD has phenotypic appearances similar to PDB, which make it a useful 

model to explore the aetiology of PDB (Badadani et al., 2010). In addition, vesicular 

trafficking pathways that are regulated by Rab GTPases play a crucial role in bone-

resorbing osteoclasts (Coxon and Taylor, 2008). Interestingly, OPTN was found to 

interact with several structures that are involved in vesicular trafficking, including 

myosin VI, Rab8, huntingtin and transferrin receptor (Figure 1-11). Further studies are 

required to explore the physiological and pathological interaction of OPTN with these 

vesicular trafficking proteins in bone biology (Nagabhushana et al., 2010; Sahlender 

et al., 2005). 

1.7.5.3 Role of OPTN in apoptosis 

      The findings regarding the involvement of OPTN in apoptosis are contradictory. 

OPTN was shown to increase cell survival by protecting the transfected 3T3 cells 

against hydrogen peroxide-induced apoptosis (Kachaner et al., 2012). On the other 

hand, Park et al. reported that overexpression of WT and E50K OPTN in ocular cells 

increased apoptosis (Park et al., 2006). Another study found that the overexpression of 

OPTN did not prevent cell loss induced by transforming growth factor- (TGF) in 

double transgenic mice B1-crystallin-OPTN/B1-crystallin-TGF1 (Kroeber et al., 

2006). Overexpression of optineurin E50K also enhanced the apoptosis in retinal 

ganglion cells (Chi et al., 2010). A very recent study revealed that, by knocking down 

OPTN in neuron cells, sustained NFB activity resulted in neuronal cell death 

(Akizuki et al., 2013). These variations may be due to the cell type that has been used 

and future work is needed to address the OPTN role in bone cell apoptosis.  
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1.7.5.4 Role of OPTN in the protein degradation system  

     Investigations of OPTN processing in neuronal cells revealed that the major system 

of OPTN processing is UPS and, to a lesser extent, autophagy. Treatment of neuronal 

cells with proteasomal inhibitors was observed to increase OPTN, whereas treatment 

with autophagy inhibitors had no effect. When cells overexpressed WT and E50K 

OPTN, the UPS activity was decreased and the turnover of overexpressed WT or E50K 

OPTN was slowed down compared to the endogenous OPTN. At the same time, the 

LC3 was induced, which represents the autophagy. These results suggest that the UPS 

function is compromised when OPTN is mutated or overexpressed, while autophagy 

is induced in order to degrade the mutated or overexpressed OPTN (Shen et al., 2011). 

Furthermore, it has been found that overexpression of WT and E50K OPTN led to the 

formation of foci,  similar to the inclusion bodies found in the neurodegenerative 

diseases and PDB (Ying et al., 2010). The role of OPTN in the formation of inclusion 

Figure 1-11: The role of OPTN in membrane trafficking. OPTN is associated with the Golgi 
network though interaction with Rab8, myosin VI and Htt and therefore OPTN may 
coordinate actin cytoskeleton and microtubule system for maintaining Golgi morphology. 
Derived from (Kachaner et al., 2012).  
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bodies has been proven when OPTN was shown to colocalize with TDP-43, FUS/TLS 

and SQSTM1 in cells from cases of inclusion body myositis (Yamashita et al., 2013). 

Interestingly, LC3 is an OPTN binding-partner and OPTN  has been recently shown 

to act as an autophagy receptor during bacterial infection (Wild et al., 2011). In 

addition, OPTN was involved in autophagic clearance of protein aggregates via its C-

terminal coiled-coil domain in an ubiquitin-independent manner. Korac et al. found 

that OPTN depletion in HeLa cells resulted in the increase of protein aggregates. 

Furthermore, they noticed that TBK1 was colocalized with OPTN in protein 

aggregates, which indicated the importance of TBK1 and OPTN in autophagy (Korac 

et al., 2013).      

1.7.5.5 Role of OPTN in bacterial and viral infection  

     After viral infection, signals were found to induce the innate immunity by triggering 

the TBK1, which subsequently activates IRF3, IRF7 and NFB to regulate the 

induction of type I interferons, IFN/ (Richards and Macdonald, 2011) (Figure 1-

12). Loss of type I interferons leads to severe inhibition of the immune response 

towards viral infection (Müller et al., 1994). Previous studies reported contradictory 

data on the function of OPTN in viral infection. In one study, OPTN overexpression 

in HEK cells followed by infection with RNA virus inhibited virus induced-IFN, 

whereas knockdown of OPTN in these cells stimulated virus-induced-IFN production 

and reduced viral replication (Mankouri et al., 2010). On the other hand, OPTN was 

reported to have an antiviral role through the interaction with TAX1BP1 after cells 

were infected with HTLV-1. This in turn modulated the TAX1-induced NFB 

pathway (Journo et al., 2009).  

     A recent study provided proof that OPTN is involved in bacterial clearance due to 

its effect on cytosolic pathogens, linking them to autophagic elimination. Furthermore, 

OPTN was found to interact with autophagy modifiers LC3/GABARAP proteins, both 

of which are members of the autophagosomal membrane (Wild et al., 2011). Depletion 

of OPTN abolished the LC3-GABARAP binding and thus the autophagy. Upon 

infection with salmonella, cytosolic Salmonella was rapidly coated with ubiquitin and 

OPTN bound to these ubiquitinated Salmonella through its UBD. Subsequently, TBK1 
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phosphorylated OPTN, which enhanced the LC3-binding affinity, triggering the 

autophagic clearance of cytosolic Salmonella (Wild et al., 2011).  

 

 

 

1.7.5.6 Other possible roles 

     Since glutamate regulates osteoblast and osteoclast differentiation and activity, it 

has been deduced that glutamate plays a physiological role in bone homeostasis 

(Brakspear and Mason, 2012). It is important to note that OPTN is a binding partner 

to both mGluR1 and mGluR5 and further studies will be required to explore the effect 

of OPTN on these proteins (Anborgh et al., 2005).  

Figure 1-12: Suggested role of OPTN in viral infection. Recognition of viral dsRNA by TLR3 
initiates signaling cascades by binding to the adaptor protein TRIF. TRIF then signals to 
TRAF6, which is induced by interaction with K63-linked polyubiquitin and leads to the 
recruitment of the TAK1/TAB2/3 complex. Subsequently, the IKKα/β/γ complex is recruited 
and activated, which leads to phosphorylation and K48-ubiquitination of IκBα, targeting it 
for proteasomal degradation. The degradation of IκBα liberates the NFκB to enter the 
nucleus in order to activate the expression of its target genes. TRIF also signals 
downstream through TRAF3, which becomes activated by K63-linked ubiquitination. 
TRAF3 then recruits the TBK1/IKKε complex, which triggers IRF3/7-mediated IFN-α/β 
induction. Deubiquitinase enzymes, such as CYLD and A20, are responsible for the 
removal of polyubiquitin. OPTN is a binding partner to these enzymes and may have a 
regulatory role downstream of TRAF6 and TRAF3 signalling in response to viral infection 
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1.7.5.7 Conclusion  

     It is obvious from the preceding evidence that OPTN may have a crucial role in 

bone biology. Previous studies have demonstrated that OPTN is involved in various 

mechanisms and processes, including NFB signalling, autophagy, apoptosis, 

vesicular trafficking, and pathogen infection, all of which were proposed to contribute 

to the molecular pathology of PDB. Interestingly, most of these roles have been 

assigned to SQSTM1 as well. Collectively, these findings strongly suggest that OPTN 

is a candidate gene involved in PDB pathology.  
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1.8 Project Aims  

 

The main aim of my project is to explore the role of OPTN in bone metabolism and 

development of Paget’s disease of bone. Specifically, the following will be 

investigated: 

 

1. To investigate the association between OPTN genetic variants with the severity 

and clinical outcome of PDB. 

2. Mutation screening of OPTN gene in Paget’s disease patients to identify 

disease associated polymorphisms/mutations. 

3. To study the role of OPTN in bone metabolism by 

  in vitro: to investigate the effect of Optn knockdown on osteoclasts 

differentiation and survival. 

  in vivo: to analyse the skeletal phenotype of a mouse model with a loss of 

function mutation in optineurin (OptnD477N/D477N) and to investigate the 

molecular mechanism leading to osteoclast activation in this mouse model.  
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2 Materials and Methods  

2.1 Materials  

Materials used in this study are listed in Appendix 1. 

2.2 Methods 

2.2.1 Study Subjects  

2.2.1.1 Study subjects used for sequencing of OPTN  

     DNA samples were selected from clinically confirmed cases of PDB and controls 

who participated in the Paget’s disease Randomised Trial of Intensive versus 

Symptomatic Management (PRISM) study (Langston et al., 2009). Most samples were 

cases selected from chromosome 10-linked families. The working stock was prepared 

at a concentration of 10 ng/l, and stored at -20°C. Some of these samples belonged 

to familial cases as well as controls. The total number of subjects screened for OPTN 

mutation was 43 (16 controls and 27 cases).    

2.2.1.2 Study subjects used for investigating the association between OPTN 

variants and disease severity 

     The study subjects comprised 635 PDB patients without SQSTM1 mutations who 

were recruited for the PRISM study (Langston et al., 2009). Gender and rs1561570 

allele distribution for the study subjects are shown in Chapter 3, Table 3-1. 

2.2.2 Mutation screening of OPTN gene  

2.2.2.1 Primer design  

     All primers were designed using Primer3+ software. The primer pairs were 

designed to amplify the coding region and the exon-intron boundaries of the OPTN 

gene. A list of all primers used for mutation screening and can be found in Table 2-3. 

2.2.2.2 Polymerase Chain Reaction (PCR) 

     PCR was used to amplify the selected exons from DNA samples using the 

previously designed primer pairs. All reaction conditions were optimised using two 
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different kits, Invitrogen and Qiagen (see Tables 2-1, 2-2 and 2-3). Gel electrophoresis 

was performed after the PCR to confirm successful amplification of the product size 

using a ladder scale.  

2.2.2.3 Sequencing of PCR products   

     After successfully confirming the PCR product size using gel electrophoresis, the 

PCR product was then sent to the sequencing department. Sequencing was performed 

using the BigDye Terminator Chemistry kit to remove excess salts and run on an ABI 

3730 DNA analyser. The minimum amount needed for PCR products to be sequenced 

was 20 µl and the concentration of the primers was 20 µM. Sequencing data was 

received as ABI files. These files were then analysed using the ChromasPro software. 

This software manually analyses the polymorphic variation in each sequence 

compared to reference sequence.  

2.2.2.4 Microsatellite genotyping. 

     I have noticed the presence of a microsatellite during the analysis of sequences 

amplified from exon 2 and 3 of OPTN. A PCR-based assay was designed to genotype 

this microsatellite. One of the primers was labelled with the fluorescent dye FAM in 

order to determine the actual size of PCR products using the DNA sequencing machine 

(Figure 2-1). PCR product (1 µl) was added to 0.5 µl of 500 LIZ size markers and 10 

µl of Hi-Di Formamide from Applied Biosystems. The reaction mix was then heated 

to 95°C for 5 minutes. Samples were sent for analysis on an ABI 3730 DNA analyser. 

The software used for microsatellite analysis was GeneMarker.   
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Table 2-1: PCR reaction conditions  

 

 

 

 

 

 

 

 

Table 2-2: The thermal cycling protocol 

Thermocycling conditions 

Step Temperature (°C) Duration (Min) 

Denature 94 03:10 

Denature 94 00:50 

Annealing 
vary according to the primer used 

(See table 2.3) 
01:00 

Extension 72 01:30 

No. of cycles 35  

Extension 72 10:00 

Store 4 Forever 

 

Invitrogen Kit Qiagen Kit 

Reagent Per well (µl) Reagent Per well (µl) 

Buffer (10x) 2.5 Buffer (10x) 2.50 

dNTP (10 mM) 0.5 dNTP (10 mM) 2.00 

MgCl2 (50 mM) 0.75 Q solution (5x) 5.00 

Primers(F) 10 µM 2.5 Primers (F) 10 µM 1.00 

Primers (R) 10 µM 2.5 Primers (R) 10 µM 1.00 

dH2O 14.05 dH2O 8.38 

Taq U/µl 0.2 Qiagen Taq U/µl 0.13 

DNA 10 ng/µl 2 DNA ng/µl 5.00 

Total volume/Reaction 25 Total volume/Reaction 25 

Figure 2-1: The primer sequences for PCR amplification of OPTN microsatellites using the 
UCSC genome browser. 
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Table 2-3: A list of primers used for OPTN sequencing. 

Amplified region Sequence (5’ – 3’) Primer name Kit used 

Annealing 

Temp 

(°C) 

Amplification size  

Exon1 
GTGACGCCTTAGAGCAGTCC OPTN_X3_F 

Qiagen 58 623 
ACCCTCTCCCACCAGGTC OPTN_X3_R 

Exon2 
TCTATGTCCACATGGATGCC OPTN_X4_F 

Invitrogen 60 459 
TGCAAATCTTCAAATTCAAATCTC OPTN_X4_R 

Exon3 and Exon4 
TCCTGACCTCATGATCTGTCC OPTN_X5_6_F 

Invitrogen 64.8 414 
TAAATCCTGTGCTTCCCCAC OPTN_X5_6_R 

Exon5 
TTCAGAGCCATGTGGTCAAG OPTN_X7_F 

Invitrogen 60 654 
TCCAGACTGAACCATGAAAGG OPTN_X7_R 

Exon6 
AGAGCTCTGCGATTAAGGG OPTN_X8_F 

Invitrogen 60 369 
TCAATCCTTGGCTTGTGTTG OPTN_X8_R 

Exon7 
CTTCCTTGGGTTGCATGTC OPTN_X9_F 

Qiagen 58 269 
AACATTTGACCTCCGGTGAC OPTN_X9_R 

Exon8 
ACCTTCCCTAGGAAGCATGG OPTN_X10_F 

Invitrogen 60 538 
GACAGTGAGTGCTGTTTGGG OPTN_X10_R 

Exon9 
AACCCCTGATCCTTTATCCC OPTN_X11_F 

Invitrogen 60 290 
TTTGAATTCAGTGGCTGGAC OPTN_X11_R 

Exon10 
TGGTTCAGCCTGTTTTCTCC OPTN_X12_F 

Invitrogen 53.6 373 
TTCATGCTCACACATTAACTGG OPTN_X12_R 

Exon11 
AAACCCTACAGCCCTAAAATTC OPTN_X13_F 

Invitrogen 60 394 
TGCTAGGACTCCTTCAGATAAGTG OPTN_X13_R 
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Amplified region Sequence (5’ – 3’) Primer name Kit used 

Annealing 

Temp 

(oC) 

Amplification size  

Exon12 
AGAAGGTTGGGAGGCAAGAC OPTN_X14_F 

Invitrogen 60 283 
CAACCTTTGAAACCAGATTTAGTG OPTN_X14_R 

Exon13 
CCACCTCAGCCTCTCAATTC OPTN_X15_F 

Invitrogen 60 369 
TGCTTTCCAATGCGAGAATAC OPTN_X15_R 

Exon14 
CAGCACTACCTCCTCATCGC OPTN_X16_F 

Invitrogen 64.8 295 
CAGGAACGTCTTTGGACAGG OPTN_X16_R 

Exon15 
TGGACTGTCTGCTCAGTGTTG OPTN_X17_F 

Invitrogen 60 249 
GAATCCATTGTAGAGAATGAAGTGG OPTN_X17_R 

Exon16 Part 1 
TGTGCTCATGTCCCACTACG OPTN_X18_1_F 

Invitrogen 60 725 
CAGGTACCTTTTCTTCTCCTTCC OPTN_X18_1_R 

Exon16 Part 2 
GAAGTGGCAGTTGCAGTGAG OPTN_X18_2_F 

Invitrogen 60 643 
AGGTACAATGAAAGCATGAAGG OPTN_X18_2_R 

Exon16 Part 3 
TTGCAGCCACAATAATTTTACC OPTN_X18_3_F 

Invitrogen 60 729 
TGTGTTCTCTTGGCATGAAG OPTN_X18_3_R 
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2.2.3 TISSUE CULTURE  

2.2.3.1 Tissue culture conditions and medium  

All tissue culture work and media preparation was carried out in either a 

laminar flow hood or a Class II Biological Safety Cabinet. Standard αMEM was used 

for bone marrow macrophage and calvarial osteoblast cultures. RAW 264.7 cells were 

cultured in DMEM. Hi-DMEM was used for culturing HEK293T cells. Osteogenic 

media was used with osteoblast cultures. Table 2-4 summarises the components of 

each medium. All cultures were kept in incubators with standard conditions of 5% CO2 

and 37°C in a humidified atmosphere. A water bath was used to warm all the solutions 

to 37°C prior to use. Plasticware and instruments used inside the hood were either 

bought pre-sterilized or autoclaved before use. Cells were counted using a 

hemocytometer device. A phase-contrast microscope was used to assess the cultures’ 

situation.   

Table 2-4: Media preparation for cell culture work  

Media Type Description 

Standard 

αMEM 

Minimum Essential Medium (MEM) supplemented with 10% foetal calf serum 

(FCS), 2 mM L-glutamine, 100 U/ml penicillin and 100 µg/ml streptomycin.   

DMEM 
Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% foetal calf 

serum (FCS), 2 mM L-glutamine, 100 U/ml penicillin and 100 µg/ml streptomycin. 

Hi-DMEM 

Dulbecco's Modified Eagle's Medium with high glucose and pyruvate supplemented 

with 10% foetal calf serum (FCS), 2 mM L-glutamine, 100 U/ml penicillin and 100 

µg/ml streptomycin. 

Osteogenic 

media 

Minimum Essential Medium (MEM) supplemented with 10% foetal calf serum 

(FCS), 2 mM L-glutamine, 100 U/ml penicillin, 100 µg/ml streptomycin, 50 µg/ml 

Vitamin C and 3 mM betaglycerophosphate (βGP). 

 

2.2.3.2 Viability assay  

This assay was used to quantitatively measure the cells’ viability using the 

Alamar Blue reagent. The assay is based on the oxidation/reduction (redox) power of 

the cell. Alamar Blue is a non-toxic, cell permeable, non-fluorescent blue compound. 

When entering cells, resazurin (the active ingredient of Alamar Blue) is reduced to the 
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highly fluorescent red compound resorufin; thus, the amount of this redox indicator is 

directly proportional to the number of viable cells. Briefly, Alamar Blue was added as 

10% of the sample volume for each well and left for 2 hours at 37°C. The resulting 

fluorescence was then measured using the plate reader (BIO-Tek Synergy HT) with 

the following settings: an excitation wavelength of 540 nm and an emission 

wavelength of 590 nm. Control wells were used to correct the data for background 

fluorescence by adding 10% of the Alamar Blue to wells containing only the media.   

2.2.3.3 Rodent Osteoclast Culture  

 

2.2.3.3.1 Bone Marrow Macrophage Culture 

     Wild-type CD1 mice or C57 black 6 (BL6) mice between 2-5 months of age were 

culled by cervical dislocation according to Schedule 1 of the Animal (Scientific 

Procedures) Act. The cadavers were sprayed with 70% ethanol and then skinned. The 

lower limbs (tibia and femur) were carefully extracted without affecting the bones. 

The bones were placed in sterile phosphate-buffered saline (PBS) to be processed in a 

laminar flow hood with sterilised equipment. The limbs were placed in a Petri dish and 

cut off at the knee joint using a scalpel to separate the tibia from the femur. The bones 

were cleaned by removing the soft tissue and then cutting the bones’ epiphyses. The 

bone marrow was flushed out in a sterile plastic Petri dish with serum-free αMEM by 

using a syringe with a 25-gauge needle. The flushed bone marrow was homogenised 

with a 21-gauge needle. The homogenised marrow was then transferred to a centrifuge 

tube to pellet the cells by spinning at 300g for 3 minutes at room temperature. 

Following centrifugation, the supernatant was discarded and cells’ pellets were 

resuspended in standard αMEM containing 100 ng/ml of M-CSF and then plated in a 

10 cm tissue culture Petri dish and incubated under standard conditions for 48 hours. 

The adherent cells at this stage were macrophages (Figure 2-2). To scrape off these 

cells, a culture medium was removed, followed by the addition of a 5 ml cell 

dissociation buffer for 5 minutes at 37°C. The cells were scraped off using a rubber 

scraper and topped with 5 ml of complete media. Cell suspension was then centrifuged 
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at 300g for 3 minutes and the pellet was resuspended with 1 ml of full media to be 

counted and plated according to the downstream experiment.        

 

 

2.2.3.3.2 RANKL Signalling Assay  

     Bone marrow macrophages (generated as described in Section 2.2.3.3.1) were 

seeded in multiple 12-well plates at 3 X 105 cells/well and incubated under standard 

conditions for 24 hours. The culture medium was then removed, and the cells serum-

starved for 1 hour, followed by a stimulation of the cells with 100 ng/ml RANKL, with 

the exception of one plate that remained without RANKL stimulation to measure the 

cells’ basal activity. The cells were lysed at different time points post-RANKL 

stimulation, including the plate without RANKL stimulation (0, 10, 15 and 60 

minutes). Cell lysates were stored at -20°C for further investigations. 

2.2.3.3.3 Osteoclast Formation Assay  

     Bone marrow macrophages (generated as mentioned in 2.2.3.3.1) were counted and 

then plated in 96-well plates at 1.2 X 104 cells/well in standard αMEM supplemented 

with 25 ng/ml of M-CSF and different RANKL concentrations (25, 50 and 100 ng/ml) 

for 5 days until osteoclasts were formed. The cultured medium was replaced every two 

days until multinucleated osteoclasts were formed.  

2.2.3.3.4  Osteoclast Survival Assay   

     Osteoclasts were formed in multiple 96-well plates as described above. RANKL 

was then removed from the osteoclast culture media but the M-CSF 25 ng/ml was 

retained, and the plates were fixed and stained with TRAcP at different time points 

post-RANKL withdrawal (0, 12h, 24h, 48h and 72h).   

Figure 2-2: Schematic illustration of osteoclast culture assay. 
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2.2.3.3.5 Osteoclast Staining Using Tartrate-Resistant Acid Phosphatase (TRAcP) 

     The principle of TRAcP staining is based on the fact that the TRAcP enzyme was 

found to be highly expressed in osteoclasts. Accordingly, staining this enzyme makes 

the visualisation of osteoclasts an easy task. After osteoclasts were formed, culture 

media were removed and the cells rinsed with warm PBS. The cells were then fixed 

with 150 µl/well of 4% (v/v) formaldehyde in PBS for 15 minutes at room temperature, 

followed by 2 further rinsings with PBS. At this stage, the cells were stored in 70% 

ethanol for future staining with TRAcP. Cells post-PBS rinsing were stained with a 

TRAcP solution (See Appendix 2.1) and kept at 37°C for 30 to 45 minutes (osteoclasts 

were checked frequently for red colour every 20 minutes to prevent overstaining). The 

cells were rinsed twice with PBS and then stored in 70% ethanol at 4°C. TRAcP-

positive multinucleated osteoclasts (> 3 nuclei) were counted using a Zeiss Axiovert 

light microscope with a 10x objective lens (See Figure 2-3).  

 

 

 

 

 

 

Figure 2-3: Phase-contrast microscopy of osteoclast formation at Day 5 post-RANKL 
treatment. (A) The osteoclasts’ appearance before TRAcP staining. (B) The osteoclasts 
after TRAcP staining.   
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2.2.3.3.6 OPTN Knockdown Experiment in Bone Marrow Macrophages Using 

Lentiviral Particles   

     Gene knockdown can be identified as an experimental technique using RNAi to 

repress a targeted gene with high specificity and selectivity. Figure 2-4 briefly 

describes the knockdown steps.  

 

 

The knockdown experiment can be divided into 3 steps: 

Step 1: shRNA Plasmid Preparation and Isolation  

     Four different shRNA clones (see Table 2-5) targeting the Optn gene were ordered 

from Sigma Aldrich. Each clone was constructed within the plasmid vector TRC1-

pLKO.1-puro and provided in a frozen bacterial glycerol stock containing Terrific 

Broth, carbenicillin at 100 µg/ml, and 15% glycerol. A non-targeting shRNA vector 

was also ordered as a negative control. This non-targeting shRNA vector is a useful 

Figure 2-4: Schematic illustration summarises the steps that have been followed to 
knockdown the expression of Optn. 
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negative control that activates the RISC and the RNAi pathways, but does not target 

any human or mouse genes and used for comparison to the Optn-targeting vectors. A 

positive control, pGIPZ, was used to microscopically examine the transfection 

efficiency through the green fluorescent protein (GFP) expression. Tubes that contain 

frozen bacterial glycerol stock were gently spun down and 10 µl from each tube was 

placed into a separate sterile tube containing 100 µl of Terrific Broth without 

antibiotics, kept at 37°C, and shaken for 15-30 minutes. A freshly prepared plate 

containing LB agar and 100 µg/ml of carbenicillin was streaked with a sterile loop 

using 10-20 µl from the culture and then incubated overnight for 16-19 hours. Five 

isolated colonies from each clone were sub-cultured in 2X LB broth with low salt (see 

Appendix 2.3) containing 100 µg/ml of carbenicillin overnight for 16-19 hours. A 

plasmid extraction midiprep kit (Invitrogen, HiPure Plasmid Midiprep Kit) was used 

to purify the plasmid DNA following the manufacturer’s instructions.  

      The concentration of plasmid DNA was subsequently measured using a Nanodrop 

1000 spectrophotometer (ThermoScientific) followed by a restriction digest (Table 2-

6) in order to verify the PLKO.1 vector orientation, as viral vectors have a tendency to 

recombine. A restriction enzyme map was generated for each plasmid based on the 

verified sequence using the NEB cutter software (Figure 2-5). Additionally, the 

plasmid DNA was sequenced in order to confirm the plasmids’ orientation using the 

primers listed in Table 2-7. For the plasmids to be sequenced, a primer concentration 

of 20 µM was used, with a DNA concentration of 100-1000 ng/µl.  

Table 2-5: Sequence-verified shRNA lentiviral plasmid vectors for mouse Optn cloned into the 
pLKO.1-puro vector  

 TRC Number Clone ID 
Clone 

number 
Sequence 

TRCN0000182388 
NM_181848.3-

766s1c1 
Clone 1 CCGGGCTTTGCCTAAGGGAAGGAAACTCGAGTTTCCTTCCCTTAGGCAAAGCTTTTTTG 

TRCN0000177380 
NM_181848.3-

1851s1c1 
Clone 2 CCGGGAAGTCACAAAGAGGAATCTACTCGAGTAGATTCCTCTTTGTGACTTCTTTTTTG 

TRCN0000178154 
NM_181848.3-

291s1c1 
Clone 3 CCGGGCCTGTTGTTTGAGATGCAAACTCGAGTTTGCATCTCAAACAACAGGCTTTTTTG 

TRCN0000178374 
NM_181848.3-

1022s1c1 
Clone 4 CCGGGAGCTGATGAAGAAGAGACTTCTCGAGAAGTCTCTTCTTCATCAGCTCTTTTTTG 
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Table 2-6: Restriction digest conditions 

Reaction 
OPTN-targeting 

Clones (µl) 

non-targeting 

shRNA (-ve 

control) (µl) 

pGIPZ 

(+ve control) (µl) 

H2O  12.55 13.8 13.3 

Buffer (10x) 2 (Neb 2) 2 (Neb4) 2 (Neb3) 

BSA (100x) 0.2 0.2 0.2 

DNA (40-100 ng/µl) 3 3 1.5 

ENZ1 (20000 U/ml) 1 (Xhol) 1 (SacII) 3 (SalI) 

ENZ2 (10000 U/ml) 1.25 (KpnI)   

Reaction volume 20 20 20 

Incubation 37°C for 8h, 65°C for 20min 

Product size (kb) 5.6, 1.4 6.2, 0.75 2.2, 4.3, 5.1 

 

Table 2-7: Primers used to verify the plasmid vector orientation 

Primer name Sequence (5’ – 3’) 

U6-F acgatacaaggctgttagagagata 

PGK-R aaacccagggctgccttggaaaag 

5'LTR-F tgtggaattgtgagcggata 

3'LTR-R cgggatagctagagccagac 

 

 

 

 

Figure 2-5: Schematic illustration of NEB cutter software used to determine the restriction 
enzyme (SacII) and the expected product size for the non-targeting shRNA. 
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Step 2: Producing Lentiviral Particles in HEK293T Cells 

HEK293T preparation  

The HEK293T packaging cell line was ordered from ThermoScientific. Once 

the cell line was removed from liquid nitrogen, it was placed in a water bath at 37°C 

for 2 minutes. Subsequently, the cells were slowly transferred to conical tube 

containing pre-warmed HEK293T culture media (Hi-DMEM), and then centrifuged at 

room temperature for 3 minutes at 300g. The supernatant was then discarded and the 

cells suspended in 12 ml of Hi-DMEM before being transferred to a T25 flask and 

incubated under standard conditions for 2 days. When the cells were ready (80% 

confluent) for passage the culture media were removed and the cells were rinsed with 

pre-warmed PBS. Subsequently, the cells were trypsinised with 2 ml of trypsin for the 

T25 flask or 4 ml for the T75 flask and kept at 37°C for 2-3 minutes. The flasks were 

gently taped and the cells suspended with the appropriate amount of pre-warmed media 

to deactivate the trypsin. The cells were passaged at a ratio of 1:20 for general 

maintenance.  

Transfection 

     The day before transfection, the HEK293T cells were trypsinised and counted using 

the hemocytometer before being placed in a 10 cm Petri dish at a seeding density of 

5.5x106 cells with 14 ml of Hi-DMEM and kept overnight under standard conditions.   

     On the day of transfection, the CaCl2 and 2X HBSS were thawed briefly at 37°C 

using a water bath and all the transfection steps were carried out in a Class II Biological 

Safety Cabinet. The tubes used were sterile polystyrene tubes. Table 2-8 describes the 

steps that were followed according to manufacturer protocols to generate the lentiviral 

particles.  
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Table 2-8: Suggested amount of DNA, medium and transfection reagent for virus production 

lentiviral vector DNA  Packaging mix 
Total volume 

 (with sterile water) 

42 µg 30 µl 945 µl 

Add 105 µl of CaCl2   

Vortex the tube carefully without spillover and while vortexing, add drop-wise 1050 µl of 2X 

HBSS. 
Add the transfection mix to the cells without removing the culture media and incubate for 16 

hours under standard conditions.  

Check the positive control pGIPZ vector for green cells under a fluorescent microscope. 

Replace the media with a serum-reduced medium and incubate for 48 hours under standard 

conditions. 

Harvest the medium and concentrate the lentiviral particles as described in the next section.  

 

Lentiviral particles’ harvesting and concentration 

A Lenti-X Concentrator kit from ClonTech was used to concentrate the 

lentiviral particles and all the steps were carried out on ice. The lentivirus-containing 

supernatant from the transfection step was harvested on ice and then centrifuged at 

4°C for 10 minutes at 500g. The clarified supernatant was then transferred to a 50 ml 

tube containing Lenti-X Concentrator at a ratio of 1 volume to 3 volumes of 

supernatant. The mixture was incubated at 4°C for 2-4 hours followed by 

centrifugation at 4°C for 45 minutes at 1500g. The supernatant was removed carefully 

and the pellet resuspended with 1200 µl of complete DMEM followed by aliquoting 

into smaller volumes and stored at -70°C.  

Lentiviral detection   

The presence of lentiviral particles was confirmed using Lenti-X GoStix strips 

from ClonTech. The occurrence of the test band (T) and control band (C) indicates the 

presence of the viral particles, and the intensity indicates the higher concentration of 

lentivirus (see Figures 2-4, 4-6, 4-8).  

Puromycin kill curve  

The shRNA plasmid vector (PLKO.1) has been engineered to harbour a 

puromycin-resistant gene for selecting the transduced or transfected cells, and to 

generate a fully transduced population of cells as well. This can be achieved by 
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generating a killing curve to determine the minimum amount of puromycin required 

to eliminate untransduced cells in 48-72 hours. The target cells for transduction (RAW 

264.7 or bone marrow-derived macrophages) were plated at 5 X 104 in multiple 24-

well plates with their corresponding culture media the day before starting the 

puromycin treatment and kept under standard conditions. The following day, the media 

were replaced with media containing a range of antibiotic concentrations, from 0-5 

µg/ml. The cell viability was measured every 24 hours using the Alamar Blue method 

(see Section 4.3.3.2). The minimum puromycin concentration used was 5 µg/ml, 

wherein 100% of the cells were killed in 48 hours.  

Viral titering  

This procedure was done to determine the lentiviral titer needed to transduce 

the macrophage cells. The cells were seeded the day before transduction in 24-well 

plates and kept overnight under standard conditions. The following day, viral stock 

was diluted to 5-fold dilution in 96-well plates. The media from the 24-well plates was 

then removed and replaced with 225 µl of serum-free media. The cells were transduced 

by adding 25 µl of undiluted pGIPZ (+ve control) stock as well as the other dilutions 

per well. Polybrene (hexadimethrine bromide) was also added to enhance the 

efficiency of transduction. Two concentrations of polybrene, 5 and 8 µg/ml, were 

examined with the viral titering. The best transduction efficiency obtained from using 

the undiluted viral stock was with 5 µg/ml of polybrene. After 48 hours, multi-cell 

colonies were counted as 1 transduced cell (see Figure 2-6) and the Transducing Units 

per ml (TU/ml) were determined using the following formula: 

𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐓𝐮𝐫𝐛𝐨𝐆𝐅𝐏 𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞 𝐜𝐨𝐥𝐨𝐧𝐢𝐞𝐬 𝐜𝐨𝐮𝐧𝐭𝐞𝐝 𝐱 𝐝𝐢𝐥𝐮𝐭𝐢𝐨𝐧 𝐟𝐚𝐜𝐭𝐨𝐫 𝐱 𝟒𝟎 = (𝐓𝐔/𝐦𝐥)  

Step 3: Transduction  

     Two cell types were transduced: the osteoclast-like RAW 264.7 cells and the mouse 

bone marrow macrophages. After the RAW 264.7 cells were passaged, they were left 

until they reached 70% confluence. Bone marrow cells from wild-type CD1 mice were 

isolated and cultured for 48 hours in the presence of M-CSF (100 ng/ml).  
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Both cells – the RAW 264.7 cells and the adherent bone marrow-derived macrophages 

(BMDMs) – were then treated for 2 days with lentiviral particles that expressed 

shRNA targeting the Optn gene. Non-targeting shRNA lentiviral particles were also 

used as a negative control. Cells were subjected to 48-hour selection using puromycin 

(5 µg/ml) in order to reduce background expression of Optn from untransfected cells. 

After the 2-day selection period, the transduced cells were used for downstream 

experiments. Western Blot (WB) was used to confirm the knockdown of Optn in these 

cells (see sections 4.3.4 and 4.3.5).   

 

 

Lentiviral NFB luciferase reporter assay  

The lentiviral NFB luciferase reporter is engineered to express firefly luciferase 

genes according to changes in the activity of the NFB signalling pathway. A Cignal 

Lenti Luciferase Reporter kit was ordered from SABiosciences and used to assess the 

NFB activity for 2 different experiments, as discussed below. The Multiplicity of 

Infection (MOI) used in this experiment was measured using the following formula:  

𝑻𝒐𝒕𝒂𝒍 𝒎𝑳 𝒐𝒇 𝒍𝒆𝒏𝒕𝒊𝒗𝒊𝒓𝒂𝒍 𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆𝒔 𝒕𝒐 𝒂𝒅𝒅 𝒕𝒐 𝑻𝟐𝟓 𝒇𝒍𝒂𝒔𝒌 =
𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒄𝒆𝒍𝒍𝒔 ×𝑫𝒆𝒔𝒊𝒓𝒆𝒅 𝑴𝑶𝑰 

𝑻𝑼/𝒎𝑳 𝒓𝒆𝒑𝒐𝒓𝒕𝒆𝒅 𝒐𝒏 𝒌𝒊𝒕
  

=
(𝟏 × 𝟏𝟎𝟔) × 𝟑

𝟐. 𝟏 × 𝟏𝟎𝟕
≅ 𝟏𝟓𝟎 𝝁𝒍/𝒇𝒍𝒂𝒔𝒌 

Figure 2-6: Examples of individual colonies of macrophages after 48-hour post-
transduction with undiluted pGIPZ viral stock and 5 µg/ml of polybrene. 
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2.2.3.3.7 NFκB Luciferase Reporter Assay Post-Optn Knockdown 

     BMDMs were transfected with the lentiviral particles expressing shRNA targeted 

against the Optn gene for 2 days, followed by a 48-hour selection using puromycin (5 

µg/ml). One million of the transduced cells were then plated in a T25 flask and 

transduced with a lentiviral NFκB luciferase reporter with a MOI of 3 (150 µl) in 3 ml 

of serum-free αMEM media for 5 hours. An additional 3 ml of standard αMEM was 

added to the cells and left under standard conditions for 2 days. The cells were then 

plated in 96 wells for 24 hours, after which the luciferase activity was measured with 

a SteadyGlo-Luciferase Reporter Assay System at the basal level. This procedure was 

followed by RANKL stimulation (100 ng/ml) and the luciferase activity was measured 

with a SteadyGlo-Luciferase Reporter Assay at indicated time points (24, 72 hours, 

and on the 5th day) using a Bio-Tek Synergy HT plate reader. 

 

2.2.3.3.8 NFκB Luciferase Reporter Assay for OptnD477N/D477N Knock-in Mice 

Compared to WT 

BMDMs were generated as described in Section 2.2.3.3.1. BMDMs from WT 

and OptnD477N/D477N mice were scraped and 1 X 106 cells were plated and cultured in a 

T25 flask for 24 hours. These cells were transduced with a lentiviral NFB luciferase 

reporter with a MOI of 3 (150 µl) in 3 ml of serum-free αMEM media for 5 hours. An 

additional 3 ml of standard αMEM was added to the cells and left under standard 

conditions for 2 days followed by selection for 48 hours using puromycin (5 µg/ml). 

The cells were then plated in 96 wells for 24 hours, and luciferase activity was 

measured with a SteadyGlo-Luciferase Reporter Assay System at the basal level. This 

procedure was followed by RANKL stimulation (100 ng/ml) at 24 and 72 hours, and 

on Days 4, 5, and 7 using a Bio-Tek Synergy HT plate reader. 
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2.2.3.4 Rodent Osteoblast Culture  

2.2.3.4.1 Calvarial Osteoblast Culture  

     Primary osteoblasts were isolated from the calvaria of 2-3-day-old mice. The 

calvaria were washed thoroughly in HBSS and then transferred to a 50 ml tube 

containing 3 ml of Type 1 collagenase (1 mg/ml) in HBSS, where they were incubated 

for 10 minutes at 37°C in a shaking water bath. The supernatant was discarded and the 

calvarial tissue was resuspended with 3-4 ml of Type 1 collagenase in HBSS for 30 

minutes at 37°C in a shaking water bath. The cell suspension (fraction 1) was collected 

and transferred to another 50 ml tube (Tube A) containing 6 ml of full α-MEM media. 

The remaining calvaria were washed with 2 ml of PBS and the supernatant was 

collected with the cell suspension in Tube A. Four ml of pre-heated EDTA in PBS 

(1:100) was added to the remaining calvarial tissue and left for 10 minutes at 37°C in 

a shaking water bath. The cell suspension (fraction 2) was collected with previous 

fraction in Tube A, followed by adding additional 6 ml of standard α-MEM to the same 

tube. The remaining calvaria were also washed with 2 ml of PBS and the supernatant 

was grouped with the same tube containing the cell suspension (Tube A). This step is 

followed by the incubation of the remaining calvaria with 4 ml of Type 1 collagenase 

in HBSS for 30 minutes at 37°C in a shaking water bath. The cell suspension (fraction 

3) and extra 6 ml of standard α-MEM were added to the same tube containing the cell 

suspension (Tube A). The 50 ml tube containing the cell suspension from the previous 

3 steps was then centrifuged at 300g at room temperature. The supernatant was 

discarded and the pellets were suspended in 12 ml of standard α-MEM and then 

cultured in a T75 flask under standard conditions. The media was changed after a 24-

hour incubation period in order to remove non-adherent cells, and the osteoblasts were 

left for 48 hours until they became confluent.     

2.2.3.4.2 Mineralisation Assay  

     The cultured media were removed and the osteoblast cells washed with pre-heated 

(37°C) sterile PBS. The osteoblast cells were then incubated with 4 ml of trypsin for 3 

minutes in order to detach the cells, after which 6 ml of standard α-MEM was added 

to deactivate the trypsin. The cells were then centrifuged at 300g and the pellet 
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resuspended with 1 ml of standard α-MEM to be counted using a hemocytometer. The 

cells were plated in 12-well plates at 1 X 105 cells/well with standard α-MEM and 

incubated for 48 hours under standard conditions. The media were replaced and 

refreshed every 2 days with standard α-MEM supplemented with 50 µg/ml of Vitamin 

C and 3 mM of betaglycerophosphate (βGP) (osteogenic media, see Table 2-4) and 

kept under these conditions for 21 days. Protein was extracted in order to check the 

Optn expression at different time points (0, 5, 9, and 21 days) post-Vitamin C 

supplementation (see Figure 2-7).  

Mineralisation nodules that formed after 21 days were stained for calcium deposits 

with Alizarin Red. Alizarin Red was prepared by dissolving it in DH2O to a final 

concentration of 40 mM with a pH adjusted to 4.1-4.3 using 10% (v/v) ammonium 

hydroxide. The Alizarin Red solution was mixed and filtered with a 0.45µm filter. 

Cells’ layer was carefully washed with pre-warmed PBS, followed by fixation in 70% 

pre-chilled ethanol; it was then either kept on ice for 1 hour or stored at 4°C. The cells 

were rinsed multiple times with dH2O to remove traces of ethanol and stained with the 

Alizarin Red solution for 20 minutes on a rocking table. The stained cells were then 

washed 4 times (5 minutes for each wash on a rocking table) and the plate was then 

left to air-dry overnight. The stained plate was photographed using a standard scanner 

(Epson Perfection 4990 photo/slide scanner). A destaining procedure was 

subsequently performed to quantify the mineralised nodules using 10% (w/v) 

cetylpyridinium chloride in 10 mmol/l of sodium phosphate (pH 7.0). One ml/well of 

destaining solution was incubated on a rocking table overnight at room temperature. 

Absorbance of the extracted Alizarin Red stain was measured at 562 nm using a Bio-

Tek Synergy HT plate reader and compared to the Alizarin Red standard curve (0, 

0.05, 0.1, 0.25, 0.5, 1.0, 1.5, 2.5, 5, 7.5, and 10 mM). 
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2.2.4 Animal Work  

All animal protocols were approved by the Ethics Committee at the University 

of Edinburgh and were conducted in accordance with UK Home Office regulations 

(Personal Licence Number 60/13163; Project Licence Number 60/3981). 

2.2.4.1 Animals  

Optn knock-in mice (OptnD477N/D477N) were obtained from Professor Philip 

Cohen at the University of Dundee. Briefly, these mice (C57/BL6 background) were 

generated by introducing a loss-of-function point mutation corresponding to an Asp-

477 to Asn in exon 12 of the Optn gene. This polyubiquitin-binding defective mutation 

corresponds to the D474N mutation in humans. Wild-type (WT) C57/B16 mice were 

used as a control (Gleason et al., 2011).  

2.2.4.2 Mice genotyping for Optn  

Genomic DNA was extracted from mouse ear snips by following the Qiagen 

DNeasy Blood and Tissue Kit manufacturer’s manual (Spin-column protocol). The 

extracted DNA was used for genotyping the mice by PCR. The PCR was carried out 

Figure 2-7: Phase-contrast microscopy of primary osteoblast cultures. Representative 
image of an unstained cell before adding Vitamin C (A); by Day 5, post-Vitamin C cells 
became more confluent (B); By Day 9, cells became more compacted and an organic 
matrix began to be deposited (C); after 21 days of culture, there was widespread formation 
of bone nodules (D). 
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using the primers listed below and the Qiagen Taq DNA polymerase. The following 

Tables (2-9 and 2-10) summarise the PCR reaction and thermocycler conditions that 

were used. Afterward, gel electrophoresis (2.5%) was used to view the PCR products. 

The samples, alongside the low molecular weight and/or 100 bp ladder, were run for 

approximately 90-100 minutes at 75V. The Optn genotype of mice was determined 

according to the yielded band size and the number of bands per lane in the gel picture 

(see Figure 2-8):  

OPTN Forward primer:  5’-GATCCGGAGGAGAGCAATGCATG-3’ 

OPTN Reverse primer:  5’-CTGTAATCTTAGTGTTCCACAGGCAG-3’ 

 

Table 2-9: PCR conditions used for OPTN genotype 

PCR Reaction  Thermocycler conditions 

Reagents Volume (µl) 

 

Step Temp (°C) Duration 

dH2O 8.375 1. Denature Template 94 4min 

Buffer (10x) 2.5 2. Denature Template 94 30sec 

dNTPs (10 mM) 2 3. Anneal primers 60 1min 

Q solution (5x) 5 4. Extend primers 72 1min 

Forward primer (20 µM) 1 5. Repeat steps 2 to 4  35 cycles 

Reverse primer (20 µM) 1 6. Extend primers 72 10min 

Qiagen Tag U/µl 0.125 7. Hold 4 Forever 

DNA 10 ng/µl 5 
 

Total Vol 25  

 

Table 2-10: Optn genotype 

Band size /Lane OPTN genotype 

350 bp WT 

450bp Knock-in (KI) 

350 bp and 450 bp WT/KI Heterozygous 
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2.2.4.3 CTX and PINP serum assay 

     CTX (a marker of bone resorption) was measured in serum samples using an 

enzyme-linked immunosorbent assay. The principle behind this assay is that Type 1 

collagen (the major organic matrix of bone) is synthesised in bone and released in 

circulation during the resorption process. The CTX assay quantitatively determines the 

C-terminal telopeptides of Type 1 collagen, which in turn reflects the level of 

osteoclast activity. The assay was carried out according to manufacturer protocols.  

     PINP (a marker for bone formation) was measured in serum samples using a 

competitive enzyme immunoassay. This assay is also based on Type 1 collagen, but 

measures the N-terminal peptide of Type I procollagen released in circulation during 

collagen synthesis. The assay was carried out according to manufacturer protocols.       

     The serum used for these assays was collected from the blood of mice. The mice 

were culled by CO2 asphyxiation and their blood was collected in Eppendorf tubes 

from the posterior vena cava. Blood samples were first left to clot, then the sera were 

separated by a bench top centrifuge for 10 minutes. The serum was collected and stored 

at -20°C.  

Figure 2-8: Photograph of a 2.5% agarose gel showing PCR products of OptnD477N 
genotype 
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2.2.4.4 Micro-computed tomography (µCT) 

2.2.4.4.1 In Vivo µCT 

     A SkyScan µCT 1076 was used to scan the mice in vivo. WT and OptnD477N/D477N 

mice were scanned at different stages of their lives (at 4, 8 and 12 months old). On the 

day of scanning, the O2 and isofluorane level was checked before proceeding to scan 

the mice. The mice were brought in with a filter lid on their cage. They were prepared 

for scanning using isofluorane-induced inhalation anaesthesia. They were then placed 

in the bed with their noses remaining in the cone and their legs fixed to a semi-circular 

polystyrene holder; their legs were then stretched out gently. A small polystyrene 

block was also placed on their abdomens to monitor their breathing, and the scanner 

door was closed. A scout scan was done to select the area to be scanned. The µCT was 

set at 50 KV and 201 µA. The pixel size was set at 18 µm and the scanning width at 

35 mm. The filter used was 0.5 mm of aluminium with a 0.6 rotation step and an 

averaging number of 1. The animals were given an appropriate amount of recovery 

time before being returned to their cage. The NRecon software from SkyScan was used 

to reconstruct the 3D image stacks and the file was saved as a bmp. Reconstruction 

parameters were set as shown in Table 2-11. 

2.2.4.4.2 Ex Vivo µCT 

     Ex vivo scanning was performed by using the SkyScan µCT 1172. The mice were 

euthanised by CO2 inhalation according Schedule 1 of the Animal Act, and their blood 

was subsequently collected from the posterior vena cava. The blood was transferred to 

Eppendorf tubes, left to coagulate, and then centrifuged for 10 minutes in order to 

separate the serum. The serum was stored at -20°C for future experimentation. Mouse 

tissues, including the lower extremities, skull, liver, kidney and spleen, were collected 

and fixed in 4% formaldehyde in PBS for 24 hours. These tissues were then stored in 

70% ethanol at 4°C. 

     The left tibiae were detached and collected in ethanol for scanning. To detach the 

tibiae from the lower extremities, most of the surrounding muscle tissue and fibulae 

were gently removed. The ligaments were cut using a scalpel, and the tibiae gently 

detached from the femora. Three tibiae were scanned per run in which bones were 
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wrapped using a parafilm, then placed in a 1 ml syringe with the proximal end facing 

up and the distal end facing down. The 1 ml syringe containing the tibiae was placed 

vertically inside the SkyScan 1172 (see Figure 2-9). The µCT was set at 60 KV and 

167 µA. A medium camera with a pixel size set at 4.9 µm was used. The 0.5 mm 

aluminium filter was added with a rotation of the specimen of 180 degrees and a 

rotation step of 0.6 degree. An oversize scan was selected to scout scan the samples. 

The proximal metaphysis and diaphysis were selected for each tibia and then scanned. 

The NRecon software from SkyScan was used to reconstruct the 3D image stacks and 

the file was saved as a bmp. Reconstruction parameters were set as shown in Table 2-

12.   

Table 2-11: Reconstruction parameters for in vivo µCT scanning using NRecon software 

Parameter Description Setting 

Smoothing  
Applied to the projections in order to smooth the 

images and reduce noise. 

Width: 1 

pixel 

Beam hardening factor  
Corrects the x-ray attenuation of the outside 

layer of a sample.  
10% 

Ring artefact reduction   
Corrects for artefacts resulting from the rotation 

of the sample.  
10 

 

 

Table 2-12: Reconstruction parameters for ex vivo µCT scanning using NRecon software 

Parameter Description Setting 

Smoothing  
Applied to the projections in order to smooth the 

images and reduce noise. 

Width: 1 

pixel 

Beam hardening factor  
Corrects the x-ray attenuation of the outside 

layer of a sample.  
18% 

Ring artefact reduction   
Corrects for artefacts resulting from the rotation 

of the sample.  
12 
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2.2.4.4.3 µCT Analysis 

     After the images were reconstructed, the SkyScan Dataviewer software was used 

to rotate the image stack along all three major axes. This is an important factor that 

allowed for the fixing of the orientation of all scanned bones and their regions of 

interest (ROI) (van ’t Hof, 2011). The landmark used in this study was the growth plate 

in the proximal tibia, and the reference point was where the mineralised cartilage 

breaks. For trabecular analysis, the ROI was 200 slices started at 20 slices proximal 

from the reference level. For cortical analysis, the ROI was 100 slices started at a 

distance of 600 slices from the reference level (see Figure 2-10). The trabecular and 

cortical analyses for these slices were then analysed using the SkyScan CTan software. 

This software separates the trabecular from the cortical bone by manually drawing a 

number of layers (usually from 6 to 10) distributed throughout the selected region. The 

software then interpolates to create a separation for the layers in-between. The 

parameters used for separating the soft tissues from the bone tissues, and those used 

for trabecular and cortical analysis, were determined as described in Tables 2-13 and 

Figure 2-9: Sample holders and batch scan of multiple samples: (a) Shows different types 
of sample holders, (b) Shows the sample holder fitted to the sample stage, (c) Shows a 
scout view of the sample holder with multiple samples. This picture was obtained from (van 
’t Hof, 2011) . 
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2.14. These parameters were applied to all the samples. The CTAn software generated 

an Excel spreadsheet that included all the analyses’ results. The software also 

generated a 3D model picture for the trabecula and the cortex, which can be viewed 

by the SkyScan CTVol software (see Figure 2-10).     

 

 

 

Table 2-13: Trabecular analysing parameters used by CTAn software  

Parameter  Description Setting 

Filtering  
Smoothing, noise reduction, and unsharpening 

of images. The result is a grayscale image. 

Type: Median (2D space) 

Radius: 1 

Thresholding 
Segments the foreground from the background 

to binary image. 

Mode: Global 

Lower grey threshold: 100 

Upper grey threshold: 255 

Despeckle Removes speckles from images. 

Type: Remove white speckles (3D space) 

Volume: less than 150 voxels 

Apply to: Image 

3D-Analysis Calculates the 3D parameters of binary images. 

Trabecular Thickness 

Trabecular Number 

Trabecular Separation 

3D-Mode Calculates the 3D surface from binary images. 

Model creation algorithm: Adaptive rendering 

Apply to: Image inside ROI 

Smoothing = Off 

Locality = 1 

Tolerance = 0.250000 

File saved as: p3g 

Figure 2-10: SkyScan µCT software used for selecting volumes for analysis: (A) 
Represented pictures from SkyScan Dataviewer, which were used to select the ROI 
(proximal tibial metaphysis [left] and proximal diaphysis [right]; (B) Manual selection of ROI 
using SkyScan CTAn software; (C) 3D model pictures of the trabecular bone (left) and 
cortical bone (right) viewed by SkyScan CTVol software. 
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Table 2-14: Cortical analysing parameters by CTAn software 

Parameter  Description Setting 

Filtering  
Smoothing, noise reduction, and unsharpening 

of images. The result is a grayscale image. 

Type: Median (2D space) 

Radius: 1 

Thresholding 
Segments the foreground from the background 

to binary image. 

Mode: Global 

Lower grey threshold: 100 

Upper grey threshold: 255 

Despeckle Removes speckles from images. 

Type: Sweep (2D space)  

Remove: all except the largest object 

Apply to: Image 

Despeckle Removes speckles from images. 

Type: Remove Black speckles (2D space) 

Volume: less than 80 voxels 

Apply to: Image 

Morphological 

operation 
Morphology-based operations. 

Type: Opening (2D space) 

 Kernel: Square 

 Radius: 2 

 Apply to: Image  

Morphological 

operation 
Morphology-based operations.  

Type: Closing (2D space) 

Kernel: Square 

Radius: 2 

Apply to: Image  

Bitwise 

operation 

Operations based on binary arithmetic.  

 

Region of Interest = <Region of Interest> AND 

<Image> 

Bitwise 

operation 

Operations based on binary arithmetic.  

 
Region of Interest = COPY<Region of Interest> 

3D-Mode Calculates 3D surface from binary images 

Model creation algorithm: Marching Cubes 33 

Apply to: Image inside ROI 

File saved as: p3g 

Despeckle Removes speckles from images. 

Type: Remove pores (2D space)  

Detected by: image borders 

Apply to: Image 

Bitwise 

operation 

Operations based on binary arithmetic.  

 
Image = <Image> X OR <Region of Interest> 

3D-Analysis Calculates the 3D parameters of binary images. Cortical Thickness 

 

The parameters that were obtained from each scan of the tibiae are listed in Table 2-15. 
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Table 2-15: Parameters calculated by µCT 

Parameter  Abbreviation (unit) 

Trabecular Bone Volume  BV/TV (%) 

Trabecular Thickness  Tb.Th (m) 

Trabecular Separation  Tb.Sp (m) 

Trabecular Number  Tb.N (1/mm) 

Cortical Thickness Ct.Th (mm) 

 

2.2.4.5 Bone histomorphometry   

     Left tibiae that were scanned were cut at the tibial crest using a Dremel rotary tool. 

The tibiae were fitted in embedding baskets and kept moist with 70% ethanol. The 

tibiae were then transferred to a Leica automatic tissue processor for 24 hours at room 

temperature. These tibiae were subjected to 8 stages, including dehydration with 

ethanol dilutions and defatting with xylene as shown in Table 2-16. Following this 

step, the tibiae were infiltrated using a freshly prepared methyl methacrylate (MMA) 

solution (Appendix 2.2) for two weeks at 4°C in airtight vacuum desiccators. The rest 

of the MMA solution was stored at 4°C for use after the infiltration step. The infiltrated 

samples were polymerised by transferring them into moulds and covering them with 

the stored MMA; each mould was then tightly covered with a lid smeared with a very 

thin layer of Vaseline (petroleum jelly) and placed in a water bath for 24-48 hours at 

30°C. The resin blocks that were formed were then tightly covered with plastic 

embedding rings and mounted with a fresh and fast-hardening medium made by adding 

together two thirds dibenzoylperoxide and one third N,N-dimethyl-p-toluidine. The 

blocks were left overnight and then ripped from the moulds with a pair of mole grip 

pliers.  

 

     A low speed microtome using a steel knife was used to trim the blocks. The blocks 

were rinsed with 30% ethanol while they were being trimmed and sectioned. They 

were trimmed until the sagittal plane of each tibia was reached. To check that the 

sagittal plane had been reached, each section was stained with toluidine blue for quick 

evaluation under a light microscope. The blocks were cut into multiple 5 μm-thick 

sections. These sections were then placed onto silane coated slides containing 96% 

ethanol, which is used to smooth and straighten the section on the slide. The sections 
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were then covered with Kisol-foil coverslips and the excess ethanol was removed using 

a paper tissue; the slides were then left to dry under pressure using a slide press for 2 

days at 37°C. At this stage, the slides were ready for staining and were stored in a slide 

box at room temperature.   

Table 2-16: Stages for the Leica tissue processor programme 

Stage Reagent Time (hr) 

1 70% Ethanol 01.00 

2 80% Ethanol 02.00 

3 96% Ethanol 02.00 

4 100% Ethanol 03.00 

5 100% Ethanol 03.00 

6 Xylene 01.00 

7 Xylene 12.00 

 

2.2.4.5.1 Staining bone sections with TRAcP  

     This method was used to identify osteoclasts in bone sections, which had been 

embedded in MMA and sectioned as described in Section 2.2.4.5. Before staining, the 

coverslips were carefully removed, followed by the resin as described in Figure 2-11. 

The slides were then immersed in a TRAcP stain (Appendix 2.2) and incubated for 2 

hours at a humidified temperature of 37°C. Subsequently, the slides were washed with 

distilled H2O four times in different containers, and then incubated with Aniline Blue 

(as a counter stain) for 20 to 45 minutes at room temperature. After the slides had been 

washed in 3 containers of water, they were mounted with Apath’s aqueous mounting 

medium and stored in the dark; within 2 weeks, they were analysed with custom 

software based on the Aphelion image analysis tool kit (Adcis, Herouville-Saint-Clair, 

France) in combination with Fiji-Image J, developed by Dr. Rob J. van’t Hof (Institute 

of Ageing and Chronic Disease, University of Liverpool). This software identifies 

bone (blue colour) and osteoclasts (red colour) by colour thresholding in combination 

with object filtering tools. After parameters had been optimised, they were applied to 

http://www.liv.ac.uk/ageing-and-chronic-disease/
http://www.liv.ac.uk/ageing-and-chronic-disease/
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all of the samples. The software captured multiple pictures from the target area. The 

pictures were then stitched together using Microsoft Ice software (see Figure 2-12). 

The software then applied the chosen setting to the stitched picture.     

 

 

 

 

2.2.4.5.2 Staining bone sections with VON KOSSA and Van Gieson Counterstain 

     To assess bone mineralisation and osteoid parameters in bone sections, a VON 

KOSSA/Van Gieson stain was used (Appendix 2.2). This stain provides a clear 

distinction between mineralised bone (black stain) and un-mineralised osteoid tissue 

(osteoid/collagen, red stain) as shown in Figure 2-14. The resin was removed carefully 

as described in Figure 2-13. Then, the sections were immersed in 1% silver nitrate for 

Figure 2-11: Stages for removing the resin from the 
bone sections 

dH2O (2 times)

30% Ethanol

50% Ethanol 

70% Ethanol 

80% Ethanol 

100% Ethanol (2 times)

Xylene 10 minutes (2 times)

MEA 20 minutes (3 times) 

Figure 2-12: A stitched picture of a trabecular 
stained section at 10X magnification using a 
Zeiss Axio Imager microscope. 
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3 minutes followed by 3 washes in different containers with distilled H2O. Thereafter, 

the sections were stained with freshly made hydroquinone for 1 minute followed by 3 

washes with distilled H2O. The sections were then placed in Van Gieson’s stain for 3 

minutes and washed with water 3 more times. The sections were then cleaned in a 

series of ethanol concentrations: 50%, 70%, 80% and 100%. Once completed, the 

sections were dipped in xylene, mounted with DPEX, and covered with Kisol-foil 

coverslips. Custom software, based on a combination of the Aphelion image analysis 

tool kit (Adcis, Herouville-Saint-Clair, France), Fiji-Image J, and Microsoft Ice 

packages developed by Dr. Rob J. van’t Hof was then used to analyse the 

histomorphometric osteoid parameters.   

 

 

 

  

 

dH2O (2 times)

30% Ethanol

50% Ethanol 

70% Ethanol 

80% Ethanol 

100% Ethanol (2 times)

Xylene 10 minutes (2 times)

MEA 3 minutes (3 times) Figure 2-13: Stages for removing the resin from 
the bone sections. 

Figure 2-14: A stitched picture of a VON 
KOSSA-Van Gieson stained section at 10X 
magnification using a Zeiss Axio Imager 
microscope. 
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2.2.4.5.3 Assessing dynamic bone histomorphometric parameters   

     Mice received 2 injections of calcein (3 days apart) prior to culling to assess 

dynamic bone formation parameters. Bone sections were stained with this method in 

order to evaluate the rate of bone formation and mineralisation. The bone sections were 

immersed in Aniline Blue (0.1 g in 150 ml of DH2O) for 20 minutes after the resin was 

removed, as described in Figure 2-13. The sections were then washed in a series of 

ethanol concentrations (70%, 96% and 100%) and then immersed twice in xylene. The 

slides were subsequently mounted with DPEX after the excess xylene had been 

removed. The stained sections were then visualised on a Zeiss Axioimager 

fluorescence microscope fitted with a QImaging Retiga 4000R digital camera. 

Histomorphometry was performed using custom software based on the Aphelion 

image analysis tool kit (Adcis, Herouville-Saint-Clair, France) combined with Fiji-

Image J and Microsoft Ice packages. This semi-automated software detects calcein 

double labelling (See Figure 2-15).  

 

 

     The parameters defined by the previously mentioned custom software were 

calculated according to the ASBMR Histomorphometry Nomenclature Committee 

(Dempster et al., 2013) and are shown in Table 2-17. 

Figure 2-15: The stitched picture for calcein double labelling for the measurement of bone 
formation visualised by fluorescent microscope at 20X magnification. 
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Table 2-17: Bone histomorphometry parameters used in this study 

Parameter  Abbreviation (unit)  

Bone Volume per Total Volume  BV/TV (%)  

Active Resorption area per Bone Surface  Oc.S/BS (%)  

Osteoclast Number per Bone Surface  Oc.N/BS (# of cells/mm-1)  

Osteoclast Surface per Bone Surface Oc.S/BS (%) 

Mean Osteoclast Size  (μm2) 

Osteoid Surface per Bone Surface  Os.S/BS (%) 

Osteoid Volume per Bone Volume Os.V/BV (%) 

Label Width  L.Wi (μm)  

Mineral Apposition Rate  MAR (μm/day)  

Mineralising Surface per Bone Surface  MS/BS (ratio)  

Bone Formation Rate  BFR (μm2/μm/day)  

 

 

2.2.5 Western Blot  

2.2.5.1 Preparation of cell lysates  

     Prior to cell lysate, a RIPA lysis buffer (Table 2-18) was prepared on ice. The 

culture media were removed and plated cells washed with cold PBS. The PBS was 

then discarded and the ice-cold RIPA lysis buffer was added to the cells, which were 

left on ice for 10-15 minutes. The cells were then scraped with a syringe plunger and 

the lysate was collected in a 1.5 ml Eppendorf tube. Bone marrow cell lysate was 

prepared by collecting the bone marrow cells in standard αMEM followed by a 3-

minute centrifugation at 300g. The pellets were then washed twice with PBS, and 

another 3-minute centrifugation at 300g was performed. The pellets were subsequently 

resuspended in the RIPA lysis buffer and left for 10 minutes on ice, after which the 

lysate was transferred to a 1.5 ml Eppendorf tube. Both lysates were centrifuged at 

12000g for 10 minutes at 4°C. Supernatants were collected and stored at -20°C.  
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Table 2-18: Solutions for cell Lysis 

 

 

2.2.5.2 Measurement of protein concentration (Pierce protein assay) 

     The protein concentration was determined using the bicinchoninic acid (BCA) 

protein assay. In brief, the working solution was prepared by mixing 1 part copper (II) 

sulfate (4% (w/v)) with 50 parts bicinchoninic acid solution. Ready-to-use standard 

Bovin serum albumin (BSA) from ThermoScientific and duplicate protein samples 

were added to a 96-well plate (10 µl), followed by the addition of 200 µl of working 

solution. The plate was then sealed and incubated at 37°C for 15-20 minutes. The 

absorbance at 562 nm was then measured using the plate reader (BIO-Tek Synergy 

HT) and the protein concentration was measured according to the BSA standard curve.    

2.2.5.3 Protein gel electrophoresis  

     Precast gels from BioRAD (12% Bis-Tris) were used to separate the protein lysate. 

The gel tank was filled with an electrophoresis running buffer (Appendix 2.4) and the 

gel’s wells were washed. The loading samples were prepared by mixing 1 part of a 5X 

reducing sample buffer (Appendix 2.4) with 4 parts cell lysate and then heated at 95°C 

for 5 minutes using a heating block. The samples were then removed and left to cool 

at room temperature. The samples were loaded along with a Kaleidoscope marker (1 

µl) mixed with Magic marker (1 µl) in order to identify the molecular weight. The gel 

was run for 40-50 minutes at a voltage of 200 V until the dye front reached the bottom 

of the gel.   

RIPA Lysis buffer  
1% Triton 100X, 0.5% (w/v) Sodium Deoxycholate, 0.1% (w/v) Sodium Dodecyl 

Sulphate (SDS), 50 mM Tris-HCl (pH 7.4) and 150 mM Sodium Chloride were 

dissolved in dH2O. 

 On the day of extracting the cells Protease inhibitor, Phosphatase inhibitor, 0.5 M 

EDTA and 1 M NaF are added. 

IP Lysis buffer for Immunoprecipitation 

25 mM Tris-HCl pH 7.4, 150 mM NaCl, 1% NP-40, 1 mM EDTA, 5% glycerol. 

On the day of extracting the cells Protease inhibitor and Phosphatase inhibitor are 

added. 
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2.2.5.4 Electrophoretic transfer 

     This step was used to transfer the proteins from the polyacrylamide gel in order to 

be accessible to antibody detection on a solid membrane: polyvinylidene 

difluoride (PVDF). Prior to removing the gel from the tank, a PVDF membrane 

(Hybond TM-P from Amersham) was cut to the size of the polyacrylamide gel and 

immersed in 100% methanol for 5 minutes. The membrane was equilibrated with 

transfer buffer for 5 minutes. The gel was removed from the transfer buffer (Appendix 

2.4). A blotting sandwich was assembled by placing the polyacrylamide gel on top of 

the PVDF membrane between 2 filter papers pre-soaked with transfer buffer (see 

Figure 2-16). The transfer was performed using a constant current of 60 mA/gel for 

120 minutes.  

 

 

 

 

2.2.5.5 Immunostaining  

     The blotted PVDF membrane was removed from the blotter and transferred to a 

tray containing 5% skimmed milk in TBST (Appendix 2.4) for blocking all non-

specific sites and left on a shaking platform for one hour. For probing the membrane 

Figure 2-16: A gel transfer assembly diagram for western blotting. 

 Adapted from 

  https://upload.wikimedia.org/wikipedia/commons/9/93/Western_blot_transfer.png 

https://en.wikipedia.org/wiki/Polyvinylidene_difluoride
https://en.wikipedia.org/wiki/Polyvinylidene_difluoride
https://upload.wikimedia.org/wikipedia/commons/9/93/Western_blot_transfer.png
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with an optineurin antibody, the membrane was blocked with 5% Bovin serum 

albumin for 1 hour. The membrane was then rinsed with TBST and probed for a 

primary antibody. The antibody was prepared in 3% BSA in TBST with a suitable 

dilution for the antibody (Table 2-19). The membrane was then soaked in the primary 

antibody and left shaking for 1 hour either at room temperature or overnight at 4°C, 

depending on the type of primary antibody used. The primary antibody was re-used by 

filtering it with a sterilised 0.2 µm filter and then stored at -20°C. The membrane was 

washed 3 times using TBST (15 minutes per wash), followed by membrane probing 

with a secondary antibody for 1 hour at room temperature. The anti-rabbit horseradish 

peroxidase-conjugated secondary antibody (Jackson ImmunoResearch) was prepared 

in 3% skimmed milk in TBST using a 1:5000 dilution. The membrane was then 

washed multiple times (~15 minutes/wash) for 90 minutes. During the final wash, the 

membrane was left on the rocker with TBS (Appendix 2.4) for 15 minutes.      

2.2.5.6 Band visualisation and quantification  

      In order to detect the bands on the membrane, the membrane was transferred to a 

chemiluminescent detection system (Syngene Genegnome Bioimaging system) tray. 

One ml of freshly prepared SuperSignal substrate from ThermoScientific was spread 

over the membrane and the tray was then returned to the Syngene Genegnome 

Bioimaging system for detection of the bands. The bands’ intensity was measured 

using a Syngene software package called GeneSnap to compare the protein expression 

among the samples.  

2.2.5.7  Membrane stripping 

     In order to probe the membrane with another primary antibody, the membrane was 

soaked in a tray containing a stripping buffer (Appendix 2.4) supplemented with 50 µl 

of DTT. Subsequently, the tray was placed in a water bath at 55°C for 10 minutes. The 

membrane was checked for complete stripping by visualising it using SuperSignal, as 

mentioned in the previous section. After stripping, the membrane was blocked with 

5% skimmed milk and the downstream steps were then continued as mentioned in the 

immunostaining section (2.2.5.5).  
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2.2.6 Immunoprecipitation (IP)  

Bone marrow macrophages and osteoclasts were generated as described in 

Section 2.2.3.3.1. Protein from those cells was extracted using an IP lysis buffer (Table 

2-18). To immunoprecipitate Optn, 50 μg of protein lysate was incubated in an 

Eppendorf tube overnight and rotated at 4°C with 4 μg of the sheep anti-mouse OPTN 

antibody (obtained from Dundee group). Protein G Sepharose beads (15 μl) were 

added to the OPTN antibody-protein lysate mixture and left for an additional overnight 

incubation at 4°C. The Sepharose beads were collected by centrifugation and then 

washed 3 times with the IP lysis buffer. The Sepharose beads were thereafter 

suspended in 25 µl of IP lysis Buffer with 6 µl of loading buffer added to each sample. 

The samples were heated to dissociate the protein attached to the beads, followed by a 

1min centrifugation. The supernatant was loaded to a polyacrylamide gel, and the 

downstream steps were continued as detailed in the Western Blot section (2.2.5.5). The 

IP membrane was probed first with an OPTN antibody (1:200 dilution, from Cayman) 

and then CYLD (1:1000 dilution, Cell Signalling). The membrane was then re-probed 

with β-Actin (1:1000 dilution). An anti-rabbit antibody (Jackson ImmunoResearch) 

was used as a secondary antibody and the bands’ re-visualisation and quantification 

was performed as described before in Section 2.2.5.6. 

Table 2-19: List of antibodies used in this study: mAb (monoclonal antibody), pAb (polyclonal 
antibody), and IP (Immunoprecipitation).  

Antibody (conc.) Class/Host/Isotype Source  Cat No. 

OPTN (1:250) pAb Rabbit/IgG Cayman 100000 

OPTN (IP: 4 µg)  pAb Sheep Anti-mouse/IgG (s308c) Dundee group   

OPTN (1:100) pAb Rabbit/IgG Abcam Ab23666 

CYLD (1:1000) mAb Rabbit/IgG Cell Signaling  8462 

Phospho-IκBα (1:1000) mAb Rabbit/IgG Cell Signaling  2859 

Actin (1:1000) mAb Rabbit/IgG Sigma  A0483 
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2.2.7 Gene Expression using Quantitative Real-Time PCR (qPCR) 

2.2.7.1 RNA extraction  

The RNA was extracted from the cultured cells using an RNA extraction kit 

(GenElute Mammalian Total RNA Purification Kit, from Sigma Aldrich). Briefly, the 

cells were lysed for 2 minutes using a lysis buffer after withdrawal of the media. The 

lysed samples were stored at this stage at -70°C before proceeding to RNA isolation. 

The lysate was filtered from cellular debris and the RNA was bound to the provided 

columns (GeneElute Binding Columns). The columns were subsequently either 

washed and eluted for storage at -70°C or proceeded to measurement.  

2.2.7.2 Measuring RNA concentration    

Two methods were used to measure the RNA concentration:  

2.2.7.2.1 Nanodrop 1000 Spectrophotometer   

     This spectrometer (from ThermoScientific) was used to measure the RNA quantity 

at different absorbance levels (230, 260 and 280 nm). One µl of the RNA sample was 

added to the Nanodrop before the measurement was started. The absorbance at 260 nm 

was used to measure the RNA concentration in ng/µl. The 260/280 ratio was used to 

evaluate RNA purity, with a ratio of ~2 generally considered acceptable for RNA 

purity. Lower readings of this ratio indicate the presence of protein or phenol 

contaminants, which are detected at 280 nm. A ratio of 260/230 is another parameter 

used for nucleic acid purity. The expected value for this ratio is equal to 2-2.2 nm and 

lower readings indicate the presence of contaminants, measured at 230 nm.    

2.2.7.2.2 RiboGreen Kit  

     The Quant-iT RiboGreen RNA reagent is a sensitive fluorescent nucleic acid stain 

used for measuring RNA concentration according to manufacturer protocols. The 

samples were measured first by the Nanodrop for a rough estimation of RNA 

concentration because the kit allows quantitation of 20 ng/ml. Serial dilutions (0.3125–

2 ng/µl) of the RNA standard provided by the kit were used to generate the standard 

curve. A black 96-well flat bottom plate was used to carry out the test. One hundred 

µl of 0.5 – 1 ng/µl of the RNA samples measured by the Nanodrop in DEPECT water 
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were plated in duplicate and 100 µl of RiboGreen dye was added to each well. The 

fluorescence was then measured at an excitation/emission wavelength of 485/528 nm.       

2.2.7.3 Reverse transcription  

     The RNA samples were used to synthesize the cDNA by reverse transcription. The 

qScript cDNA SuperMix kit from QuantaBioscience was used according to 

manufacturer protocols. In brief, an equal amount of RNA concentration (10 pg – 1 

µg) was added to DEPECT-treated water and 4 µl of qScript cDNA SuperMix (5X) 

for a total volume of 20 µl/reaction. After a brief centrifugation, the sample mix was 

incubated for 5 minutes at 25°C, 30 minutes at 42°C, 5 minutes at 85°C, and then held 

at 4°C.  

2.2.7.4 qPCR amplification using a fluorescent probe 

     Gene expression was measured from a cDNA using TaqMan probes and primers 

specific to the genes being studied. These probes were designed using the Roche 

Universal Probe Library (UPL) Assay Design Center 

(https://lifescience.roche.com/shop/en/us/overviews/brand/universal-probe-library). 

Primers which have been obtained from UPL was used to study the expression of Optn 

(see Table 2-20). These primers amplify regions that present in all Optn isoforms.  The 

TaqMan probes consist of two labels: the fluorescence fluorophore at the 5’ end of the 

probe, and the quencher that quenches the fluorescence of the fluorophore at the 3’ end 

of the probe. The quencher inhibits fluorophore fluorescence as long as it is attached 

to the probe. During the extension phase, the exonuclease activity of the Taq 

polymerase degrades the probe, causing a release of the fluorophore from the quencher 

and thereby inducing fluorescence. Fluorescence was quantified using a MJ Research 

Chromo4 cycler and the data were analysed using the MJ OpticonMonitor 3.1 software 

(Figure 2-17).   

 

 

https://lifescience.roche.com/shop/en/us/overviews/brand/universal-probe-library
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Table 2-20: Mouse Optn qPCR primers and the universal probe library number. 

UPL No. 

Universal Probe Library 

(UPL) Forward and Reverse 

Primer 

Amplicon Length 

(nt) 

Length of intron 

spanned (nt) 

Optn-91 
F: caaaataccaacgaagcagtga 

77 9190 
R: agaggttgatgggacatggt 

Optn-63 
F: gctccgaaatcaagatggag 

63 927 
R: gcagagtggctaacctggac 

 

     To study gene expression, RNA was extracted from the samples using the GenElute 

Mammalian Total RNA Purification Kit and then measured using the Quant-iT 

RiboGreen kit. Fixed concentrations of RNA from all samples were used to create a 

cDNA using QuantaBioscience as described before. The amplification of all PCR 

products was performed in a MJ Research Chromo4 Real-Time PCR thermocycler. 

The PCR reaction was set up as follows:     

Reagent  Volume (µl) Final concentration 

2X SensiFast Probe 10 1X 

Universal ProbeLibrary Probe (10 μM) 0.2 100 nM 

Forward Primer (10 μM) 0.8 400 nM 

Reverse Primer (10 μM) 0.8 400 nM 

RNase-free H2O 5  

Template  4  

 

The thermal cycling protocol consisted of an initial incubation for 3 minutes at 95oC, 

followed by 35 cycles of 50 seconds at 95oC, then 45 seconds at 55.1oC and 1 minute 

at 72oC. 
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     To generate standard curves, a test sample was used to create a cDNA standard of 

known concentration. The yielded qPCR product was then purified using the QIA 

quick PCR Purification Kit and loaded on a gel to verify the successful amplification 

of the cDNA into a clean amplicon of the expected size. The concentration of qPCR 

product was quantified by taking multiple measurements of the same sample using the 

Nanodrop 1000 spectrophotometer as described before. The average reading of the 

product concentration was used in the following formula in order to calculate the 

number of copies (molecules) in this product: 

𝑛𝑜. 𝑜𝑓 𝑐𝑜𝑝𝑖𝑒𝑠 =
𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 (𝑛𝑔) × 6.022 × 1023

𝑎𝑚𝑝𝑙𝑖𝑐𝑜𝑛 𝑠𝑖𝑧𝑒 (𝑏𝑝) × 1 × 109 × 660
 

Figure 2-17: Schematic illustration of amplification plot and standard curve generated by 
Opticon Monitor 3. The Plate diagram is used for selecting wells to include in the Data 
graph. Each colour of a well in the Plate diagram correlates with the signal intensity of each 
sample measured in the well. Real-time amplification plot (Data graph) shows the standard 
dilutions from a 10-fold dilution series. The graph measures the fluorescence versus 
number of cycles.The Standards curve is automatically generated using the information 
(e.g. number of copies or molecules) that was provided by the user. It measures the 
logarithm of the amount of DNA against the C(T) cycle. The samples will appear as grey 
dots while the standards appear as black dots. 
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Standard curves were generated by serial 10-fold dilutions of the quantified cDNA. 

qPCR was performed on samples alongside with standards and the copy number of 

each sample was measured according to fluorescence intensity using the MJ Opticon 

Monitor 3.1 analysis software. In addition to the fixed amount of starting RNA, the 

housekeeping gene 18S ribosomal RNA was also used as a reference gene for 

normalizing gene expression levels. For 18S ribosomal RNA, the PCR reaction was 

set up as follows:  

Reagent  Volume (µl) Final concentration 

2X SensiFast Probe 10 1X 

TaqMan Assay Mix for 18S ribosomal RNA 1  

RNase-free H2O 5  

Template  4  

 

2.2.8 Data Analysis  

     Statistical analysis was performed using either Excel 2007 or MINITAB version 

16. Fisher's exact test was used for the analysis of microsatellite allele frequencies of 

chromosome 10-linked subjects. Differences between the OPTN-targeted shRNA and 

the non-targeted shRNA used for the Optn knockdown experiment, or the data 

obtained from the wild-type and OptnD477N/D477N knock-in mice, were analysed by a 

Student’s t test. A one-way ANOVA was used to analyse the association between 

rs1561570 alleles and either disease severity or SF36 parameters. A general linear 

model ANOVA was used to analyse the association between rs1561570 alleles, and 

the total disease severity score was adjusted for age and gender. All data were 

presented as means ± standard deviation (SD) or means ± standard error of the mean 

(SEM). A P value below 0.05 was considered statistically significant. 
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CHAPTER THREE 

The rs1561570 variant in OPTN is associated with 

Paget’s disease severity and with OPTN gene 

expression but no disease-specific coding variants 

were detected in PDB patients 
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3 The rs1561570 variant in OPTN is associated with Paget’s 

disease severity and with OPTN gene expression but no 

disease-specific coding variants were detected in PDB 

patients  

3.1 Summary  

     Mutations in SQSTM1 gene are known to cause about 40 % of familial cases and 

10% of sporadic cases of PDB and previous studies have shown that these mutations 

are associated with disease severity (Ralston and Albagha, 2011). Recent GWAS have 

identified further susceptibility loci for PDB (Albagha et al., 2011a, 2010), including 

variants within the OPTN gene. All these variants are located in the intronic region of 

OPTN. Particularly, the risk allele T of the common variant rs1561570 in OPTN was 

one of the highest association signals in different populations loci (P = 4.37 x 10-38, 

OR = 1.67). In this chapter, the relationship between rs1561570 in OPTN and disease 

severity in 635 PDB patients without SQSTM1 mutations was investigated. A disease 

severity score was devised based on several clinical features including: number of 

affected bones, clinical evidence for bone deformity, the presence of bone pain, bone 

fractures, requirements of orthopedic surgery and the use of hearing aid for deafness. 

The association between rs1561570 and disease severity score was investigated using 

general linear model ANOVA adjusting for age and gender. Also, OPTN was screened 

for genetic variation by direct sequencing of 43 samples obtained from PDB familial 

cases and controls. The direct sequencing covered the coding regions as well as the 

exon-intron boundaries.  

     Results showed significant association between rs1561570 and severity score. 

Carriers of the risk allele T had higher severity score (6.02 ± 0.11) compared to non-

carriers (5.39 ± 0.28, P = 0.031). Reduced quality of life (as assessed by SF36 physical 

summary score) was also noticed in patients who carried the risk allele (36.8 ± 0.5) 

compared to those who did not (39.3 ± 1.4; P = 0.091) but this was not statistically 

significant. All variants identified from OPTN screening by direct sequencing are 

present in SNP databases. It seems that these variants did not have a direct effect on 
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the OPTN nor did they alter the splicing sites and therefore they are unlikely to be 

pathogenic.  

     To conclude, the results presented in this chapter showed that the OPTN rs1561570 

variant is associated with disease severity and complications of PDB and could be of 

clinical value in identifying patients who are SQSTM1 negative and at risk of 

developing a severe disease. In addition, the mutation screen did not identify variants 

in the coding region and further screening is required to cover the non-coding region 

as the unidentified variant(s) may have a regulatory effect at the gene expression level. 
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3.2 Introduction  

     The severity of PDB varies from one patient to another and it ranges from 

asymptomatic to various complications including osteoarthritic pain, nerve 

compression syndromes, deafness, bone deformity, fracture and tendency to develop 

osteosarcoma (Ralston, 2013b). Genetic risk factors are strong in PDB pathology but 

vary markedly between countries (5% - 50%), and a wide range of individuals have an 

affected first-degree relative (Ralston and Albagha, 2013). Mutations affecting the 

ubiquitin associated domain of SQSTM1 (the only gene known to cause PDB) are 

found in 5 – 10% of sporadic cases and 40 – 50% of familial PDB cases (Ralston, 

2013b), suggesting that other related genes remain to be identified. These mutations 

were found strongly associated with PDB severity and are implicated in the 

development of the disease phenotype in animal models (Daroszewska et al., 2011; 

Hiruma et al., 2008). Recent GWAS have identified seven new PDB susceptibility 

loci; near the CSF1 gene, near the TNFRSF11A gene, the OPTN gene, the TM7SF4 

gene, the NUP205 gene, the RIN3 gene, and the PML gene.  These loci were confirmed 

to be associated with the disease in various European populations (Albagha et al., 

2011a, 2010; Chung et al., 2010a) and account for about 13% of the heritability when 

combined together (Albagha et al., 2013). However, their influence in the PDB 

severity is currently unknown. One of these loci is 10p13 with the highest association 

signal tagged by rs1561570 within OPTN (P = 4.37 x 10-38, risk allele OR = 1.67) 

(Albagha et al., 2010). Interestingly, OPTN is located in the 10p13 region and has been 

previously linked to PDB by linkage studies (Lucas et al., 2007). SQSTM1 mutations 

are the only mutations that have been associated with disease severity and 

complications of PDB. OPTN was linked to glaucoma (Rezaie et al., 2002) and to 

amyotrophic lateral sclerosis (Maruyama et al., 2010). Several population and 

ethnicities were screened for mutations in the optineurin gene for patients affected with 

these diseases (Ayala-Lugo et al., 2007). However, the role of OPTN in bone 

metabolism is unknown but it is known to have a role in NFB signaling and 

autophagy (Kachaner et al., 2012), both of which have been implicated in osteoclast 

biology. The OPTN gene in humans contains 3 non-coding exons in the 5`UTR region 
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and 13 coding exons that encode a 577 amino acid protein. Alternative splicing 

generates four different transcripts having the same open reading frame (Kachaner et 

al., 2012). In the first part of this chapter, I investigated if OPTN variants are associated 

with the severity and clinical outcome of PDB in patients without SQSTM1 mutations. 

The second part discusses the results of OPTN screening for mutations by direct DNA 

sequencing of OPTN coding regions as well as the exon-intron boundaries in 24 

samples obtained from chromosome 10-linked families and 19 samples from controls.    

3.3 Results  

3.3.1 Genetic Variants in the Optineurin Gene are Associated with 

Disease Severity in Paget’s disease of Bone 

     The study subjects comprised of 635 PDB patients without SQSTM1 mutations who 

were recruited in PRISM study (Langston et al., 2009). All participants had a 

radioisotope bone scan at baseline to assess the extent of skeletal involvement. 

Deformity was assessed based on clinical evidence of bone deformity using a three-

point scale (0 = no deformity, 1 = mild deformity, and 2 = severe deformity). Other 

disease-related information was recorded including: the presence of bone pain and 

whether pain was caused by PDB, previous bone fractures and if they had occurred in 

affected bones, use of hearing aid for deafness, previous bisphosphonate treatment, 

and requirement of orthopaedic surgical procedures. PDB severity was assessed as 

previously described (Visconti et al., 2010). Briefly, a total disease severity score was 

devised based on several clinical features including: number of affected bones, clinical 

evidence for bone deformity, the presence of bone pain, bone fractures, requirements 

of orthopaedic surgery and the use of hearing aid for deafness. Health-related quality 

of life within the PRISM study was assessed by the Short-form-36 (SF36) 

questionnaire (Ware  John E and Gandek, 1998). General linear model ANOVA was 

used to analyse the association between rs1561570 alleles and the total disease severity 

score or SF36 parameters adjusting for age and gender. Gender and rs1561570 allele 

distribution for the study subjects are shown in Table 3-1. 
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Table 3-1: Gender and rs1561570 allele distribution for the study subjects. The distribution of 
geotype frequencies in this population follow the Hardy-Weinberg equasion 

Number of 

PDB cases 

Gender rs1561570 risk Allele (T) 

Male Female Carrier Non-Carrier 

635 344 291 Homo (TT)  Het (CT) CC 

n = 298 n = 260 n = 77 

 

     My results showed that carriers of the rs1561570 risk allele had a higher total 

disease severity score (mean ± SEM; 6.02 ± 0.11) compared to non-carriers (5.39 ± 

0.28; P = 0.031) after adjusting for age and gender (Figure 3-1). The analysis also 

showed that age (P = 0.005) but not gender (P = 0.62) was a significant predictor of 

total disease severity score. Analysis of rs1561570 in relation to SF36 parameters 

showed a trend for reduced SF36 physical score in patients who carried the risk allele 

T (36.8 ± 0.5) compared to those who did not (39.3 ± 1.4) but this was not statistically 

significant (P = 0.091) (Figure 3-2). Analysis of rs1561570 in relation to other SF36 

parameters showed no significant difference between carriers of the rs1561570 risk 

allele compared to non-carriers. Figure 3-3 shows the relation of the OPTN rs1561570 

with Bodily Pain Score. 

 

 

Figure 3-1: OPTN rs151570 is associated with the disease severity score. Analysis using 
general linear model ANOVA showed a significant association between OPTN rs1561570 
and total disease severity score. Error bars represent SEM. 
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Figure 3-2: The association of OPTN rs1561570 with SF 36 Physical Score. A trend for 
reduced quality of life in patients who carried the risk allele T (36.8±0.5) compared to those 
who did not (39.3±1.4) was found but the relationship was not statistically different. Error 
bars represent SEM. 

Figure 3-3: The association of OPTN rs1561570 with Bodily Pain Score. The relationship 
between OPTN rs1561570 and the SF36 bodily pain summary score was not significant. 
Error bars represent SEM. 



Chapter 3: The rs1561570 Variant in OPTN Is Associated with Paget’s Disease Severity and with OPTN 

Gene Expression But No Disease-Specific Coding Variants were Detected in PDB Patients 

115 

 

3.3.2 Reduced Expression of OPTN Predisposes to PDB 

     The locus rs1561570 identified by the GWAS is located in non-coding region and 

therefore is likely to be involved in gene regulation. eQTL analysis becomes a useful 

tool to study how genetic variants could affect the gene expression levels measured in 

cells or tissues (Nica and Dermitzakis, 2013). Therefore, eQTL analysis was 

performed to address whether rs1561570 is associated with OPTN mRNA expression. 

The analysis involved human monocytes and peripheral blood mononuclear cells. The 

results revealed that the rs1561570 was a strong eQTL for OPTN in human monocytes 

(Zeller et al., 2010) and peripheral blood mononuclear cells (Westra et al., 2013), with 

reduced OPTN gene expression in carriers of the Paget’s disease risk allele ‘‘T’’ 

(Figure 3-4). These data indicate that reduction in the OPTN expression is associated 

with increased PDB risk and suggest the interesting possibility that OPTN might play 

a role in regulating bone turnover by acting as a negative regulator of osteoclast 

differentiation. Based on these findings, the potential role of OPTN as a negative 

regulator to osteoclast differentiation and in bone metabolism has been extensively 

investigated in the coming chapters. 

 

 

Figure 3-4: The top GWAS hit (rs1561570) is a Strong eQTL in Human Monocytes. OPTN 
mRNA expression levels are shown in relation to rs1561570 genotype in human 
monocytes. PDB-predisposing ‘‘T’’ allele is associated with reduced OPTN gene 
expression.  n indicates the number of subjects in each genotype group (Obaid et al., 2015). 
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3.3.3 Mutation screening of OPTN by DNA sequencing 

     As shown in the previous section, the GWAS signal from chr10p13 was a strong 

eQTL suggesting that the association with PDB could be driven by a regulatory 

polymorphism influencing OPTN gene expression. However, the presence of rare 

pathogenic coding mutations cannot be excluded because the GWAS approach is not 

suited to identify disease-causing rare variants. Therefore, in this section, mutation 

screening of OPTN was performed in patients from 10p13-linked families. Genomic 

DNA was isolated from peripheral blood and the entire coding and non-coding exons 

as well as the exon-intron boundaries (including at least 50 bp of adjacent intronic 

sequences) were amplified by PCR. PCR products were examined by gel 

electrophoresis for the correct size of DNA bands (Figure 3-7) and sent for direct 

sequencing as discussed in section 2.2.2.3. Eighteen primer pairs have been designed 

using Primer3+ software (Figure 3-5 and 3-6). The sequencing data results were then 

analysed by using the Chromas Pro software (Figure 3-8).  

 

 

     The data obtained from sequence alignment of samples in comparison with the 

reference sequence, produced by Chromas Pro, showed that some of the exons did not 

show any variation between the samples and the reference sequence including exon 5, 

6, 8, 11, 12, 13, 14, 15, and 16. Seven SNPs located in the intronic region of the non-

coding exons 1 and 2 and two SNPs from the intronic region of the coding exon 16 

Figure 3-5: Schematic diagram of human OPTN gene. This diagram shows the primer pairs 
designed to cover the non-coding exons, coding exons and the intron/exon boundaries of 
each exon. Also it shows the location of the microsatellite repeats between the non-coding 
exons 2 and 3.  
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were identified as shown in Table 3-2. These SNPs were analysed using functional 

analysis and selection tool for single nucleotide polymorphisms (FASTSNP); a web 

server used for predicting the functional significance of identified SNPs (Table 3-3). 

It classifies and prioritizes high-risk SNPs in coding and non-coding region according 

to their phenotypic risks and putative functional effects (Yuan et al., 2006). In addition, 

this web server scores the SNPs’ level of risk with a ranking of 0, 1, 2, 3, 4, or 5. These 

scores indicate the levels of no, very low, low, medium, high, and very high effect, 

respectively (Rajasekaran et al., 2007). For example, the SNP rs2304706 was 

identified by FASTSNP as intronic enhancer. The possible effect of this SNP was 

predicted by FASTSNP to alter the binding site of a transcription factor in an intronic 

region (Yuan et al., 2006). FASTSNP scores the risk level for these kind of SNPs to 

be very low to low (1 to 2). The difference in distribution of the allele and genotype 

frequencies of identified SNPs in cases compared to controls was not statistically 

significant (P > 0.05); Table 3-2). 

 

 

Figure 3-6: Part of the genomic sequence of OPTN for exon 8 obtained from Ensemble 
genome website. This diagram shows the primer sequences used for PCR amplification 
(highlighted with blue). The primers cover the coding sequence (red bold letters) as well as 
the intron/exon boundaries (black letters). Green boxes indicate the location of SNPs 
generated by Ensemble. 
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Figure 3-7: Gel electrophoresis analysis for the PCR products of Exon 2. Based on the 
primer design the expected size of the PCR product is 459 bp for Exon 2  

Figure 3-8: DNA sequencing results for exon 3 polymorphisms. This is an example of 
Chromatogram picture obtained from Chromas Pro software. This diagram shows the 
difference pattern between the homozygous for the reference allele, heterozygous and the 
homozygous for the alternative allele obtained from screening exon 3. 
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Table 3-2: Summary of the polymorphisms identified in the OPTN gene. 

 

 

Exon SNP ID 
Possible functional effect                                             

Fast SNP 
Allele 

Genomic 

location 

Homozygous of 

reference Allele 

(%) 

Heterozygous 

Homozygous of 

alternative Allele 

(%) 

cases controls cases controls cases controls 

1 

rs3814657 Intronic with no known function G/T 10:13100087 66.67 33.33 66.67 33.33 33.33 66.67 

rs71492279 Intronic with no known function T/C 10:13100153 90.00 10.00 42.86 57.14 62.50 37.50 

rs11548142 Intronic with no known function G/A 10:13100251 53.85 46.15 64.71 35.29 100.00 0.00 

rs4748020 Intronic with no known function C/G 10:13100327 65.38 34.62 57.14 42.86 0.00 0.00 

2 

rs2304706 Intronic enhancer A/C 10:13108044 62.50 37.50 83.33 16.67 0.00 100.00 

rs41291307 Intronic with no known function C/T 10:13108110 64.86 35.14 50.00 50.00 0.00 0.00 

rs41291309 Upstream with no known function (5UTR) G/A 10:13108265 35.14 64.86 0.00 100.00 0.00 0.00 

16-1 rs10906310 Intronic with no known function C/A 10:13136697 63.33 36.67 50.00 50.00 66.67 33.33 

16- 3 rs12415716 Downstream with no known function (3UTR) T/G 10:13138287 70.59 29.41 55.56 44.44 83.33 16.67 
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3.3.4 Determination of the CA repeat polymorphism of the OPTN gene 

      

     A CA repeat microsatellite was detected during the analysis of sequences amplified 

from exon 2 and 3 of OPTN. A microsatellite is a region of DNA that consists of 

tandem repeats ranging in length from 2–5 base pair sequences located throughout the 

genome (Turnpenny and Ellard, 2007). This region is distinguished by having CA 

microsatellite. Upon examining the sequence data from exon 2 and 3, I have noticed 

that the sequence following CA repeats is noisy with overlapping peaks (see Figure 

3.9) suggesting the presence of a polymorphic microsatellite in this region. This 

microsatellite is located approximately 200 bp upstream from the non-coding exon, 

between non-coding exons 2 and 3 (Figures 3-5 and 2-1). Therefore, a PCR-based 

assay was designed using unique primers flanking the repeating sequence in order to 

genotype this microsatellite as described in materials and methods section (2.2.2.4). 

These primers have been designed to sequence the intronic region between exons 2 

and 3 from both directions. One of these primers is labelled with the fluorescent dye 

(FAM) in order to visualize and the PCR product on the DNA sequencer. However, 

analysis of PCR products has shown that single allele does not appears as a single peak 

on an electropherogram, but often as a group of peaks called stutter bands. Figure 3-

10 shows an example of the peak pattern observed from a homozygous sample with 

the genotype 135/135. The peak with the highest intensity represents the true allele 

size and the peaks to the left are artefacts called stutter peaks. Stutter peaks are 

produced by the amplification of products one (s1-peak), two (s2-peak) or three (s3-

peak) repeat units (CA) shorter than the actual amplimer due to the slippage of Taq 

polymerase on the repeated CA sequence (Hauge and Litt, 1993).  
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Figure 3-9: Analysis of DNA sequence traces of Exon 2-3 indicates the presence of a 
polymorphic microsatellite. An example of sequence chromatograms derived from one 
sample shows the effect of microsatellites on forward and a reverse sequence. The quality 
of sequence data follow the microsatellite repeats (red arrow) is often greatly reduced due 
to the noisy background caused by overlaping peaks indicating a hetrozygous sample with 
different CA repeat allele length. 

Figure 3-10: Electropherogram shows the peak pattern observed from a homozygous 
sample with the genotype 135/135. The red arrow indicates the true allele peak while green 
arrows indicate the stutter peaks (S1-S3). S1 differ in length from the main allele by 2 bp 
(135 - 2 {CA} = 133), S2 is shorter by 4 bp (135 - 4 {CA+CA} = 131) and S3 by 6 bp = 129.   
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     The 43 subjects included in this study were genotyped for CA repeats 

polymorphism by PCR amplification followed by analysis of PCR products on an ABI 

3730 DNA Analyser. The size of the PCR products was ~139 bp and all the samples 

passed the size call verification produced by the GeneMarker software (Figure 3-11). 

Four samples were excluded from the analysis because their peak pattern was unclear. 

Four alleles observed in this population (Figure 3-12) and the distribution of these 

alleles is listed in Table 3-3. To study the association of the CA repeat polymorphism 

with the disease trait, the allele frequencies were compared between cases and controls 

using Fisher’s exact test. The data showed no statistically significant difference 

between the different genotype groups (P = 0.28). Analysis of this CA repeat in a 

further 50 cases and 60 controls showed no association with PDB (P >0.05; Albagha 

et al, unpublished data). 

 

 

 

Figure 3-11: Size calibration charts from GeneMarker software. This chart is used to check 
the software’s size calling accuracy and to review the sizing quality for samples. This 
example shows that the samples are in the linear range for accurate size calling with 
GeneScan 500-Liz standard (top section). The middle section shows the actual sized data 
from the selected sample file and green triangles indicate the size standard peaks called 
by GeneMarker. The bottom section shows the reference size graphs for the selected 
sample files. The left partition of the diagram shows the sample files and linearity scores. 



Chapter 3: The rs1561570 Variant in OPTN Is Associated with Paget’s Disease Severity and with OPTN 

Gene Expression But No Disease-Specific Coding Variants were Detected in PDB Patients 

123 

 

       

 

 

 

Table 3-3: Distribution of the microsatellite repeats of OPTN in controls and cases. 

Microsatellite 

genotype 
Controls Cases 

135 6 7 

135/137 1 2 

135/139 6 13 

139/139 0 4 

Figure 3-12: Electropherogram of allele pattern generated by the GeneMarker software. 
This diagram exhibits the allele image pattern for the CA repeats showing 4 different alleles 
identified in cases and controls. The blue peaks represent the Allelic peaks and the stutter 
peaks. The peak calls are indicated in rectangular boxes below the graphs. The light grey 
shadows are derived from the size standard, which indicate the positions for different sizes 
(the dark blue cutting lines above the graphs). 
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3.4 Discussion  

 
      As it has been described before, PDB has a strong genetic component. So far, 

SQSTM1 is the only gene known to be mutated in PDB and mutations of this gene 

were found to be associated with more severe and extensive disease and a higher 

incidence of certain complications. PDB patients with SQSTM1 mutations have earlier 

age at diagnosis and greater number of affected bones compared to non-carriers 

(Visconti et al., 2010). Over the past few years, progress in understanding many 

complex diseases has accelerated since the development of GWAS. These studies have 

successfully identified thousands of disease-associated loci waiting for further 

functional studies to confirm their association. Recently, GWAS have identified 7 new 

candidate genes for PDB (Albagha et al., 2011a, 2010). One of these candidate genes 

is the OPTN. The rs1561570 within OPTN discovered by the GWAS was replicated in 

different populations.  

      The results presented in this chapter confirmed the association between OPTN 

rs1561570 and total disease severity score in SQSTM1 negative patients. Carriers of 

the risk allele “T” had a higher disease severity score compared to non-carriers. The 

analysis also showed that age but not gender was a significant predictor of total disease 

severity score, which is expected since PDB is a late onset disease. The relationship 

between OPTN rs1561570 alleles and measures of quality of life as depicted by SF36 

questionnaire has also been assessed. A trend for reduced SF36 physical summary 

scores was found in patients carrying the rs1561570 risk allele compared to those who 

did not, but the relationship was not statistically significant. The relationship with the 

SF36 bodily pain summary score was also not significant. This study was done three 

years ago and presented in European Calcified Tissue Society (ECTS 2010) annual 

meeting (Appendix 3).  

      A recent study by Albagha et al. described the influence of the seven recently 

identified PDB-susceptibility loci by genome wide association analysis on the severity 

extent or complications of PDB either in SQSTM1 negative patients or in combination 



Chapter 3: The rs1561570 Variant in OPTN Is Associated with Paget’s Disease Severity and with OPTN 

Gene Expression But No Disease-Specific Coding Variants were Detected in PDB Patients 

125 

 

with SQSTM1 mutations (Albagha et al., 2013). In this study, it was reported that the 

seven loci combined were associated with the number of affected bones and total 

disease severity score. When they analysed each locus individually for its relation to 

disease extent and severity, OPTN rs1561570 was significantly associated with the 

number of affected bones (p = 0.030). Similarly, my results showed that the rs1561570 

locus is significantly associated with the total disease severity score. Albagha et al. 

also found that the risk allele score of the identified loci in SQSTM1 negative patients 

from the PRISM cohort was significantly associated with the number of affected bones 

and a trend for disease severity score but the differences were not significant. When 

they did a meta-analysis using other independent cohorts, they found a highly 

significant association between the risk alleles score identified by the seven GWAS 

loci and both the disease extent and severity. There was no significant association 

between allele risk score and the quality of life measures SF36. The same study also 

showed that the risk alleles had an additive effect when combined with SQSTM1 

mutations and the study was able to identify three groups of patients with low, medium 

and high levels of severity with specificity of 70% and sensitivity of 55% (Albagha et 

al., 2013). This illustrates that other genetic and environmental factors influence the 

disease extent and severity but further studies are required to identify these factors. 

     Mutation screening of the OPTN gene has been previously performed in patients 

with glaucoma and ALS in different populations. The results from these studies vary 

and the frequency of the identified polymorphisms within the optineurin gene differs 

from one ethnic background to another. For instance, the four main mutations 

identified in cases with glaucoma (E50K, M98K, R545Q and 2-pb AG insertion) have 

been reported to be responsible for 16.7% of the hereditary form of this disease. 

Moreover, OPTN was suggested as a candidate gene for familial and sporadic ALS in 

a Japanese cohort (Maruyama et al., 2010), while screening for OPTN mutations in 

different Caucasian populations including British, French and Dutch cohorts identified 

no disease-specific mutations in OPTN (Johnson et al., 2012; Millecamps et al., 2011; 

Sugihara et al., 2011).  
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       In the current study, the OPTN gene from familial cases of PDB was screened for 

mutations that could affect the behaviour of this gene. Forty-three samples distributed 

between cases and controls were sequenced for the entire coding and non-coding exons 

as well as the exon-intron boundaries in order to cover the splice variants. Nine 

different non-coding polymorphisms have been identified with no known predicted 

function according to the FASTSNP tool. These polymorphisms have already been 

reported in the NCBI SNP database. The allele distribution of these polymorphisms in 

PDB cases was not statistically different from that observed in controls. This suggest 

that these polymorphisms are unlikely to be disease-causing. 

      A microsatellite has been detected in my study which is located between exon 2 

and 3 and further analysis showed no significant association of this microsatellite with 

PDB risk.  One limitation of my study is that a pathogenic mutation could have been 

missed due to small sample size. However, a further unpublished investigation from 

(Albagha et al.), has recently screened the OPTN gene in an additional 200 PDB cases 

and found no coding mutation in line with my findings. Collectively, these data suggest 

that the association with PDB is unlikely to be driven by mutations affecting the coding 

sequence of the OPTN. However, as the rs1561570 polymorphism is located in the 

intronic region, this polymorphism may be in linkage disequilibrium with another SNP 

that affect the promoter or an enhancer site, which leads to changes in the expression 

of this gene. Indeed, the rs1561570 was found to be a strong eQTL for OPTN in human 

monocytes (Zeller et al., 2010) and in peripheral blood mononuclear cells (Westra et 

al., 2013) suggesting that the association with PDB could be driven by changes in 

OPTN expression level. This eQTL was not detected in other cell types such as 

lymphoblastoid cell lines (Veyrieras et al., 2008) or liver (Schadt et al., 2008) 

suggesting that OPTN expression is regulated in a tissue-specific manner. 

Interestingly, the PDB-risk allele of rs1561570 “T” was associated with reduced 

OPTN gene expression suggesting that OPTN may have a negative effect on osteoclast 

differentiation. 
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       In conclusion, my results are in harmony with recently published findings, which 

confirm the association of OPTN rs1561570 with disease severity. The other loci seem 

to have an additive effect on disease severity. The recently identified PDB-

susceptibility loci by GWAS could be of clinical value in identifying SQSTM1-

negative patients who are at increased risk of developing a severe form of PDB. These 

loci in combination with SQSTM1 mutations can be used to predict severity levels of 

the disease but further research is required to apply these data in clinical practice. In 

addition, my results did not show a pathogenic variant(s) in the OPTN gene suggesting 

that the disease susceptibility could be due to regulatory polymorphisms that influence 

gene expression as described by the strong association between rs1561570 and OPTN 

gene expression. The risk allele “T” from this variant was associated with reduced 

PDB-OPTN gene expression, suggesting that reduced expression of OPTN could 

enhance osteoclast differentiation. This possibility is investigated in the next chapters.  
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4 Optn Depletion in Mouse BMDMs Enhances Osteoclast 

Formation, Fusion, and Survival 
 

4.1 Summary 

      Mutation screening of the exons and exon-intron boundaries in chapter 4 revealed 

no coding mutations in OPTN. However, the top GWAS hit rs1561570 is a strong 

eQTL for OPTN expression (rs1561570, expression P = 6.61 x 10-62) in human 

monocytes (Zeller et al., 2010) and peripheral blood mononuclear cells (Westra et al., 

2013). Collectively, these findings suggested that regulatory variant(s) could drive the 

association with PDB. Therefore, the aim of this study was to investigate the role of 

OPTN in osteoclast development by altering the OPTN expression using in vitro 

knockdown experiments. For this purpose, expression of OPTN was detected in bone 

marrow derived macrophages (BMDMs) and during osteoclast development after 

RANKL treatment. The expression of Optn was found to increase during osteoclast 

differentiation particularly after 3 days of RANKL stimulation. The effect of Optn 

depletion on osteoclast formation was subsequently studied in primary mouse bone 

marrow cultures. The expression of Optn in mouse BMDMs was knocked down using 

lentiviral particles expressing shRNA targeted against the Optn gene. Non-targeting 

shRNA lentiviral particles were used as a negative control and Optn knockdown in 

BMDMs was confirmed (> 70%) using western blot analysis. The first finding was 

that osteoclasts formed from Optn-depleted BMDMs were significantly higher and 

larger than those formed from non-targeted cells. Optn-depletion in BMDMs also 

found to enhance osteoclast survival and increased RANKL-induced NFκB activation. 

In conclusion, these findings suggested that optineurin has a role in osteoclast biology 

as a negative regulator of osteoclast formation in vitro. These findings were also 

consistent with the previously reported negative effect of OPTN on TNFα induced 

NFκB activation in immune cells (Sudhakar et al., 2009; Zhu et al., 2007).  
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4.2 Introduction  

     Mutation screening of the exons and exon-intron boundaries in chapter 4 revealed 

no coding mutations in OPTN. However, the top GWAS hit rs1561570 is a strong 

eQTL for OPTN expression (rs1561570, expression P = 6.61 x 10-62) in human 

monocytes (Zeller et al., 2010) and peripheral blood mononuclear cells (Westra et al., 

2013). Collectively, these findings suggested that regulatory variant(s) could drive the 

association with PDB. Therefore, the aim of this study was to investigate the role of 

OPTN in osteoclast development by altering the OPTN expression using in vitro 

knockdown experiments. 

      This chapter demonstrates firstly the Optn expression during osteoclast 

development derived from mouse macrophages. Then it describes the work done on 

RAW 264.7 cell line followed by the findings obtained after optineurin was knocked 

down in mouse BMDMs. The last part of this chapter describes the effect of Optn 

depletion on the RANKL-induced NFB activation.  

 

 

4.3 Results  

4.3.1 Optimization of western blot assay to detect OPTN protein  

     Two different antibodies were used to detect OPTN expression by western blot 

using a positive control extracted from mouse brains in which OPTN is highly 

expressed. The first antibody was purchased from Abcam; this generated a lot of non-

specific bands, a problem that took several trials to overcome. The first optimisation 

step involved using various dilution of the Abcam primary antibody. I have also tried 

replacing the non-fat milk with BSA as a blocking agent, and varying the time for 

membrane washing after blocking and after incubation with secondary antibodies. 
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Despite these optimisations, however, many non-specific bands still appeared in the 

membranes (Figure 4-1, A). Therefore, a second antibody was purchased from 

Cayman. Using the manufacturer's recommended concentration (1:200), this antibody 

identified the OPTN band at 74 kDa, as described by the manufacturer protocol, and 

generated few non-specific bands. Therefore, the Cayman antibody was used for all 

further experiments to detect OPTN in the western blots (Figure 4-1, B). 

 

 

 

4.3.2 Expression of OPTN during osteoclast development 

       Little is known about the expression of OPTN in osteoclasts. In this section, I 

investigated the expression of OPTN during osteoclast development using primary 

bone marrow cultures. Bone marrow cells from 3 months-old WT CD1 mice were 

isolated and cultured for 48 hours in the presence of M-CSF (100 ng/ml) followed by 

stimulation of adherent cells with RANKL (100 ng/ml) and M-CSF (25 ng/ml) for 5 

days until osteoclasts were formed. Cells were lysed and protein was collected each 

day. OPTN, a 74-kDa protein, was detected using western blot analysis. Following 

Figure 4-1: OPTN protein expression in BMDMs using Abcam and Cayman antibodies. (A) 
An example of membranes probed with Abcam anti-OPTN antibody. The membranes 
exhibit a lot of non-specific bands (red arrows) despite the optimisations detailed 
previously. The amount of total protein used for western blotting was 40 μg. (B) The 
membranes represent OPTN protein expression in BMDMs probed with Cayman antibody, 
(i) Different protein concentration of Mouse brain (MB) positive control used to determine 
band intensity of OPTN in western blot. (ii) An example of membranes probed with Cayman 
anti-OPTN antibody. Non-targeted shRNA (NTS), Different clones were used to determine 
the best clone combination for knocking down the OPTN gene in BMDMs (C 2+4, C 3+4 
and C 2+3+4) 
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normalization to the 42-kDa β-actin, the expression of Optn was detected in BMDMs 

but not in total bone marrow cells. No significant difference in expression levels was 

found after the first day of RANKL treatment but Optn expression was increased by 

approximately 2-3 fold from day 3 onwards (Figure 4-2).  

 

 

 

4.3.3 Generation of lentiviral particles for Optn knockdown 

4.3.3.1 Restriction digest of lentiviral plasmid vectors 

      Plasmid DNA expressing shRNA targeted against Optn gene (or Non targeting 

vector) were grown from glycerol stocks and isolated as described in materials and 

methods section (2.2.3.3.6). Plasmid DNA were subjected to restriction enzyme 

Figure 4-2: Optn expression during osteoclast formation. (A) Optn and β-actin expression 
from bone marrow, BMDMs and after treatment with RANKL (Day1-5). (B) Quantification 
of Optn expressed as a ratio of OPTN/β-actin. The amount of total protein used for western 
blotting was 40 µg. Representative image of at least two independent experiments 
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digestion and DNA sequencing in order to confirm vectors’ orientation due to their 

tendency to recombine (Figure 4-3).  

 

 

 

4.3.3.2 Optimization of puromycin selection concentration   

      Puromycin selection is an important step after transducing the cells because it 

efficiently eliminates the non-transduced cells. This process was done using BMDMs 

in order to generate a kill curve, which determines the minimum antibiotic 

concentration that kills 100% of the cell of choice in 2 days from the start of antibiotic 

selection. Puromycin concentration was determined according to the cell viability, 

which was measured using the Alamar Blue test. The kill curve revealed that 5 µg/ml 

is the concentration of choice to kill the non-transduced cells in 2 days (Figure 4-4) 

which showed that more than 99.7% of cells were dead after 48-hour treatment. 

Figure 4-3: Gel electrophoresis analysis to diagnose lentiviral plasmid DNA. 10 µl of each 
of the digested samples were loaded on a 1% agarose gel. Lane 1: 1 kb DNA ladder; lane 
2-3: Positive control pGIPZ vector (expected bands size: 2.2, 4.3 and 5.1 kb); lane 4-6: 
Non-targeting shRNA vector (expected bands size: 750 bp and 6.2 kb); lane 7-9: OPTN-
targeting vector (expected bands size: 1.4 and 5.6 kb).  
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4.3.4 Effect of Optn depletion on RAW 264.7 cell line  

     RAW 264.7 is widely used in bone studies since these cells are capable of 

differentiating in vitro into osteoclasts. These cells have the further advantages of 

being easy to culture and relatively easy to generate stable transduced cells for genetic 

and regulatory manipulation (Collin-Osdoby and Osdoby, 2012). Accordingly, this 

cell line was chosen in order to investigate the effect of Optn depletion on osteoclast 

differentiation and the NFκB signalling pathway. Two lots of RAW 264.7 cells were 

used, as described below.       

      The first lot of these cells was provided in house and these cells expressed Optn to 

levels that can be detected in western blot (Figure 4-5). This was followed by a 

successful generation of stable Optn-depleted cell line. Briefly, four different shRNA 

lentiviral plasmid vectors (clones) were obtained from Sigma. These clones target 

different regions of the Optn gene sequence. Lentiviral particles were produced for 

each clone, as described previously (see section 2.2.3.3.6). After the lentiviral particles 

Figure 4-4: Killing curve to determine the puromycin concentration. BMDMs from CD1 
mouse were seeded in 24 wells plate at 1.5 X 105 per well for one day. Puromycin at 
different concentration (0-5 µg/ml) was added to the cells. The cells viability was assessed 
by Alamar Blue after 24 and 48 hours. Representative image of at least three independent 
experiments 
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were harvested, a Lenti-X GoStix from ClonTech was used to qualitatively assess their 

presence and concentration (Figure 4-6, D). Subsequently, RAW cells were transduced 

with lentivirus particles that targeted the Optn gene in addition to the non-targeted 

shRNA (negative control) and pGIPZ-expressing GFP positive control. Cells that 

transduced with the pGIPZ positive control were examined microscopically for the 

presence of TurboGFP expression (Figure 4-6, A). Puromycin was then used to select 

and establish a stable cell line. The survival of RAW cells after a 10-days selection 

with puromycin indicates that the transduction was successful (Figure 4-6, B).  

Knockdown efficiency was validated by qPCR and western blot (Figures 4-6, E and 

4.5). The data revealed the best combination for knocking down the OPTN gene to be 

clones 2 and 4. Furthermore, Optn mRNA expression was found to be decreased five- 

to eight-folds in Optn-targeted cells as compared to non-targeted shRNA and untreated 

cells. However, these cells failed to form osteoclast-like cells when stimulated with 

RANKL (Figure 4-6, C). 

 

 

Figure 4-5: Western blot for knockdown of Optn in RAW 264.7 cell line. Individual and 
combined clones were used to determine the best clone combination for knocking down 
the OPTN gene. The total protein used for this western blot was 50 µg. untransduced cells 
(UTC), non-targeted (NT) cells and OPTN-targeted (OT). 
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Figure 4-6: Optn knockdown in RAW 264.7 cells. (A) TurboGFP fluorescence from RAW 
cells 72 hours after co-transfection with pGIPZ (positive plasmid DNA) visualized at 10X 
magnification. (B) RAW cells post 10 days puromycin selection visualized at 5X 
magnification. (C) RAW cells 6 days post RANKL treatment. (D) Lenti-X GoStix, the letter 
‘C’ on the strips indicates the control band and the T indicates the test band. Both bands 
appeared within 10 minutes according to the manufacture protocol. (E) mRNA expression 
of Optn of the first lot of RAW 264.7 cells. Optn mRNA expression was measured to assess 
Optn depletion in these cells using qPCR. The data show that Optn expression was 
successfully knocked down in Optn-targeted shRNA clones (OT-S 2+4, OT-S 3+4 and OT-
S 2+3+4). The expression of Optn increased in non-targeted shRNA (NT-shRNA) cells as 
compared to untreated cells, probably because Optn expression increases in response to 
viral infections. The amount of total RNA used for cDNA synthesis was 2 µg. (F) A standard 
curve was generated using a 10-fold dilution of a template amplified on MJ Research 
Chromo4 cycler. Each dilution was assayed in duplicate. The right picture is the 
amplification curves of the dilution series. On the left is the standard curve with the CT 
plotted against the log of the starting quantity of template for each dilution. The equation 
for the regression line and the r2 value are shown above the graph (y = 0.2767x + 10.90, r2 
= 0.994). 
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     Due to the inability of the first lot of RAW cells to form osteoclasts, a second lot 

of RAW 264.7 cell line was purchased from ATCC. These cells were first checked to 

confirm their ability to form osteoclast upon stimulation with RANKL. Results 

showed that the second lot formed osteoclast-like cells in response to RANKL as 

expected (Figure 4-7, A). However, when Optn expression was assayed in these cells, 

results showed that they expressed very low or undetectable levels of Optn by western 

blot (Figure 4-7, B). Subsequently, these cells were stimulated with RANKL for 48-

72 hours to see if Optn expression would increase during osteoclast formation. 

However, western blot analyses of protein extracts from these cells did not 

demonstrate apparent Optn bands after RANKL stimulation. Subsequently, qPCR was 

used in order to investigate the expression of Optn in these cells. Again, however, the 

new RAW cells were shown to have far lower levels of Optn than the control, which 

make the RAW 264.7 cells not a good model to study the effect of OPTN in bone 

metabolism. (Figure 4-7, C). 
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Figure 4-7: New lot of RAW 264.7 cell line . (A) representative pictures of RAW 264.7 cells 
without hRANKL (left) and the cells treated with hRANKL(100 ng/ml) until osteoclasts were 
formed (right). (B) Western Blot for new RAW 264.7cells stimulated with hRANKL (100 
ng/ml) for 48 and 72 hours. Optn band only present in the positive control extracted from 
the mouse brain. The total protein used for this western blot was 100 µg. (C) The graph 
compares mRNA expression of Optn in the new RAW cells, old RAW cells and control. The 
expression of Optn in the new lot of RAW cells purchased from ATCC is very low compared 
to the positive control, which was extracted from mouse brains (MB +ve control). The 
amount of total RNA used for cDNA synthesis was 2 µg. (D) A standard curve was 
generated using a 10-fold dilution of a template amplified on MJ Research Chromo4 cycler. 
Each dilution was assayed in duplicate. The right picture is the amplification curves of the 
dilution series. On the left is the standard curve with the CT plotted against the log of the 
starting quantity of template for each dilution. The equation for the regression line and the 
r2 value are shown above the graph (y = 0.2892x + 10.30, r2 = 0.992).   
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4.3.5 Effect of Optn depletion on osteoclast differentiation from primary 

BMDMs  

     After investigating two different clones of RAW 264 cell lines, it became clear to 

me that this cell line was not ideal for investigating the effect of Optn knock down on 

osteoclast differentiation. This is because the clone that formed osteoclasts upon 

RANKL stimulation expressed very low amount of Optn. So in this section I used a 

primary bone marrow culture which represents a better model than RAW 264 cell line 

to study osteoclast differentiation. However, primary cells have limited life span and 

are more difficult to transfect. The first step in knocking down Optn in BMDM was to 

generate enough lentiviral particles since BMDM are more difficult to transduce and 

they require a high MOI. The first sign of transfection efficiency was the presence of 

TurboGFP expression during the production of lentiviral particles (Figure 4-8, A). 

After harvesting and concentrating the lentiviral particles, a Lenti-X GoStix from 

ClonTech was used to qualitatively assess the presence and the concentration of the 

lentiviral particles in order to determine whether lentivirus production was within a 

usable range (Figure 4-8, B). The cell survival after puromycin selection is another 

sign for a successful transduction. At this stage after selection, the cells were 

transduced with lentivirus particles expressing GFP (positive control) and examined 

microscopically for the presence of TurboGFP expression as seen in figure (4-8, C).  

In addition, the cells were transduced with lentiviral particles expressing shRNA 

targeting Optn or non-targeting control. Protein was extracted from transduced 

BMDMs in order to assess these cells for reduction in gene activity. These tests for 

knockdown of Optn were performed for each experiment prior to investigation of the 

effect of Optn depletion on osteoclast formation and survival as described later in this 

chapter (Figure 4-9 and 4-12). The effect of knockdown of Optn during different stages 

of osteoclast development was also performed to make sure Optn knockdown persisted 

throughout osteoclast differentiation stages (Figure 4-8, D). Approximately 54-75% of 

Optn knockdown level was achieved in cells transduced with lentiviral particles 

containing shRNA-targeting Optn compared to non-targeting particles at different 

stages of osteoclast development. These results indicate that the knockdown effect 

persists during later stages of osteoclast development (Figure 4-8, E).   
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Figure 4-8: OPTN knockdown in BMDMs. A. (i and ii) TurboGFP fluorescence from 
HEK293T 24 and 48 hours respectively after co-transfection with pGIPZ (positive plasmid 
DNA)  and Trans-Lentivial packaging mix visualized at 10X magnification. B. Lenti-X 
GoStix, the C letter on the strips indicates the control band and the T indicates the test 
band. Both bands appeared within 10 minutes according to the manufacture protocol. C. (i 
and ii) TurboGFP fluorescence from BMDMs 24 and 48 hours post lentiviral transduction, 
visualized at 10X magnification. D. Western blot analysis of cell lysate showes the 

expression of OPTN and -actin of transduced cells at day 3 post RANKL treatment 
(osteoclast precursors) and day 5 (osteoclast). Total protein used for this western blot was 
40 µg. (UTC: Untransfected Cells, NTS: Non-targeting shRNA, OTS: OPTN-targeted 
shRNA, OC: osteoclast). The levels of Optn expression in NTS lanes is higher than UTC 
lanes because the expression of Optn is iduced in response to virus infection (Mankouri et 
al., 2010). E. Quantification of Optn expression at different stages of osteoclast 
development. Optn expression was reduced in BMDMs by 67% and at day 3 by 75% in 
osteoclast precursors and 54% in osteoclast which were transduced with Optn-targeting 
shRNA lentivirus compared with control group (cells infected with non-targeting shRNA). 
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4.3.5.1 Effect of Optn depletion on osteoclast formation and fusion  

        Bone marrow cells from wild type CD1 mice were isolated and cultured for 48 

hours in the presence of M-CSF (100 ng/ml). The adherent BMDMs were then 

transduced for 2 days with either lentiviral particles containing shRNA targeted against 

the Optn gene or negative control particles (non-targeting lentiviral particles that 

activate the RNAi pathway but do not target any mouse gene). Cell lysates of 

transduced cells post selection were collected and subjected to western blot analysis. 

Optn expression was successfully knocked down in BMDMs by ~ 75% in cells 

expressing shRNA targeting Optn compared with negative control (Figure 4-9).  

 

 

      Transduced cells post selection were plated in 96 well plates and stimulated with 

M-CSF (25 ng/ml) and RANKL (25 and 50 ng/ml) until osteoclasts were formed. Cells 

were fixed and stained for TRAcP activity as described in the methods section 

(2.2.3.3.5). TRAcP positive multinucleated osteoclasts (> 3 nuclei) were counted and 

numbers were compared to the non-targeted negative control. Large osteoclasts (> 10 

nuclei) were also counted to assess the effect of Optn knockdown on osteoclast size. 

(see figure 4-10, B and C). The results revealed that knockdown of Optn in BMDMs 

significantly enhanced osteoclast differentiation as well as the formation of 

hypernucleated osteoclasts when compared to non-targeting controls BMDMs. The 

osteoclasts formed from untreated BMDMs also were counted (Figure 4-10, A). Since 

these cells were not subjected to lentiviral transduction and antibiotic selection, they 

formed more osteoclasts compared to non-targeting control. Additionally, the 

osteoclasts from untreated cells were formed 2-3 days earlier than the knocked down 

cells.    

 

Figure 4-9: Conformation the knockdown of 
Optn. Western blot analysis of BMDMs 
(untransfected cells, UTC), BMDMs infected 
with non-targeting shRNA (NTS) and BMDMs 
which were infected by lentivirus carrying 
shRNA targeting Optn (OTS). The total protein 
used was 50 µg.   
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4.3.5.2 Effect of Optn depletion on osteoclast survival 

     For osteoclast survival experiment, one plate was fixed and TRAcP stained when 

osteoclasts were formed (0 hour). RANKL was withdrawn from the culture media and 

plates were fixed and stained with TRAcP at different time points post RANKL 

withdrawal (12, 24, 48 and 72 hours). Results showed that osteoclast formed from 

Optn-depleted BMDMs had higher survival 12 hours post RANKL withdrawal 

Figure 4-10: Optn depletion in BMDMs enhances osteoclast formation and fusion. (A) 
Numbers of multinucleated osteoclasts formed from untreated BMDMs.(B) Bar chart 
showing numbers of multinucleated osteoclasts formed in Optn depleted cells compared 
to the non-targeted negative control (values are means ± SEM from 2 independent 
experiment, * P < 0.05). (C) Representative pictures of TRAcP positive multinucleated 
osteoclasts from Optn depleted cells and the non-targeted cells magnified at 10X. 
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compared to non-targeting control cells (see figure 4-11). Osteoclast number at the 

other time points is also higher in Optn-depleted cells but this was not significant. 

 

 

4.3.5.3 Effect of Optn depletion on NFκB signaling pathway 

      BMDMs were transfected with the lentiviral particles expressing shRNA targeted 

against the Optn gene for two days. Following antibiotic selection with Puromycin (5 

µg/ml), Optn knockdown was confirmed in BMDMs (Figure 4-12). The cells were 

then transduced using lentiviral NFκB luciferase reporter for a further two days. The 

cells were then seeded in 96-well plates and stimulated with RANKL and M-CSF. 

Luciferase activity was measured with a SteadyGlo-luciferase reporter assay system 

at the basal level and following RANKL stimulation (Figure 4-13). Results showed 

that the NFκB activity was increased significantly in the Optn-depleted cells at the 

basal level and 72 hours after stimulation with RANKL compared to non-depleted 

cells. At day 5 post RANKL, the increase in NFκB activity was not significant.    

Figure 4-11: Osteoclast survival post RANKL withdrawal. Osteoclast survival was 44.1% 
higher in Optn-depleted cells after 12 hours post RANKL withdrawal compared to non-
depleted cells. Osteoclast numbers at other time points were also higher in Optn depleted 
cells but this was not significant (values are means ± SD from one experiment, * P < 0.05).  
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Figure 4-13: NFκB Activation is increased in Optn-depleted cells during osteoclast 
formation. Optn-depleted BMDMs were transduced with lentiviral particles expressing 
NFκB luciferase reporter and luciferase activity measured with a SteadyGlo-luciferase 
reporter assay system at the basal level and following RANKL stimulation (100 ng/ml) at 
72 hours and 5th day (values are means ± SEM, ** P ≤ 0.01). Representative image of at 
least two independent experiments 

Figure 4-12: Confirmation of Optn knockdown 
by Western blot analysis of BMDMs 
(untransfected cells, UTC), BMDMs infected 
with non-targeting shRNA (NTS) and BMDMs 
which were infected by lentivirus carrying 
shRNA targeting Optn (OTS). The total protein 
used was 50 µg. 
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4.4 Discussion 

      The role of OPTN in PDB and bone metabolism is unknown but it could be 

predicted from the literature. It has been reported that OPTN has a regulatory role in 

NFB signalling and vesicular trafficking pathways, both of which have been 

implicated in osteoclast biology (Park et al., 2010; Sudhakar et al., 2009). Furthermore, 

several studies point to the role of OPTN during viral infection (Mankouri et al., 2010). 

The viral infection was suggested as an environmental factor that may exacerbate PDB 

(Mills and Singer, 1976a). Also OPTN was found to have a role in autophagy (Korac 

et al., 2013; Wild et al., 2011), a recent mechanism implicated in PDB  (L. Hocking et 

al., 2010). Collectively, these findings suggest that OPTN may have an important role 

in bone metabolism and the development of PDB. This chapter demonstrates that Optn 

was expressed in BMDMs and its expression was increased during osteoclast 

development. In addition, Optn depleted cells in mouse BMDMs enhanced osteoclast 

formation, survival and increased RANKL-induced NFκB activation. 

       The expression of Optn in BMDMs was assessed using western blot. Optn was 

detected in BMDMs but its expression in total bone marrow cells was very low 

suggesting that OPTN may have important role in BMDM linage cells.  The detection 

of Optn in BMDMs post M-CSF treatment revealed its role in earlier stages of 

osteoclast precursors’ formation. The expression of Optn during osteoclast 

differentiation was investigated after stimulating BMDMs with M-CSF and RANKL. 

The expression of Optn remained steady during the first two days of osteoclast 

development but a considerable increase in expression was noticeable from day three 

onwards until osteoclasts were formed. This suggest that OPTN may exerts its effect 

during later stages of osteoclast development.  

      The macrophage-like cells RAW 264.7 are used extensively in the literature to 

study the osteoclast signalling pathway. These cells exhibit classic osteoclast 

signalling and form osteoclast like cells in response to RANKL treatment without the 

need for the M-CSF (Collin-Osdoby and Osdoby, 2012) . Originally RAW 264.7 cells 

were chosen to study the osteoclast signalling pathway after generation of stable 
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transcend cells.  However, the initial cell line did not form osteoclasts after RANKL 

treatment and the second did not express detectable levels of Optn. Interestingly, these 

findings suggest that OPTN may act as a negative regulator to osteoclast formation but 

further investigations are required, for instance, a microarray assay could be performed 

on the two clones of RAW 264.7 cells in order to investigate the expression state of a 

large number of osteoclastogenic genes or to overexpress the Optn in RAW cells which 

formed osteoclasts. Indeed, overexpression of Optn in RAW 264.7 cells that did not 

express detectable levels of Optn carried out later by our group exhibited a marked 

reduction in the number and size of multinucleated TRAcP positive cells observed 

upon stimulation with RANKL (Obaid et al., 2015) (Figure 4-14). 

 

 

      Next, mouse primary BMDMs were explored as a model for osteoclast 

differentiation because they represent a better model to study osteoclast function and 

also due to high level of OPTN expression. Optn was knocked down in BMDMs 

obtained from WT mice using lentiviral particles expressing shRNA targeted against 

the Optn gene. Non-targeting shRNA lentiviral particles were also used as a negative 

control.  Approximately 75% Optn knockdown level was achieved in transduced 

Figure 4-14: Reduced formation of TRAcP positive multinucleated cells in Optn 
overexpressing RAW 264.7 cells. (A) A representative diagram illustrates the Optn mRNA 
expression measured by qRT- PCR in control cells (blue bar) compared to overexpressing 
Optn cells. (B) This diagram shows that the number and size of TRAcP positive 
multinucleated cells are significantly reduced in RAW cells overexpressing Optn compared 
to control cells. Adapted from (Obaid et al., 2015).* P < 0.01 
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BMDMs. Data yielded from this experiment showed that the numbers of osteoclasts 

formed from Optn-depleted BMDMs were significantly higher than those formed from 

non-targeted cells. Similarly, large osteoclasts (>10 nuclei) were significantly higher 

in Optn-depleted BMDMs compared to negative control. Data also showed that the 

Optn depletion in BMDMs increased the osteoclast survival by 45% after 12 hours of 

RANKL withdrawal in knock down cells compared to control. The numbers of 

osteoclast survived at other time points were also high in Optn-depleted cells but this 

was not significant. These data suggest that Optn acts as a negative regulator of 

osteoclast differentiation. In order to investigate the molecular mechanism by which 

Optn inhibits osteoclast differentiation, I investigated the effect of Optn depletion on 

RANKL-induced NFB activation which was assessed using lentiviral NFB 

luciferase reporter assay. The activity of the NFB was higher in Optn knockdown 

cells compared to negative control particularly on the third day post RANKL 

treatment. These data suggest that Optn exerts its negative regulatory effect at least in 

part by inhibiting RANKL-induced NFκB signaling. 

     NFB is a crucial signalling pathway in osteoclast biology. Inhibition of NFB 

pathway was shown to inhibit osteoclast formation and thus the resorption (Abu-Amer, 

2013). The data presented in this chapter suggested that the depletion of Optn might 

enhance the activation of NFB signalling, which in turn mediates RANKL-induced 

osteoclastogenesis. My study agrees with previous experiments in cell lines used to 

discover the role of OPTN in glaucoma and ALS. In one study, OPTN was found to 

inhibit TNF-induced NFB activity in Hek 293 cells and when OPTN is knocked 

down, NFB activity was enhanced compared to controls (Zhu et al., 2007). In the 

same study, OPTN was found to interact with ubiquitinated receptor interacting protein 

(RIP) after the stimulation of HeLa cells with TNF and authors suggested that this 

interaction may compete with IKK (NEMO) binding for polyubiquitinated RIP 

because OPTN has a UBD similar to that present in NEMO.  Moreover, the interaction 

of OPTN with polyubiquitinated RIP was not cell-type dependant as they obtained the 

same results when they used the mouse embryonic fibroblasts (Zhu et al., 2007). 

Another study found that NFB binding site was recognized in OPTN promoter 
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(Sudhakar et al., 2009). This study also showed that the OPTN promoter became active 

in HeLa and A549 cells upon treatment of cells with TNF. In addition, they reported 

that the promoter activity was inhibited and the basal promoter activity was reduced 

post TNF treatment when they introduced a mutation at the NFB site. Moreover, 

they suggested that OPTN promoter was regulated by IB-NFB pathway since 

overexpression of IB leads to the inhibition of promoter activity. When they 

overexpressed OPTN in these cells, the TNF-induced NFB activity was inhibited 

while the basal activity was not affected. On the other hand, OPTN depletion using 

shRNA resulted in upregulation of both basal and TNF-induced NFB activity 

(Sudhakar et al., 2009).  Similarly, the NFB activity was increased in a recent study 

when OPTN was knocked down in neuron cells, which enhanced the neuronal cell 

death and OPTN overexpression counteracted the toxic effect of OPTN depletion in 

these cells (Shen et al., 2011).  

      In other studies OPTN has been found to interact with two deubiquitinating 

enzymes, CYLD and A20, which are induced by NFB and provide a negative 

feedback loop to regulate the NFB activity (Harhaj and Dixit, 2010). Interestingly, 

these two enzymes are binding-partner to OPTN (Chalasani et al., 2008; 

Nagabhushana et al., 2011). CYLD was found to suppress the NFB activation by 

removing the K63-linked polyubiquitin chains from TRAF2, and TRAF6 (Massoumi, 

2010). CYLD depletion in macrophages was found to enhance osteoclastogenesis and 

animal lacking Cyld develop osteoporosis (Jin et al., 2008).  Studies of A20 showed 

that this enzyme removes K63-linked polyubiquitin chains and then degrades RIP1, 

which in turn inhibits NFB activity. Similar to CYLD, A20 deficiency in 

macrophages accelerates osteoclastogenesis and A20 knockout mice develop severe 

erosive polyarthritis due to increased serum levels of circulating inflammatory 

cytokines and prolonged NFκB activity in macrophages (Matmati et al., 2011).  

     In the knock down experiment, I have used multiple controls to make sure the 

findings are attributable to Optn depletion and not due to other confounding factors. 

The untreated cells control was used to make sure the cells formed osteoclast after 
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treatment with M-CSF and RANKL as expected. The non-targeting control shRNA 

was used as a control for the activation of the RNAi pathway and also to control for 

antibiotic selection.  A positive control in the form of GFP was used to make sure the 

cells were successfully transduced with the lentiviral particles. The utilisation of an 

empty vector control would have been favourable to act as a control for lentiviral 

transfection. This was not used in my experiment due to the limited number of primary 

cells obtained from an individual mouse. Transduction of primary macrophage cells 

was very difficult and required large number of cells and a large amount of lentiviral 

particles. The experiments were performed as three independent replicates and both 

NTC and OPTN-targeted cells were treated with the same lentiviral particles with the 

only difference being the shRNA sequence that targets the OPTN gene. Additionally, 

the fact that overexpression of OPTN inhibits osteoclast formation confirms that the 

findings presented in this chapter are due to OPTN knock down.  

     The promoter-reporter assays are widely used since they are sensitive, reproducible 

and useful technique for investigating endpoint pathway regulation assays. Using an 

internal control reporter (Renilla luciferase) beside the test reporter (Firefly luciferase) 

would have been useful for normalizing the data in order to reduce variability between 

treatments. However, it is important to note that, primary cells have a limited lifespan 

in culture and are susceptible to the toxic effects of multiple transfection. Although the 

luciferase reporter assay that has been used in this study lacks this internal control, 

cells were subjected to antibiotic selection to ensure that surviving cells have retained 

the expression plasmid. Equal number of viable cells were then re-plated followed by 

addition of equal amount of lentiviral NFκB luciferase reporter particles. By doing so, 

the starting cell number is adjusted which minimize the variability between samples. 

In addition, a positive control, pGIPZ, was used to microscopically examine the 

transfection efficiency through the green fluorescent protein (GFP) expression. 

     The luciferase reporter assays are not sensitive to detect the early stages of NFκB 

activation; further investigations are required for this purpose. This is because the 

reporter genes, which in this case is the luciferase gene, are placed under the control 

of a basal promoter element (TATA box) joined to tandem repeats of NFκB 
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Transcriptional Response Element (TRE). Thus, the expression level of the reporter 

gene might be affected by transcription factors other than NFκB. In addition, the 

enzymatic activity of luciferase also could be influenced by interferences with 

downstream transduction machinery. Therefore, in order to monitor the early stage of 

NFκB activation, the kinetics of IκB degradation and re-synthesis can be estimated 

using western blot analysis, electrophoretic mobility shift assay (EMSA) or chromatin 

immunoprecipitation assay (ChIP) (Jin and Ralston, 2012; Renard et al., 2001).  

     In conclusion, this chapter reports that Optn is expressed in BMDMs and during 

osteoclast development. Furthermore, Optn depletion promotes osteoclast 

differentiation, fusion and survival possibly by activating NFκB signalling pathway in 

response to RANKL. The findings from this study identified a novel role of OPTN in 

osteoclast development in response to RANKL stimulation. However, the work 

described in this chapter is based on an in vitro model and further studies using an in 

vivo model will be required to confirm this effect (see chapter 5). 
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5 The Effect of Loss of Function Mutation in Optn on 

Osteoclast and Osteoblast Differentiation 

5.1 Summary  

      The aim of this chapter was to investigate the role of Optn in bone turnover using 

a mouse model (OptnD477N/D477N), which harbours a D477N point mutation in the 

polyubiquitin binding domain of the Optn gene. This loss of function mutation encodes 

a defective protein that is unable to bind K63 polyubiquitin chain (Gleason et al., 

2011).  

      In agreement with the previous Optn depletion data discussed in chapter 4, the 

number of multinucleated osteoclasts (>3 nuclei) formed from mutant bone marrow 

cells was significantly higher (239±17) than that of multinucleated osteoclasts formed 

from WT (195±22; P<0.001) in vitro.  Additionally, the number of large osteoclasts 

(>10 nuclei) was significantly higher in mutant cells compared to WT cells. 

Furthermore, following RANKL stimulation, the NFB activity based on luciferase 

reporter assay was greater in OptnD477N mutant cells than in WT cells. The data also 

showed that Optn was expressed in all stages of osteoblasts and no significant 

difference was observed in the expression at different stages of osteoblast 

differentiation from WT and mutant mice. Similarly, the bone nodule formation by 

osteoblasts from knock-in mice showed no significant difference when compared to 

WT. 

      It can thus be concluded that the results of the in vitro work obtained from Optn 

knockdown experiments and those from the OptnD477N/D477N knock-in model are 

consistent. The data also suggested for the first time that optineurin acts as a negative 

regulators of osteoclast differentiation. This may partly explain optineurin’s role in 

PDB susceptibility but further in vivo studies will be required to examine the skeletal 

phenotype of OptnD477N/D477N mice (chapter 6).  
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5.2 Introduction  

     Data from the previous chapter showed that Optn was expressed during osteoclast 

formation and its expression significantly increased during later stages of osteoclast 

development. In addition, Optn-depletion in macrophages derived from mouse bone 

marrow enhanced osteoclast formation, fusion and survival, whilst also increasing 

RANKL-induced NFκB activation. Although the knockdown approach using lentiviral 

vector-mediated expression of shRNA is recommended particularly when cells are 

difficult to transfect, it has a number of limitations. First of all, it is a time-consuming 

experiment, because BMDMs require a large dosage of virus (MOI) to be transduced. 

Furthermore, the experiment also involves subjecting BMDMs to additional 

interventions, such as use of Polybrene during transduction and Puromycin for 

selection.  

     Therefore, the aim of this chapter is to investigate if loss of function mutation in 

Optn affects osteoclast differentiation in vivo using OptnD477N/D477N mouse and 

compare the results with the in vitro findings obtained from the Optn knockdown 

experiment. The OptnD477N/D477N mouse model was generated by introducing a point 

mutation with Asp-477 of the polyubiquitin-binding domain mutated to Asn in exon 

12 of the Optn gene. The D477N mutation abrogated the interaction of Optn with K63 

polyubiquitin-binding chains (Gleason et al., 2011). This loss of function mutation is 

equivalent to the OPTN (D474N) human mutant, which also causes a defective binding 

to polyubiquitin. In this study, the D477N polyubiquitin binding-defective mutant was 

found to significantly reduce the lipopolysaccharide-induced TBK1 activity, which in 

turn led to the reduction of phosphorylation of IRF3 and the production of IFNβ 

(Gleason et al., 2011) 

     In previous studies, the enzyme CYLD in macrophages was described as a negative 

regulator of RANK signalling via its deubiquitinase activity (Jin et al., 2008). It has 

been found that CYLD downregulated the NFB activity through the inhibition of 
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TRAF6 ubiquitination and was recruited to TRAF6 by its interaction with p62. In 

addition, CYLD was identified as an OPTN-interacting protein (Nagabhushana et al., 

2011) while OPTN was suggested to be involved as a negative regulator in the NFB 

signalling pathway (Akizuki et al., 2013; Nagabhushana et al., 2011; Zhu et al., 2007). 

However, it is still unclear through what mechanism OPTN acts as a regulatory factor 

in the NFB signalling pathway in bone cells. In addition, OPTN was recently 

demonstrated to be a candidate gene of PDB (Albagha et al., 2010)..  The role of Optn 

in osteoblasts of WT and mutant mice is also investigated in this chapter, as is the 

interaction of Cyld with Optn in order to explain, to a certain extent, the role of 

optineurin in RANKL-inducing osteoclastogenesis and NFB signalling pathway. 
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5.3 Results  

5.3.1 Effect of OptnD477N mutation on osteoclast formation in 

OptnD477N/D477N mice 

      As discussed in chapter 4, Optn knockdown in BMDMs enhanced osteoclast 

number and size as compared with non-targeting controls. Therefore, the effect of 

OptnD477N mutation on osteoclast differentiation in vitro was investigated using 

BMDMs from OptnD477N/D477N mice. Bone marrow cells from WT and OptnD477N/D477N 

mice were isolated and cultured in the presence of M-CSF and RANKL until 

osteoclasts were formed. TRAcP positive multinucleated osteoclasts (> 3 nuclei) and 

large osteoclasts (> 10 nuclei) were counted and numbers were compared to the WT 

control (Figure 5-1).  

 

 

 

Figure 5-1: Osteoclast formation and fusion are enhanced in OptnD477N/D477N mouse 
BMDMs. (A) Multinucleated osteoclasts formed from OptnD477N/D477N were higher and larger 
compared to WT mice (values are means ± SEM from 3 independent experiments, * P < 
0.05). (B) Representative pictures of TRAcP positive multinucleated osteoclasts from WT 
and OptnD477N mutant cells magnified at 10X. 
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The results revealed that osteoclast formation and number of hypernucleated cells were 

significantly promoted by the OptnD477N mutation, replicating exactly the phenotype 

observed in the Optn knockdown experiment.  

 

 

5.3.2 Expression of Optn during osteoclast (OC) development in Wild 

Type (WT) and OptnD477N/D477N mice 

     Compared to cultures of BMDMs from WT, cultures of BMDMs from 

OptnD477N/D477N presented more and larger osteoclasts. Therefore, Optn expression 

during osteoclast differentiation was evaluated in BMDMs under basal conditions and 

post-stimulation with M-CSF and RANKL in order to compare the expression pattern 

of Optn in both WT and OptnD477N/D477N mice. Bone marrow cells were extracted from 

WT BL6 and OptnD477N/D477N mice and cultured for 2 days in the presence of M-CSF 

(100 ng/ml). The adherent BMDMs were then stimulated with RANKL (100 ng/ml) 

and low M-CSF (25 ng/ml) until osteoclasts were formed. Western blot was used to 

analyse Optn expression in all lysates. The bands were quantitatively measured and 

showed that the expression of Optn was increased during osteoclast formation in both 

WT and OptnD477N/D477N mice, although the expression of the mutant protein was higher 

than that of WT (Figure 5-2).  
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Figure 5-2: Optn Expression of WT and OptnD477N/D477N mice during osteoclast formation. 
(A) Protein lysates were extracted from different stages of osteoclast development from 
WT and OptnD477N/D477N and the total protein used was 40 µg. The blot was exposed to Optn 
and β-actin antibodies. The bands were quantitatively measured and showed that 
expression of Optn was increased during osteoclast formation in both WT and 
OptnD477N/D477N mice. The expression of Optn was higher in OptnD477N/D477N mice compared 
to WT in BMDMs and post-RANKL stimulation. (B) Quantification of OPTN expression as 
a ratio of OPTN/β-actin. Representative image of at least two independent experiments.   
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5.3.3 Effect of OPTND477N mutation on NFB signalling pathway 

     An investigation was conducted on the extent to which the OptnD477N mutation 

modulated NFκB activation in response to RANKL. This was prompted by the fact 

that NFκB has been implicated in osteoclast formation, function and activity (Iotsova 

et al., 1997; Khosla, 2001), and the findings from chapter 4 which showed knockdown 

of Optn enhanced RANKL-induced NFκB signalling pathway. NFκB activity was first 

investigated by comparing kinetics of pIκBα degradation and re-synthesis in RANKL-

treated WT and OptnD477N BMDMs. The results revealed no significant differences in 

NF-κB activity at the BMDM stage of osteoclast differentiation (Figure 5-3). 

 

 

     Since Optn is upregulated during osteoclast differentiation, it is possible that the 

effect of Optn on RANKL-induced NFκB signalling is specific to osteoclast 

precursors. To investigate this possibility, lentiviral NFκB luciferase reporter was used 

to assess RANKL-induced NFκB activation during osteoclast differentiation. 

Adherent BMDMs of WT and OptnD477N/D477N mouse were transduced with lentiviral 

NFκB luciferase reporter for two days. The cells were selected using Puromycin (5 

µg/ml) for 48 hours then detached and plated in 96 wells for 24 hours. The luciferase 

Figure 5-3: BMDMs from  OptnD477N/D477N mice have unimpaired NFκB responses. BMDMs 
from WT or mutant mice were serum-starved for 1 h and stimulated with RANKL (100 
ng/ml). Cells were lysed at the indicated times and immunoblotted for pIκBα (i) to assess 
NFκB activation and β-actin (ii) as a loading control. The amount of total protein used for 
western blotting was 50 μg. 
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activity was measured with a SteadyGlo-luciferase reporter assay system at the basal 

level and following RANKL stimulation (100 ng/ml). The data showed that, during 

osteoclast differentiation, the NFκB luciferase activity of OptnD477N/D477N cultures was 

higher than that of WT cultures, with a maximal effect at 2 to 3 days. This confirmed 

the role of Optn as a negative regulator of RANKL-induced NFκB activation (Figure 

5-4). 

 

 

 

 

Figure 5-4: NFB activity is higher in OptnD477N/D477N mouse BMDMs. BMDMs from WT and 

OptnD477N/D477N mice were transduced with lentiviral NFB luciferase reporter to 

quantitatively assess NFB activation at different stages of osteoclast development. NFB 
activity was measured with a SteadyGlo-luciferase reporter assay system at the basal level 
and following RANKL stimulation (100 ng/ml) at different days and when osteoclasts were 
formed (Day 7). The upper graph represents values of three independent experiments 
presented as % of WT. The lower graph represents values obtained from one experiment. 
Values are means ± SEM, * P < 0.05, ** P < 0.01. 
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5.3.4 Optn interaction with the negative regulator of NFB signalling 

pathway; the Cyld enzyme 

     The OPTN-binding partner CYLD has been implicated as a negative regulator of 

RANKL-induced NFκB activation in BMDMs from Cyld null mice (Jin et al. 2008). 

A previous study has reported the C-terminal region of OPTN interacted with CYLD 

and that OPTN was required for CYLD-dependent inhibition of TNFα-induced NFκB 

activation (Nagabhushana et al., 2011), but its role in RANKL-induced NFκB 

activation remains unknown. Therefore, immunoprecipitation of Optn obtained from 

WT and OptnD477N/D477N mice were used to investigate the interaction with Cyld in 

response to RANKL. Results showed that, compared to WT cells, mutant cells 

displayed higher Optn expression. On this basis, Optn-bound Cyld was corrected for 

Optn expression level. This analysis revealed that mutant OptnD477N protein had 

reduced binding to Cyld compared to WT Optn protein in BMDMs as well as 

osteoclasts (P < 0.05; Figure 5-5).  
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Figure 5-5: Optn interacts with Cyld. (A) and (B), Optn was immunoprecipitated (IP) from 
50 µg of cell extract protein using 4 µg of sheep anti-mouse OPTN antibody (s308c), and 
the presence of Optn and Cyld in the immunoprecipitates was analyzed by immunoblotting 
(IB) probed with Optn and Cyld rabbit primary antibodies. (A) A representitave image 
shows the expression of Optn and Cyld in cell extract from BMDMs obtained from WT and 
D477N mutant mice before stimulation with RANKL (Day 0). Supernatants from wash steps 
were also analyzed in the same membrane to assess the immunoprecipitation specifity and 
ensure the target protein was not being lost in any other fractions. (B) Similar to the top 
panel (A), but cell lysates were extracted from osteoclasts (Day 5). This membrane was 
also blotted for β-actin as loading control. (C) The bands were quantified and the ratio of 
Cyld to Optn indicates lower interaction of Cyld to Optn in mutant mice compared to WT (* 
P < 0.05). Results for A-C are representative of at least three independent experiments. 
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5.3.5 OPTN expression during osteoblast differentiation 

     To investigate the effect of OptnD477N on osteoblast differentiation, calvaria from 

WT and OptnD477N/D477N mice were extracted and treated with osteoblast-inducing 

reagents. Assessment of Optn protein expression at different stages of osteoblast 

differentiation revealed that it had a similar level in both knock-in and WT mice, 

suggesting that osteoblastogenesis is unaffected by mutant Optn (Figure 5-6). 

     The effect of mutant Optn on bone nodule formation was investigated by 

undertaking bone nodule formulation by osteoblasts in vitro. The data obtained from 

this test showed no significant difference between the WT and mutant mice (Figure 5-

7). 

 

 

Figure 5-6: Calvaria from OptnD477N/D477N and WT mice were seeded into 12-well plates at 
100×103 cells per well. Protein lysates were extracted before adding the osteoblast-
inducing reagent and after the treatment with 3 mM β-glycerol phosphate and 50 µg/ml L-
ascorbic acid at day 5, 9 and 18. Representative image of at least two independent 
experiments 
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Figure 5-7: Bone nodule formation in OptnD477N/D477N and WT mice. Primary osteobalsts  
were cultured in osteogenic media for 21 days then the plates were fixed in 70% cold 
ethanol, and the mineralized nodules were visualized by alizarin red staining. Bone nodule 
formation was quantitated by destaining the cultures for 24 hours in cetylpyridinium chloride 
and measuring absorbance of the extracted stain by spectrophotometry. The values were 
normalized to cell number as determined by the Alamar blue assay. Results are presented 
as mean ± SEM of two individual experiments. 
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5.4 Discussion   

      Bone homeostasis is a tightly regulated process controlled mainly by two 

processes, namely, bone resorption and bone formation. Pathological conditions, such 

as osteoporosis and osteopetrosis, are the result of imbalance between these two 

processes (Ralston, 2013a) . PDB is characterised by focal abnormalities of increased 

bone resorption and disorganized bone formation (Ralston and Albagha, 2013).  

Previous chapters have shown that Optn-depletion in mouse BMDMs enhanced 

osteoclast formation, fusion and survival whilst also enhancing NFκB activation in 

vitro. In view of this, the aim of this chapter was to investigate in vitro the effect of 

Optn mutation on osteoclasts and osteoblasts from OptnD477N/D477N mice compared to 

WT.  

     In agreement with the in vitro findings from data of Optn knockdown experiment 

(chapter 4), Optn was induced at later stages of osteoclast formation after stimulation 

with RANKL in both WT and knock-in mice. However, the increase of Optn 

expression during these stages being in favour of OptnD477N/D477N mice. This was 

consistent with the findings of previous studies, which indicated that the expression of 

mutant Optn was higher than WT in multiple tissues (Gleason et al., 2011). What is 

more, compared to WT, OptnD477N/D477N mice also exhibited significantly greater 

formation and fusion of multinucleated osteoclasts. Another similar finding was that 

NFB activity measured by luciferase reporter assay was significantly higher in 

OptnD477N/D477N than WT during osteoclast development. Collectively, these findings 

suggest a role of OPTN in osteoclast biology, role which likely takes the form of 

regulation of the RANK signalling pathway. 

      The deubiquitinase enzyme CYLD is a binding partner to OPTN and is known for 

its role in cleavage of k63-linked polyubiquitin chain from its target proteins, 

preventing  NFB activation (Massoumi, 2010). Therefore, Optn was 

immunoprecipitated and blotted for Cyld in order to confirm the interaction of Optn 

with Cyld in BMDMs before and after stimulation with RANKL. Results showed that 

after correction of Cyld expression to Optn, more interaction was found in WT 
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compared to knock-in mice, and this could explain at least in part the increase of NFB 

activity in cells from mutant mice at different stages of osteoclast development due to 

the inability of the mutant Optn to optimally bind the Cyld, preventing the latter from 

exerting its deubiquitinating effect. Furthermore, analysis immunoprecipitation 

supernatants and washes indicated that Optn immuneprecipitates with most Cyld and 

small fraction of Cyld remained did not interact with Optn. This indicates that Optn 

might exert its effect in response to RANKL stimulation through interaction with Cyld. 

Another study has suggested that OPTN acts as an adaptor protein that mediates the 

interaction of CYLD with ubiquitinated RIP after stimulating HeLa cells with TNFα. 

This interaction negatively regulated the NFB activity and NFB activity was 

enhanced in OPTN-depleted cells (Nagabhushana et al., 2011). According to the IP 

results presented in this chapter, OPTN could mediate the interaction of CYLD to 

TRAF6 and thus inhibit osteoclastogenesis. Consequently, the impaired binding of 

mutant OptnD477N to polyubiquitin may affect the deubiquitinating effect of Cyld, 

which in turn enhances RANKL-induced NFB activation resulting in enhanced 

osteoclastogenesis in OptnD477N/D477N mice. However, the IP experiment used in this 

study did not include a negative control (e.g. IgG), which is essential for detecting non-

specific binding to the IP antibody or protein A/G, thus having an adverse impact on 

the detection of the immunoprecipitated target. However, the antibody used in this 

study was obtained from the Philip Cohen group, which was confirmed to specifically 

bind Optn in an IP experiment which included an IgG (see figure 3 from (Gleason et 

al., 2011). In addition, immunoprecipitation supernatants and washes for each tested 

sample were used to make sure the immunoprecipitation was specific for Optn and 

Optn was not being lost in any other fractions. Another control used in this experiment 

was probing the protein of interest (Optn) with known binding protein (Cyld), both 

proteins having been detected.  

     It has been reported that putative NFB elements exist in OPTN promotor and the 

enhancement of NFB activity mediates the expression of OPTN (Sudhakar et al., 

2009). This also could explain why Optn expression is higher in mutant mice compared 

to WT. 
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      In order to investigate the role of OPTN in osteoblasts, cell lysates from calvarial 

osteoblast at different stages indicated, both before and after adding the Vitamin C, 

that Optn was expressed during osteoblast formation but there was no significant 

difference in the expression between these stages. Furthermore, there was no obvious 

difference between the Optn expressions in WT compared to the OptnD477N/D477N mice. 

To further investigate the effect of mutant Optn from the knock-in mice compared to 

WT on osteoblast differentiation and function in vitro, mineralization assay has been 

used to evaluate the calcium deposition in cell cultures. Results obtained from the 

quantification of the Alzarin Red stain concentration from WT and OptnD477N/D477N 

mice revealed no difference between the two genotypes. These results suggest that 

Optn has no direct role in promoting osteoblast function in vitro.  

      Coupling signals between osteoclasts and osteoblasts represent a complex 

mechanism that is necessary for balanced remodelling. Thus, the co-culture assay was 

used to investigate in vitro the communication between osteoblasts and osteoclasts and 

to determine the cell type affected in transgenic mice. This assay was conducted by 

generating mature osteoclasts from bone marrow precursors that were cultured with 

osteoblasts stimulated with 1, 25-(OH)2 vitamin D3 and PGE2 (Itzstein and van ‘t Hof, 

2012). Several trials were carried out to optimize the experiment conditions. However, 

aside from the time limitations imposed on completion of a doctoral degree, the 

breeding of mutant litters also posed some difficulties. The necessity to match mutant 

pups with WT was another challenging factor. Therefore, this experiment was 

scheduled to be completed at a future date. However, the co-culture experiment was 

undertaken by our researcher’s group, observing that osteoblast cultures derived from 

D477N mutant mice were less capable to support osteoclast differentiation than those 

osteoblast cultures derived from WT (Obaid et al., 2015).  Furthermore, the expression 

of the two pro-osteoclastogenic cytokines, RANKL and IL-6, was found to be 

significantly reduced in mutant osteoblasts when compared to WT osteoblasts. On the 

other hand, osteoclast precursor cells derived from OptnD477N mutant mice showed 

enhanced sensitivity to osteoblast stimulation. Interestingly, this finding was 

consistent with my previous data (section 5.3.1), where BMDMs derived from 
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OptnD477N/D477N mice formed osteoclasts of greater number and size in vitro when 

stimulated with RANKL. Collectively, these findings suggest that the D477N mutation 

leads to the formation of osteoclast precursor cells with enhanced sensitivity to 

osteoblast stimulation, which probably compensate for the reduced ability of mutant 

osteoblasts to support osteoclast differentiation (Obaid et al., 2015).      

     As discussed in chapter 4, previous studies using overexpression in cell lines and 

neuronal cells showed that OPTN is a negative regulator of NFB activity in response 

to LPS and TNFα (Akizuki et al., 2013; Nagabhushana et al., 2011).  The Dundee 

group who generated the mouse model used in this study found that the polyubiquitin-

binding defective OptnD477N/D477N did not impair the LPS-induced NFB activation in 

BMDMs. Instead, they found that this mutation reduced the TBK1 activity, 

phosphorylation of IRF3 and the production of IFNβ in BMDMs from knock-in mice 

compared to WT (Gleason et al., 2011). Similarly, Munitic et al. recently confirmed 

that Optn was dispensable for NFB activity in BMDMs in response to LPS or TNFα 

stimulation based on the Optn470T mouse model, in which the entire ubiquitin-binding 

and C-terminal were deleted (Munitic et al., 2013). In line with these findings, the 

present study demonstrated that, at the BMDM stage, there was no difference between 

WT and mutant cells with regard to NFκB activity in response to RANKL stimulation 

as assessed by kinetics of pIκBα. However, the inhibitory effect of OPTN on NFκB 

activity was only significant during later stages of osteoclast differentiation when its 

expression level was increased. This could partially explain why studies based on 

overexpression of OPTN in cell lines showed an inhibitory effect of NFκB activation 

induced by LPS or TNFα. Differences in study design could also explain these 

findings. The first difference is that other studies examined BMDMs in response to 

stimulants other than RANKL, such as LPS and TNFα (Gleason et al., 2011; Munitic 

et al., 2013). It has been reported in the literature that OPTN-binding partner CYLD 

was expressed in BMDMs and the expression was induced at a later stage during 

osteoclast development, while the expression of CYLD did not change in response to 

other inducers, such as LPS and TNFα (Jin et al., 2008). Similarly, OPTN was induced 

at a later stage in osteoclast development, as presented previously in this study. 
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Therefore, OPTN could behave differently in different cell types and in response to 

different stimulation. Another difference between the present study and previous ones 

is that the measurement of NFB activity in BMDMs and during osteoclast 

development was undertaken in this study with the luciferase reporter assay, which 

measures both the canonical and non-canonical pathways of NFB activity; by 

contrast, earlier studies conducted measurements of the NFB subunits at a certain 

time after stimulation with specific inducers in BMDMs, and only the canonical 

pathway was measured (Gleason et al., 2011; Munitic et al., 2013).These two studies 

also indicated the involvement of OPTN in the production of IFN through regulation 

of TBK1. Interestingly, IFN has been shown to inhibit osteoclast proliferation by 

interfering with the expression of c-Fos and mice lacking the IFN receptor have been 

observed to exhibit an increased osteoclast number and osteopenia (Takayanagi et al., 

2002a). Indeed, recent work conducted by my group showed that OPTN might exert 

an inhibitory role on osteoclast differentiation by modulating the IFNβ signaling 

pathway (Obaid et al., 2015).  They found that the production of IFN was 

significantly lower in mutant cells compared to those observed in WT. Furthermore, 

the expression of c-Fos was found higher in OptnD477N/D477N mice during later stages of 

osteoclast differentiation compared to that observed in WT.  

     Regardless of the nature of OPTN involvement in NKB, several OPTN-binding 

partners have been identified as negative regulators of osteoclastogenesis. As 

discussed in chapter 6, CYLD knockout mice displayed several abnormalities in bone 

phenotype due to increased osteoclastogenesis (Jin et al., 2008). In addition, in vitro 

findings obtained from the BMDMs of these mice showed an increase in osteoclast 

number and size.  They also reported that CYLD regulated the AP-1 and NFB 

canonical and non-canonical pathways in preosteoclasts and the activity of these 

signalling pathways was enhanced in Cyld-deficient mice. Furthermore, they found 

that CYLD was coprecipitated in the same complex with TRAF6 and negatively 

regulated TRAF6 ubiquitination. Interestingly, p62/SQSTM1, which is involved in 

Paget’s disease, was also found to interact with CYLD and promoted the 

TRAF6/CYLD interaction (Jin et al., 2008). Similarly, the other OPTN-binding 
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partner, A20, showed abnormal bone phenotype in A20-/- mice and the in vitro studies 

of macrophages from these mice showed sustained degradation of NFB inhibitor 

IB, which indicated an increase in NFB activation (Matmati et al., 2011). In 

addition, culturing of blood leukocytes from A20 knockout mice, as opposed to WT 

mice, revealed a significant increase in osteoclastogenesis in response to RANKL. 

Another example of a negative regulator of osteoclastogenesis is TANK, for which in 

vitro results from TANK-deficient mice revealed results similar to the findings 

presented here (Maruyama et al., 2012). In this study, TANK expression was induced 

in BMDMs during osteoclast development. In addition, osteoclast number and size 

were increased in TANK knockout mice in response to RANKL compared to WT, 

accompanied by enhanced NFB activation. Furthermore, TANK was expressed 

during osteoblast differentiation and TANK-/- osteoblasts showed enhanced bone 

nodule formation by comparison to WT osteoblasts. It has been reported that TANK 

regulates the interaction between canonical IKKs (IKK and IKK) and the IKK-

related kinases (TBK1/IKK) and this interaction is abolished in TANK-deficient 

mice, preventing IKK-related kinases from negatively regulating the canonical IKKs 

(Clark et al., 2011). Intriguingly, IKK-related kinases were found in a complex of 

adaptor proteins including TANK, OPTN, NAP1 and SINTBAD (Mankouri et al., 

2010). Therefore, it would be of great interest to know whether OptnD477N/D477N will 

affect this complex and, consequently, the canonical IKKs enhancing the NFB 

activity through this pathway as well as whether RANKL causes a reduction in TBK1 

activity in these knock-in mice.  

     To conclude, the data presented in this chapter revealed that OptnD477N/D477N 

promoted osteoclastogenesis. This was accompanied by increased NFB activity, 

especially during later stages of preosteoclasts with maximal effect at 2 to 4 days, 

suggesting that Optn has a greater inhibitory effect on osteoclast differentiation when 

its expression level is increased. Optn was also expressed in osteoblasts and this 

expression did not change at different stages of osteoblast development. From this, it 

could be implied that osteoblast function is not directly affected by OptnD477N/D477N. 
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6 The D477N Mutation In Optn Leads To Increased Bone 

Turnover And Enhanced Osteoclast Formation In 

OptnD477N/D477N Mice 
 

6.1 Summary 

      In chapter 4, it has been demonstrated that osteoclast formation in vitro was 

significantly promoted by Optn depletion, with the number of hypernucleated 

osteoclasts being considerably high. The comparison of cultures of BMDMs from 

OptnD477N/D477N and WT undertaken in chapter 5 produced similar results. The aim of 

this chapter was to investigate the skeletal phenotype of OptnD477N/D477N knock-in 

mouse model, which harbours a D477N point mutation in the polyubiquitin-binding 

domain of the Optn. The skeletal phenotype of Optn mutant mice and matched WT 

animals was assessed using bone histomorphometry and µCT. Histomorphometric 

analysis of bone sections of 4-month-old mice showed evidence of increased bone 

turnover in Optn mutant mice. Furthermore, bone resorption parameters were higher 

in Optn mutant mice compared to WT animals. Similarly, bone formation parameters 

were also higher in mutant mice compared to WT. µCT analysis of 4, 8 and 14 month 

old mice revealed no significant differences in bone morphology between WT and 

mutant mice. Bone turnover markers were also assessed and the bone formation marker 

(P1NP) was found to be significantly higher in mutant mice compared to WT, while 

the bone resorption marker (CTX) from mutant mice was not significantly different 

from WT. 

     In conclusion, data showed that Optn plays a role in regulating bone turnover in 

vivo by directly influencing osteoclast differentiation and formation. This may partly 

explain the role of OPTN in PDB susceptibility but further studies are advised to assess 

the role of OPTN in PDB cases and further explore its role in osteoclast signalling.  
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6.2 Introduction  

     The results obtained in chapters 4 and 5 confirmed the involvement of Optn in 

osteoclast development. Furthermore, in vitro findings from Optn knockdown and 

mutant Optn from the knock-in mice showed increased osteoclast formation, fusion 

and increased RANKL-induced NFκB activation. However, in vitro studies have 

limited value because they are carried out on isolated cells outside the whole organism, 

while complex or multifactorial disorders, such as skeletal diseases, are associated 

with the effects of multiple genes in combination with environmental factors. 

Therefore, the aim of this part of the study is to investigate the effect of Optn on bone 

phenotype using the OptnD477N/D477N knock-in mouse model compared to WT. Cellular 

and structural variables at the tibial metaphyses of these mice were measured by 

histomorphometric and µCT analysis. Bone histomorphometry is an essential 

technique for the assessment of cellular and structural variables on histological 

sections. The main advantage of this technique is that, by contrast to serum and urine 

biochemical markers, it is sensitive enough to be used in the assessment of the rate of 

bone formation or resorption (Allen and Burr, 2014b). 

      The µCT system is also an essential laboratory tool for assessing skeletal structure 

and density, whilst also providing accurate micro architectural measurements. 

Furthermore, µCT offers high-resolution images for ex vivo samples by generating a 

series of projection images within the pixel size range 1-30μm.  Reconstruction of 

these images allows sufficient resolution to differentiating regions rich in trabecular 

bone from those containing just cortical bone. In addition, µCT has the capability to 

perform in vivo µCT measures on small animals. The advantage of µCT over histology 

is that µCT offers a 3D assessment of the entire region, while the histological 

procedure provides information on a single section and assumes the data obtained are 

applied to the entire bone. However, studies showed that the data obtained from the 

2D histological analysis  strongly correlated with data obtained from the 3D µCT 

analysis (Allen and Krohn, 2014). The Skyscan 1172 system was used to undertake 
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the µCT analysis. The left tibia from both sexes of WT and OptnD477N/D477N mice of 

different ages (4, 8 and 14 months) were scanned at a 5µm resolution, and trabecular 

and cortical bone parameters were measured with CTAn software. 

6.3 Results  

6.3.1 Bone histomorphometry of OptnD477N/D477N mice 

      For histomorphometric analysis, the samples were embedded in methyl 

methacrylate and serial longitudinal sections (5 µm) at 3 different levels which were 

cut and stained to perform TRAcP, osteoid and calcein double-labelling. TRAcP 

staining counterstained with aniline blue was carried out to visualize osteoclasts. Von 

Kossa staining with Van Gieson counterstain was used to perform osteoid analysis. 

Calcein double-labelling was conducted to measure bone formation using aniline blue 

without phosphotungstic acid. Histomorphometric analysis was performed using 

software developed in-house, as described in section 2.2.4.5. 

 

6.3.2 The D477N mutation in Optn increased bone resorption parameter 

in OptnD477N/D477N mice  

     To address the effect of mutant OptnD477N on osteoclast differentiation and 

formation in vivo, sectioned samples were stained for TRAcP in order to investigate 

the number of osteoclasts in the mutant mice compared to WT. Results indicated that 

the osteoclast numbers (Oc.N/BS), osteoclast surfaces (Oc.S./BS) and the mean of 

osteoclasts size were significantly increased in OptnD477N/D477N mice (Figures 6-1 and 

6-2). 
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6.3.3 Bone formation parameters in OptnD477N/D477N compared to WT 

     The assessment of the bone formation process is undertaken through osteoid 

analysis, which examines the amounts of mineralised and non-mineralised bone. For 

the purpose of this osteoid analysis, sectioned samples were stained with Von Kossa 

staining with Van Gieson counterstain. OptnD477N/D477N mice exhibited increased 

values of osteoid surface (Os.S/BS) and osteoid volume (Os.V/BV) compared with WT 

mice (Figures 6-3 and 6-4). 

Figure 6-1: TRAcP analysis of histological sections of WT and OptnD477N/D477N mice. 
TRAcP+ multinucleated osteoclasts were significantly numerous and larger in 
OptnD477N/D477N mice compared to WT. Values are means ± sem (error bars) from 7-8 mice 
per group. Number of sections from each mouse (n=3) * P < 0.05, ** P < 0.01 

Figure 6-2: Representative images of the metaphyseal portion of tibias from WT and 
OptnD477N/D477N mice. 
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6.3.4 Analysis of dynamic bone formation indices in OptnD477N/D477N mice 

      Calcein labelling allows the calculation of newly formed bone within a given time 

period through the assessment of fluorochrome labels. The mice were given two 

intraperitoneal injections with calcein three days apart before being culled after 48 

hours. Histological sections were prepared using aniline blue without phosphotungstic 

acid. Histomorphometry was performed using software developed in-house. Analysis 

 

Figure 6-3: Osteoid analysis revealed higher bone formation in 4-month-old mutant mice 
compared to WT in terms of osteoid surface (Os.S/BS) and osteoid volume (OV/BV). 
Values are means ± sem (error bars) from 7-8 mice per group. * P < 0.05 

Figure 6-4: Von Kossa's staining revealed higher deposits of osteoid in OptnD477N/D477N 
compared to WT. The mineralized tissue is stained black and osteoid is stained pink. The 
arrow indicates the osteoid deposition. 
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of calcein labelling revealed that the mineral apposition rate (MAR) and the label 

width were significantly higher in OptnD477N/D477N mice compared to WT. Furthermore, 

although by comparison to WT mice, OptnD477N/D477N mice exhibited a trend towards 

higher bone formation per bone surface (BFR/BS), this was of borderline significance 

(Figures 6-5, 6-6 and 6-7). 

 

 

  

 

 

 

 

 

Figure 6-5: Effects of Optn mutation on mineral bone formation. Four-month-old male mice 
were labelled with calcein, and dynamic indices of bone formation were quantified in 
metaphyseal trabeculae of the tibia based on calcein administration of control and 
OptnD477N/D477N. Number of animals analysed (n=8) and number of sections from each 
animal (s=3). (BFR/BV) Bone formation rate/bone volume. (MAR) Mineral apposition rate. 
** P < 0.01, Error bars represent SEM. ns, not significant 

Figure 6-6: Visualization of bone formation by fluorescence microscopy after calcein 
double-labeling of proximal tibial metaphyses of WT and OptnD477N/D477N mice.  The 
distance between the two green labels represents the amount of bone formed during the 
period of first and second calcein injection. 
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6.3.5 Analysis of serum bone turnover markers in OptnD477N/D477N mice 

      A comparison of P1NP and CTX serum levels in OptnD477N/D477N and WT was 

conducted at four months. The difference between genotypes was statistically 

significant for P1NP in both genders but CTX differences were insignificant. These 

data demonstrate that knock-in mice undergo more extensive bone formation (Table 

6-1). 

 

Table 6-1: Biochemical Markers of Bone Turnover in OptnD477N/D477N and WT Mice 

 

 

Mice P1NP (ng/ml) P value CTX (ng/ml) P value 

Male 
WT (n = 8) 5.4 ± 1.2 

0.01 
24.7 ± 3.61 

0.34 
OptnD477N/D477N   (n = 8) 6.3 ± 1.4 27.1 ± 8.74 

Female 
WT (n = 3) 4.8 ± 0.59 

0.04 
28.4 ± 2.5 

0.47 
OptnD477N/D477N (n = 3) 5.7 ± 0.17 28.6 ± 2.2 

Figure 6-7: Labelling width parameter measured by histomorphometric analysis of WT and 
OptnD477N/D477N mice. ** P < 0.005, Error bars represent SEM.   
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6.3.6 µCT analysis showed no significant difference in bone structure 

between the WT and mutant mice  

      µCT analysis was performed using an ex vivo Skyscan 1172 system. The left tibia 

of 4-month-old WT and OptnD477N/D477N mice was scanned at a resolution of 5µm. The 

Skyscan NRecon package was used to reconstruct the images produces. The 

measurement of trabecular bone parameters was undertaken with the Skyscan CTAn 

software (Figures 6-8 and 6-9). Since PDB is a late onset disease, another µCT analysis 

was performed to measure the bone structure of the left tibia of 8-month-old mice with 

the purpose of identifying PDB-like bone lesions (Figure 6-10). Similarly, the bone 

structure of both tibias of 14-month-old male mice was measured with µCT analysis 

to determine whether the more advanced age caused the development of PDB-like 

lesions (Figure 6-11). 

     Cortical bone microarchitectures of the tibia isolated from 4 month (male) and 8 

month (both sexes) old mice were also assessed by using μCT (Figure 6-12 and 6-13). 

The results revealed no significant difference between WT compared to knock-in mice 

at different ages.     

 

 

 

Figure 6-8: µCT analysis revealed no significant differences in bone morphology between 
WT (n = 8) and OptnD477N/D477N mice (n = 8) of both sexes at the age of 4 months in terms 
of bone volume/tissue volume (BV/TV), trabecular number (Tb. N.) and trabecular 
thickness (Tb. Th.). Error bars represent SEM. ns, not significant 
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Figure 6-9: Axial µ-CT images of distal tibial metaphyses from  4-month-old male mice. 

Figure 6-10: µCT analysis revealed no significant differences in bone morphology between 
WT (n = 5) and OptnD477N/D477N mice (n = 4) of both sexes at the age of 8 months in terms 
of bone volume/tissue/volume (BV/TV), trabecular number (Tb. N.) and trabecular 
thickness (Tb. Th.). Error bars represent SEM. 

Figure 6-11: µCT analysis showed no significant differences in bone morphology of 14-
month-old WT (n = 4) and OptnD477N/D477N male mice (n = 5)  in terms of bone volume/tissue 
volume (BV/TV), trabecular number (Tb. N.) and trabecular thickness (Tb. Th.). Error bars 
represent SEM. 
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6.3.7 Analysis of PDB-like bone lesions in OptnD477N/D477N mice 

     A Skyscan 1076 system was used to undertake µCT analysis with the purpose of 

determining the connection between aging in mice in vivo and the development of 

PDB-like lesions. Live mice of WT (n=48) and OptnD477N/D477N (n=52) were followed 

for up to 18 months of age to examine whether they developed PDB-like lesions. These 

mice were scanned in vivo at various ages and at certain age (4, 8, 12, 15-18 months) 

of their development, group of these animals with their matched controls were being 

culled and bones were extracted and scanned using the ex vivo Skyscan scanner 1172 

system. Extracted bones were then subjected to histological analysis as described in 

material and methods section 2.2.4.5. According to the findings of previous studies, 

p62 P394L mice older than one year were more likely to develop PDB-like lesions 

(Daroszewska et al., 2011). In order to determine whether similar PDB-like lesions 

Figure 6-12: µCT analysis showed no significant differences in bone morphology of 4-
month-old WT (n = 6) and OptnD477N/D477N male mice (n = 8)  in terms of cortical thickness 
(Cortical Th). Error bars represent SEM. 

Figure 6-13: µCT analysis revealed no significant differences in bone morphology between 
WT (n = 5) and OptnD477N/D477N mice (n = 5) of both sexes at the age of 8 months in terms 
of  cortical thickness (Cortical Th). Error bars represent SEM. 
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would be developed by OptnD477N/D477N mice, the development of such lesions was 

investigated at different ages (Table 6-2). Among the screened mice, only one mutant 

female mouse aged 15 months developed a single unilateral osteolytic PDB-like lesion 

affecting the left femur (Figure 6-14).    

 

 

Table 6-2: Number of in vivo mice scanned by Skyscan µCT 1076 for bone lesions. 

Age group 8-9 months 12 months 15-18 months 

Genotype WT D477N WT D477N WT D477N 

Males (n) 7 11 8 12 2 6 

Females (n) 13 7 12 13 6 3 

Total (n) 20 18 20 25 8 9 

Male with lesion (n) 0 0 0 0 0 0 

Female with lesion (n) 0 0 0 0 0 1 

Total with lesion (n) 0 0 0 0 0 1 

 

 

 

  

Figure 6-14: Femur of 15-month-old OptnD477N/D477N mouse showed PDB-like lesion. (A) 
µCT analysis with 3D reconstruction of the femur of WT and mutant mouse. (B) Cross-
section from the femur of WT and OptnD477N/D477N mouse shows that the osteolytic bone 
lesion is located within the cortex of the mutant mouse (C) Histological analysis of the 
affected region shows enhanced osteoclastogenesis in OptnD477N/D477N mouse. 
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6.4 Discussion  

      The results presented in this chapter showed that mice carrying the D477N 

mutation in Optn develop several histological parameters different from WT. 

Consistent with the in vitro findings (chapter 5), metaphyseal osteoclast numbers, 

surfaces and sizes were augmented in OptnD477N/D477N knock-in mice compared to WT. 

However, the bone resorption marker CTX was not statistically significant between 

the two genotypes. This result could be due to the limitation of measuring the CTX 

marker as it is affected by diurnal variation and food intake (Seibel, 2005). It was not 

possible to control for the time and season of serum sample collection. Osteoid analysis 

revealed a significant difference in the bone formation process between both 

genotypes. In concordance with osteoid analysis, MAR, which represents the 

osteoblast vigour at the individual BMU level, was significantly higher in 

OptnD477N/D477N knock-in mice compared to WT. Although mutant mice exhibited a 

higher bone formation rate per bone surface (BFR/BS) than WT mice, this was of 

borderline statistical significance (P = 0.08). Furthermore, the bone formation marker 

PINP was also significantly higher in knock-in mice compared to WT. An ex vivo µCT 

scanner was applied to mice of different ages (4, 8 and 14 months) of both genotypes 

to screen their cortical and trabecular bone microarchitectures. The µCT analysis 

revealed no significant differences in bone morphology between WT and 

OptnD477N/D477N.  Live animals of WT (n=48) and OptnD477N/D477N (n=52) were also 

scanned using in vivo Skyscan scanner to determine whether aging caused the 

development of PDB-like lesions. Only one mouse out of 52 mutant mice developed 

(aged 4 months or older) a single unilateral PDB-like lesion suggesting that, in most 

cases, the OptnD477N mutation is not sufficient to develop PDB-like phenotype.  In 

addition, these data also suggest that Optn has no direct effect on osteoblast activity 

and the enhanced bone formation in vivo occurs as a coupling mechanism to 

compensate for the elevation in bone resorption, as is thought to occur in PDB (Singer 

et al., 2006). The underlying mechanism is not known but it could be due to other 

coupling factors that control the osteoclast-osteoblast crosstalk (Sims and Martin, 

2014). Indeed, the researcher’s group conducted further investigations on the 
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expression level of the two pro-osteoclastogenic cytokines, RANKL and IL-6, in 

osteoblast cultures. They found the expression level of these cytokines was 

significantly lower in osteoblast culture derived from OptnD477N/D477N mice compared 

to WT (Obaid et al., 2015). These data suggest that the coupling mechanism between 

osteoblasts and osteoclasts is under the influence of the OptnD477N mutation.        

            Previous study of the OPTN-binding partner CYLD showed that Cyld-/- mice 

exhibited significant differences in trabecular analysis compared to WT in terms of 

bone volume (BV/TV), trabecular number (Tb.N) and trabecular thickness (Tb.Th) 

(Jin et al., 2008). The cortical thickness in these knockout mice was also low compared 

to the WT but the proportion of bone (BV/TV) was the same in WT and Cyld-/-. Serum 

osteocalcin was measured as an indicator of osteoblast activity and results showed no 

significant difference between the two genotypes in terms of osteocalcin 

concentration.   These data led the authors to suggest that the defect was not in the 

osteoblast function. In addition to these findings, they observed that Cyld-/- mice 

exhibited osteoclast abnormalities in terms of increased number and size of osteoclasts 

compared to WT (Jin et al., 2008).  

      Another OPTN-binding partner which has been involved in the negative feedback 

regulation of the NFB pathway is A20. Osteoclastogenesis was promoted in A20-

deficient mice, which also developed a bone phenotype resembling rheumatoid 

arthritis (Matmati et al., 2011). TANK has been reported to be a negative regulator for 

RANKL-induced osteoclastogenesis. Tank-/- mice exhibited severe trabecular bone 

loss accompanied with increased osteoclast number. These mice also had significantly 

enhanced bone formation, which explained the increase in cortical bone mineral 

density (Maruyama et al., 2012). The similarities uncovered between theses animal 

models and the OptnD477N/D477N knock-in mice support the role of OPTN in bone 

biology.  
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Conclusion 

     The findings of this chapter have shown for the first time that OPTN plays a role in 

regulating bone turnover and suggest a direct effect of OPTN on osteoclast function. 

The OptnD477N/D477N mutation leads to increased bone resorption and formation 

parameters compared to WT. Only one mutant animal developed a PDB-like lesion 

indicating that the OptnD477N mutation is not sufficient to cause PDB, which suggests 

that other triggers contribute to the development of PDB in these mice.  
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7 Discussion and conclusions 
 

      Research on PDB has increased in recent years and findings about the incidence 

pathogenicity of this disease have opened new prospects for future studies to analyse 

the underlying causes of the disease. PDB is a common late-onset skeletal disorder 

characterised by focal areas of abnormal bone remodelling. Although the aetiology of 

PDB is still relatively poorly understood, it is commonly accepted that both 

environmental and genetic factors contribute to the development of the disease. PDB 

has a strong genetic component and several susceptibility loci, which have been 

identified by linkage studies to cause a predisposition to developing PDB, but so far 

only one causal gene has been identified. This gene is SQSTM1 and mutations affecting 

it are known to cause the high penetrance form of PDB (Laurin, 2002). However, 

mutations in this gene occur in about 40% of familial cases and 10% of sporadic cases, 

indicating that other PDB-predisposing genes still need to be identified (Ralston and 

Albagha, 2011). Before conducting this study, GWAS in PDB identified new 

susceptibility genes for PDB including variants at CSF1, TNFRSF11A, OPTN, 

TM7SF4, PML, NUP205 and RIN3 loci. These loci were confirmed to be associated 

with PDB in various European populations (Albagha et al., 2011b, 2010; Chung et al., 

2010a). However, as the majority of GWAS findings are statistical signals, further 

investigation needs to take place to confirm the impact of these genetic variants in 

PDB. Therefore, the aim of this study is to investigate the role OPTN in bone biology 

and PDB.  

      OPTN was the gene of interest in this study based on multiple criteria. First of all, 

the highest association signal to the 10p13 locus is tagged by rs1561570, which is 

located within OPTN gene (P = 4.37 x 10-38, risk allele OR = 1.67) (Albagha et al., 

2011b). Interestingly, the locus 10p13 was previously linked to PDB and has been 

considered the major locus for PDB in British families. However, the causative gene 

has not been identified despite positional cloning efforts (Lucas et al., 2007). Secondly, 

recent studies have shown that the OPTN locus rs1561570 is a strong eQTL in human 

monocytes (Zeller et al., 2010) and in peripheral blood mononuclear cells (Westra et 
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al., 2013) with decreased level of OPTN expression in carriers of the risk allele (T). 

The third factor is the role of OPTN can be predicted from the current literature. It was 

reported that OPTN has a regulatory role in NFB signalling and vesicular trafficking 

pathways, both of which have been implicated in osteoclast biology (Nagabhushana et 

al., 2011; Park et al., 2010; Zhu et al., 2007). Furthermore, several studies point to the 

role of OPTN during viral infection (Journo et al., 2009; Mankouri et al., 2010).  It 

was suggested as an environmental factor that may exacerbate PDB. Also, OPTN was 

found to have a role in autophagy, a recent mechanism implicated in PDB (Korac et 

al., 2013; Wild et al., 2011). Collectively, these criteria strongly point to the role of 

OPTN in bone biology.  

      At the beginning of this study, OPTN was investigated for the relationship between 

the genetic variant rs1561570 and disease severity in PDB patients without SQSTM1 

mutations. There was a significant association between OPTN rs1561570 and total 

disease severity score, so that patients who are carriers of allele “T” had more severe 

disease compared to non-carriers. Also, the data revealed a trend for reduced SF36 

physical summary score among carriers of OPTN rs1561570 risk allele compared to 

non-carriers. These findings were first reported in the ECTS 2010 annual meeting 

(Appendix 3). Recently, my supervisor confirmed the association between the risk 

alleles identified by the GWAS that predispose to PDB and the severity and extent of 

the disease, either alone or in combination with SQSTM1 mutations (Albagha et al., 

2013). In this study, when each locus was analysed individually for its susceptibility 

to PDB, OPTN rs1561570 showed a significant correlation with the number of bones 

affected. The number of affected bones is a measure of the extent and severity of the 

disease, and this finding, in general, is consistent with the results previously reported 

in chapter 3 and confirms the association of OPTN with PDB extent and severity. This 

finding could be of clinical value in identifying those at risk of developing PDB, 

especially cases without SQSTM1 mutations.  

      The OPTN rs1561570 locus is one of the highest association signals in different 

populations, but it is located in the intronic region (Albagha et al., 2010). Therefore, 

OPTN was screened in 43 samples obtained from 10p13-linked familial cases and 
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controls by direct DNA sequencing covering the coding regions as well as the exon-

intron boundaries. My results identified common polymorphisms, which were 

previously reported in public databases. Several studies conducted on various 

Caucasian populations, including the British, also screened OPTN from ALS cases. As 

with the findings of this research, these studies did not identify a significant OPTN 

mutation that can be considered a pathogenic mutation in coding regions and the exon-

intron boundaries (Johnson et al., 2012; Millecamps et al., 2011; Sugihara et al., 2011). 

However, although rs1561570 polymorphism is located in the intronic region, this 

locus is still a crucial finding for many reasons. First, it was reported in different 

populations. The second reason is that rs1561570 is a strong eQTL in human 

monocytes and peripheral blood mononuclear cells (Westra et al., 2013; Zeller et al., 

2010) with reduced expression of OPTN in carriers of PDB-predisposing (T) allele. 

This suggests that the association with PDB is driven by a regulatory variant(s) that 

alter the OPTN expression level. Therefore, this study examines the effect of reduced 

expression of OPTN on osteoclast differentiation.  

      Since PDB is considered a disease of osteoclast differentiation and function, 

expression of OPTN was assessed first during osteoclast development. Intriguingly, 

the level of Optn was low in BMDMs and for the first two days after RANKL 

treatment. However, expression increased two to three-folds in preosteoclasts and 

when osteoclasts are formed. This higher induction of Optn expression during later 

stages of osteoclast development may indicate to its role at later stages of 

osteoclastogenesis. In order to examine the effect of Optn depletion in osteoclasts, 

Optn was successfully knocked down in BMDMs using lentiviral shRNA, which was 

confirmed by western blot. Compared with BMDMs transduced with lentivirus 

carrying negative control shRNA, osteoclast numbers and sizes of Optn-depleted 

BMDMs increased significantly, according to TRAcP staining. These findings 

correspond with results obtained from the OptnD477N/D477N knock-in mice, where 

TRAcP positive osteoclasts from these mice were also significantly higher in number 

and size compared to WT. These are the characteristics of osteoclasts from PDB. As 

with these data, metaphyseal osteoclast number, surface and size from histological 
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sections were significantly higher in OptnD477N/D477N knock-in mice compared to WT. 

However, the difference of bone resorption marker CTX between the mutant and WT 

mice was not statistically significant. This result could be explained by the possibility 

of this marker being impacted by food intake and diurnal variation, which were not 

possible to correct for during sample collection (Seibel, 2005). In addition to the 

previous findings, Optn-depletion after withdrawal of RANKL in BMDMs enhanced 

osteoclast survival compared to non-depleted cells. Furthermore, overexpression of 

OPTN in RAW 264.7 cells leads to significant reduction in the number and size of 

osteoclast like cells after being stimulated with RANKL (Obaid et al., 2015). Taken 

together, these findings suggest a novel role for OPTN in bone metabolism by acting 

as a negative regulator of osteoclast differentiation.  

      As observed in the in vivo analysis of histological samples, osteoid analysis and 

MAR were significantly higher in OptnD477N/D477N knock-in mice compared to WT, 

suggesting enhanced bone formation. The µCT analysis of 4, 8 and 14 month-old mice 

showed no significant variations in bone morphology between WT and mutant mice. 

On the other hand, the serum level of the bone formation marker PINP was 

significantly higher in knock-in mice compared to WT. The data also showed that Optn 

is expressed at different stages during osteoblast development without significant 

difference in the expression between these stages. In addition, the mineralised nodule 

formation stained with Alizarin red and quantitative analysis of solubilised Alizarin 

red staining showed no significant difference between WT and OptnD477N/D477N knock-

in mice osteoblasts. Coupling events between bone formation and resorption are 

crucial for bone maintenance (Sims and Martin, 2014).  The co-culture analysis carried 

out later by our group, showed that osteoblast cultures derived from D477N mutant 

mice had reduced capacity to support osteoclast differentiation than those osteoblast 

cultures derived from WT (Obaid et al., 2015). Furthermore, the analysis found the 

expression of two proosteoclastogenic cytokines including RANKL and IL-6 were 

significantly reduced in mutant osteoblasts compared with WT osteoblasts. These 

findings demonstrate that enhanced bone formation observed in vivo may occur as a 
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coupling mechanism due to enhanced bone resorption which is similar to the situation 

observed in PDB (Singer et al., 2006).  

      NFB is a crucial signalling pathway that regulates osteoclast formation, function, 

and survival (Abu-Amer, 2013). Interestingly, OPTN has been implicated in NFB 

signalling in previous studies (Nagabhushana et al., 2011; Zhu et al., 2007). In order 

to determine whether OPTN has the potential to affect the NFB pathway, a 

SteadyGlo-luciferase reporter assay system was used at the basal level and following 

RANKL stimulation to assess the NFκB activity in Optn-depleted BMDMs as well as 

in cells obtained from the D477N knock-in mice. The NFB activity was increased in 

Optn-depleted cell during osteoclast development. Similarly, the NFB activity was 

increased in cells obtained from OptnD477N/D477N mice compared to WT. On the other 

hand, there was no difference between BMDMs from OptnD477N/D477N mice and WT 

when measuring the IκBα phosphorylation induced by RANKL. This finding reflects 

the absence of difference in RANKL-induced NFκB activation in BMDMs. Similar 

results have been reported in several previous studies where there is no difference in 

the NFκB activation in BMDMs in response to different cytokines other than RANKL 

(Gleason et al., 2011; Munitic et al., 2013). Interestingly, a study of Cyld knock out 

mice also showed that the level of Cyld was low in BMDMs and no abnormalities of 

RANKL-induced NFκB activation were detected. After BMDMs being stimulated 

with RANKL, the NFκB activation was enhanced and the level of Cyld was also 

increased during osteoclast differentiation (Jin et al., 2008). These findings are 

consistent with the data presented in this study, where the expression of Optn was low 

in BMDMs and no significant difference was detected in RANKL-induced NFκB 

activation. When BMDMs were stimulated with RANKL, the NFκB activity was 

enhanced and Optn expression was increased as osteoclast differentiation proceeds. 

These data suggest that OPTN effect on RANKL-induced activation depends on cells 

type and on its expression level.  

      OPTN is a binding-partner of CYLD, which was found to interact with SQSTM1 

in macrophages and together deubiquitinate TRAF6 causing inhibition of NFB 
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signalling (Jin et al., 2008). Since the OptnD477N mutation is located in the region that 

binds Cyld, Optn was immunoprecipitated from BMDMs lysates before and after 

stimulation with RANKL and immunoblotted for Optn and Cyld. The findings show 

that Optn physically interacts with Cyld and the interaction was less pronounced in 

Optn mutant mice. This suggests that mutation of Optn causes an increase in the NFB 

activity at least in part by impairing the CYLD from deubiquinating TRAF6.  

7.1 Suggested mechanisms of OPTN effect on osteoclastogenesis 

      The main objective of this research is to confirm the implication of OPTN in bone 

biology and PDB. The findings of previous research indicate that OPTN is involved in 

NFB pathway in immune cells, bacterial and viral infection and autophagy. Another 

recent report shows that silencing of OPTN in neuroblastoma cell line enhances the 

TNF-mediated NFB activation that results in increased apoptosis (Shen et al., 

2011). In contrast, recent research into macrophages show that OPTN is dispensable 

for NFB pathway but rather is involved in IRF3 (Gleason et al., 2011; Munitic et al., 

2013). Despite its importance in these previous studies, the involvement of OPTN in 

RANKL signalling has not been investigated. Regardless of whether OPTN is directly 

involved in NFB pathway or not, the findings of this study show that OPTN may 

have a negative feedback regulation on RANKL-induced osteoclastogenesis. Based on 

the findings, and in addition to previous studies of OPTN and its binding partners, the 

following suggestions could explain the role of OPTN in pre-osteoclasts downstream 

the RANK signalling pathway.  

7.1.1 Suggested role of OPTN through deubiquitinating enzymes for 

regulating RANKL-induced NFκB activity   

     The data presented in this study yielded evidence for the implication of OPTN in 

bone metabolism but the mechanisms by which OPTN regulates bone turnover are 

complex and appear to involve several signalling pathways. A review of previous 

research on macrophages shows that OPTN-binding partners including CYLD and 

A20 are negative regulators of the RANK-signalling pathway and both have been 
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shown to be negative regulators of NFB activity (Jin et al., 2008; Matmati et al., 

2011). Therefore, OPTN could mediate the downregulation of NFB activity by 

interacting with these deubiquitinating enzymes. In light of this, OPTN was reported 

to inhibit the TNFα-induced NFB activity by recruiting deubiquitinating enzyme 

CYLD to interact with the RIP (Nagabhushana et al., 2011). In this study, Optn binding 

with Cyld has been confirmed in response to RANKL stimulation. Interestingly, 

CYLD has been shown to regulate the RANK-induced osteoclastogenesis. In a 

previous study, Cyld knockout mice developed osteoporosis-like phenotype as a result 

of increased osteoclast differentiation (Jin et al., 2008). In addition, Cyld-deficient 

BMDMs from these mice are hypersensitive to RANKL signalling and form more 

osteoclasts compared to WT upon stimulation with RANKL, and CYLD requires the 

SQSTM1/p62 to interact with TRAF6 (Figure 7-1).  

     Similarly, the other deubiquitination enzyme A20 has been shown to downregulate 

the NFκB signaling at the level of TRAF6 and myeloid-specific deletion of A20 in 

mice triggers an autoimmune disease resembling rheumatoid arthritis. BMDMs 

lacking A20 exhibit enhanced NFB activation and promote osteoclastogenesis in 

these mice (Matmati et al., 2011), however, further investigation is needed to prove 

the interaction with A20 in response to RANKL stimulation. 
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7.1.2 Suggested role of OPTN through TBK1/IKK 

      Studies on BMDMs showed that the expression of TBK1/IKK increased early in 

osteoclast differentiation in response to RANKL. Furthermore, TBK1/IKK was 

reported to interact with TANK and TRAF2, which in turn activate the NFB upstream 

of IKK/IKK. Additionally, TBK1/IKK is reported to activate the NFB through 

direct phosphorylation of p65 (Morton et al., 2008; Sun et al., 2013). These findings 

suggest a role for TBK1/IKK in osteoclastogenesis. OPTN is a binding partner for 

TBK1 and the role of OPTN in TBK1/IKK-NFB signalling pathway remains to be 

clarified.  

Figure 7-1: Suggested negative regulation of RANKL-induced NFB signaling by OPTN. 
TRAF6 becomes ubiquitinated and thus activated when RANKL binds to its receptor RANK, 
which may then stimulate canonical NFκB activity either through phosphorylation of TAK1 
or aPKC. This in turn leads to phosphorylation and activation of IKKβ, and subsequent 
degradation of the NFκB inhibitor subunit IκBα by proteasome. Librated p50/p65 complex 
then translocates to the nucleus and induces transcription. RANK-RANKL signalling also 
stimulate the non-canonical NFκB pathway by stimulating the NFκB inducing kinase (NIK), 
which activates IKKα homodimers and thereby phosphorylation of p100. Subsequently, 
p100 cleaved to generate an active p52 product, which translocates to the nucleus along 
with RelB to induce transcription. CYLD is a deubiquitinating enzyme that negatively 
regulates NFκB by removing polyubiquitin chains from several proteins including TRAF6. 
CYLD is a binding partner to OPTN, which may also negatively regulate the RANKL-
induced osteoclastogenesis through the interaction with CYLD. 
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7.1.3 Suggested role of OPTN through IFNβ signalling  

       Another suggestion is that OPTN may regulate bone turnover through the 

regulation of IFN. Previous studies showed that LPS-mediated activation of NFB 

and NFB dependent gene transcription was not impaired in OptnD477N/D477N when 

compared to WT (Gleason et al., 2011). The studies also reported diminished levels of 

TBK1 and IFN in BMDMs of OptnD477N/D477N mice, suggesting that OPTN through 

its UBD binds TBK1 via TLR3/4 stimulation, enhances phosphorylation of IRF3. This 

leads to increased production of IFN. These findings were reproduced in a recent 

study using another mouse model Optn470T  (Munitic et al., 2013). Another study 

showed that IFN receptor knockout mice have increased osteoclast numbers and 

osteopenia (Takayanagi et al., 2002b). In addition, it has been shown that RANKL 

stimulates IFN production in osteoclast precursor cells, which in turn inhibits the 

osteoclast differentiation by interfering with the expression of c-Fos (Takayanagi et 

al., 2002a). However, the induction of IFN mRNA by RANKL was not abolished 

from IRF-3/IRF-9-/- mice, which means the induction of IFN was not dependent on 

IFR3 (Takayanagi et al., 2002b) and therefore IFN gene induction mechanism differs 

from that induced by viruses. A possible explanation of how OPTN could regulate 

IFN is through the STAT1 pathway. STAT1 has been identified as an essential 

prerequisite for IFN expression and STAT1 deficiency also prevented RANKL-

induced IFN expression (Ha et al., 2008). Interestingly, IFN, which exerts its effects 

through STAT1 and IRF-1 and suppresses osteoclastogenesis by degrading TRAF6, 

which results in inhibition of the RANKL-induced osteoclastogenesis, has been shown 

to stimulate the induction of OPTN through the IRF-1 promoter found in the first intron 

of OPTN (Sudhakar et al., 2013; Takayanagi et al., 2000). Collectively, these findings 

suggest that OPTN could enhance the IFN production in response to RANKL in 

BMDMs through the regulation of interferon system (IFN--STAT1) and 

independently to IRF-3/IRF-9 pathway, which is caused by viral infection. 

Consequently, a defect in UBD of OPTN as in OptnD477N/D477N can lead to a fall in 

production of IFN and thereby enhance the osteoclast formation due to increased 

level of c-Fos. Further analysis will be required to confirm this hypothesis (Figure 7-
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2). Recent findings by Albagha lab demonstrated that the expression level of IFNβ 

induced by RANKL was significantly lower in OptnD477N/D477N mutant cells compared 

to those observed in WT. At the same time, they found the expression of c-Fos during 

later stages of osteoclast differentiation was higher in mutant cells compared to WT 

(Obaid et al., 2015). These findings indicate that OptnD477N mutation enhanced the 

osteoclast formation in vitro by reducing IFNβ expression, which in turn affects the 

expression level of c-Fos. These results partially confirmed the previous suggestion 

for the possibility of OPTN to regulate osteoclast differentiation through its 

implication in interferon signalling pathway. 

 

 

 

 

Figure 7-2: Suggested crosstalk between OPTN, RANKL and interferon system in 

regulation of osteoclast differentiation.  During inflammatory condition, IFN induces the 
ubiquitin-proteasome system, which exerts its inhibitory effect on RANKL signaling through 

STAT1 by the downregulation of TRAF6 expression. IFN also stimulates the induction of 
OPTN through the IRF-1. OPTN expression also enhanced in response to RANKL-induced 
NFκB activity since a putative NFκB binding site has been reported in OPTN promoter. 

Increased expression of OPTN in turn enhances the induction of IFN, which regulates the 
RANKL signaling by inhibiting the expression of c-Fos. 
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7.1.4 Suggested role of OPTN in MVNP mouse model for PDB 

      OPTN has also been implicated in viral infections (Journo et al., 2009; Mankouri 

et al., 2010), which have been suggested as one of the etiological factors for PDB 

because of the presence of nuclear inclusion bodies in Pagetic osteoclasts (Mills and 

Singer, 1976b). In MVNP mouse model, which is suggested as a model of Paget's 

disease, TBK1 plays a crucial role in mediating the impact of MVNP on osteoclast 

differentiation and formation. Moreover, TBK1/IKK have a role in innate immunity 

and when activated, TBK1/IKK phosphorylate the IRF3, which in turn activate the 

production of IFN (Sun et al., 2013). In view of this, the binding of OPTN to the 

polyubiquitin chain has recently been identified as essential for optimal activation of 

TBK1 and defective mutant in the polyubiquitin-binding of OPTN as in the 

OptnD477N/D477N model or insufficiency of Optn expression as in Optn470T model result 

in reduced activity of TBK1 and thus reduced IFNβ production (Gleason et al., 2011; 

Munitic et al., 2013). Therefore, OPTN may have a role in the viral etiological factor 

suggested for PDB. It is noteworthy that CYLD and OPTN were found complexed 

with TBK1/IKK and TANK, which has also been identified in innate immunity in 

response to viral infection as a negative regulator for antiviral signalling (Gao et al., 

2011). In addition, OPTN was found in a protein complex containing TBK1 and 

TRAF3, which is considered an essential complex in the IFN signalling (Mankouri 

et al., 2010). Further investigation will be necessary to explore how OPTN orchestrate 

the RANK signalling in osteoclasts beside the viral infection (Figure 1-12, Chapter 1).  
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7.2 Future Work  

      The findings of this study demonstrate for the first time the implication of OPTN 

in bone metabolism. This suggests a number of possibilities for future research that 

need to be pursued to increase understanding of the role of OPTN in bone metabolism.  

 Work is in progress to complete and expand the research outlined in this thesis. 

Another research topic would be to analyse the expression level of OPTN in 

PDB families linked to chromosome 10.   

 The results discussed in this study show that in most cases OptnD477N alone 

does not cause PDB-like phenotype. Therefore, it is necessary to investigate 

the role of OPTN on bone metabolism using an appropriate mouse model 

lacking OPTN. Recently, clustered regularly interspaced short palindromic 

repeats (CRISPR) RNA-guided Cas9 nucleases (CRISPR/Cas9) have emerged 

as a new tool for precisely and effectively introducing targeted loss-of-function 

mutations in a broad range of species as well as cell lines and primary cells 

(Harrison et al., 2014). This method also allows researchers to generate 

multiple knockouts of different genes (Wang et al., 2013). In light of these 

advances, the impact of complete knockout of OPTN alone or in combination 

with other mutations such as SQSTM1 mutations will provide a better 

understanding of how these mutations are implicated in the pathogenesis of 

PDB. A further useful method for investigating the pathogenesis of PDB is to 

use the induced pluripotent stem cells (iPSC) technique (Chen, 2014). This 

method is capable of generating iPSC from somatic cells of affected patients. 

These cells can proliferate in vitro in large numbers and have the ability to 

differentiate into any cell type of the body including osteoclasts. In this way, 

patient-specific cells, which carry the disease-causing mutations, can be used 

to dissect diseases in vitro instead of using genetically manipulated cells. 

Another potential line of inquiry is to explore the implication of other candidate 

genes and loci, which have been identified by GWAS as potential causes of 

PDB including CSF1, TNFRSF11A, TM7SF4 and 2 loci 7q33 and 15q24. 

Interestingly, recent data obtained by our group have identified several 
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missense coding variants in RIN3 that may contribute to PDB (Vallet et al., 

2015).    

 Another area for research is to investigate the role of OPTN downstream the 

RANKL/RANK signalling pathway. Further signalling pathways in bone need 

to be investigated using DNA microarray, which measures the 

expression levels of large numbers of genes including, in particular, those 

functioning as growth factors and genes mediating osteogenesis and related 

cell growth, proliferation, and differentiation processes and genes involved in 

the development of the skeletal system and bone mineral metabolism.  

 As outlined previously, autophagy is another suggested etiological factor for 

PDB and the role of OPTN in autophagy in bone is yet to be determined. To 

monitor autophagic activity, several methods are used in order to detect the 

number of autophagosome formed or to assess the autophagic flux (Mizushima 

et al., 2010). The methods used to detect the autophagosome formation require 

light microscopy to detect the subcellular localisation of LC3, electron 

microscopy to monitor endogenous LC3 and biochemical analysis to assess the 

LC3 processing by Western blot analysis. Several methods are also used to 

monitor the autophagic flux including a LC3 turnover assay that monitors 

degradation of LC3-II inside the autolysosome, degradation of autophagy-

selective substrates such as LC3 and p62, fluorescent microscopy to detect 

labeled autophagosomes and their maturation into autolysosomes, 

measurement of long-lived protein degradation and detection of the labeled 

fragment generated by the degradation of labeled-LC3 inside autolysosomes 

(Mizushima et al., 2010). Due to the dynamic nature of autophagy and the 

limitations of the various methods, use of several methods is required in order 

to achieve accurate findings and conclusions. In addition, precaution in 

interpretation data acquired from in vitro experiments must be taken into 

consideration, as environmental and homeostatic conditions are different 

depending on how isolated cells have been treated. For example, conditions of 

non-resorbing osteoclasts cultured on plastic are different from resorbing 

osteoclasts on bone (Hocking et al., 2012).     

http://en.wikipedia.org/wiki/Gene_Expression
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7.3  General conclusions  

      The results reported in this thesis demonstrate for the first time that OPTN is 

implicated in bone biology. The data also showed that OPTN variant identified by 

GWAS could be of clinical value in identifying SQSTM1-negative patients and can be 

used to predict levels of disease severity. The data also showed that Optn is expressed 

in osteoclasts and osteoblasts and the role of Optn in osteoclasts is more pronounced. 

OPTN acts as a negative regulator to RANKL-induced osteoclastogenesis and this 

could be through the effect on NFB activity. OPTN has no direct effect on osteoblasts 

but could enhance the osteoblast activity through its effect on osteoclasts in vivo. The 

mechanisms by which OPTN regulate bone turnover are complex but appear to 

involve: RANKL-induced NFB activation, an interaction with CYLD, an interaction 

with interferon system and viral infection. Furthermore, the role of OPTN was reported 

in autophagy and vesicular trafficking, and this needs further clarification as they are 

implicated in PDB. Further analysis will be required to explore the role of OPTN in 

osteoclast signalling as the regulatory effects of this gene are cell-type specific, it 

responds to several types of stimulants differently and it is dependent on its expression 

level and its ability to bind polyubiquitin. 
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Appendix 1: Materials, Apparatus and software  

 

Materials and reagents  Supplier  
1 ml pasteur pipette  Fisher Scientific, Leicestershire, UK  

1.5 ml eppendorf tubes with cap  Greiner Bio-One Inc, Gloucestershire, UK  

2-methoxyethyl acetate (MEA)  Sigma Aldrich, Dorset, UK  

2-Propanol  Sigma Aldrich, Dorset, UK  

Acetic Acid Glacial  Sigma Aldrich, Dorset, UK  

Agarose  Bioline  

alamarBlueTM reagent  Invitrogen, Paisley, UK  

Alizarin Red S  Sigma Aldrich, Dorset, UK  

Amersham HybondTM-P  
GE Healthcare Life Sciences, Buckinghamshire, 

UK  

Aniline Blue Sigma Aldrich, Dorset, UK 

Bicinchoninic acid (BCA) protein assay  Sigma Aldrich, Dorset, UK  

Bovine serum albumin  Sigma Aldrich, Dorset, UK  

Calcein  Sigma Aldrich, Dorset, UK  

Centrifuge tubes (15 and 50 ml)  Fisher Scientific, Leicestershire, UK  

Cetylpyridinium chloride  Sigma Aldrich, Dorset, UK  

Chloroform  Sigma Aldrich, Dorset, UK  

Cignal Lenti NFB reporter  SA Biosciences 

Collagenase (type 1A)  Sigma Aldrich, Dorset, UK  

Copper (II)-sulfate  Sigma Aldrich, Dorset, UK  

Cover slips  Scientific Laboratory supplies Ltd, Hessle, UK  

CriterionTM XT pre-cast gels (12% Bis-

Tris)  
Bio-Rad Laboratories, Hertfordshire, UK  

CTX serum assay (RatLapsTM EIA)  
Immunodiagnostic Systems Ltd. (IDS), Boldon 

Colliery, UK  

CYLD mAb Rabbit/IgG  Cell signalling  

DEPC Treated Water  Invitrogen, Paisley, UK  

DL-Dithiothreitol (DTT)  Sigma Aldrich, Dorset, UK  

DMSO  Sigma Aldrich, Dorset, UK  

DNA Ladder 1kb  New England Biolabs, Hitchin, Hertfordshire, UK  

DPX mounting medium  Sigma Aldrich, Dorset, UK  

DTT  Invitrogen, Paisley, UK  

Dulbecco's Modified Eagle Medium Fisher Scientific, Leicestershire, UK  
Dulbecco's Modified Eagle Medium + high 

glucose 

Fisher Scientific, Leicestershire, UK  

EDTA  Sigma Aldrich, Dorset, UK  

Electrophoresis power supply  Anachem, Bedfordshire, UK  

Embedding baskets  Leica Microsystems, Milton Keynes, UK  

Embedding molds  Custom-made by the University workshop  

Embedding rings  Leica Microsystems, Milton Keynes, UK  

Ethanol Absolute  Fisher Scientific, Leicestershire, UK  

Extra thick blot papers  Bio-Rad Laboratories, Hertfordshire, UK  

Fast Red  Sigma Aldrich, Dorset, UK 

Fetal calf serum (FCS)  Hyclone 

Filter Paper  Fisher Scientific, Leicestershire, UK  

Filter Tips Axygen  Thistle Scientific, Glasgow, UK  

Fuchsin Acid  Taab Lab, Berkshire, UK  

GenElute Mammalian Total RNA kit Sigma Aldrich, Dorset, UK 

Glycine  BDH Laboratory Supplies, Poole, Dorset, UK  

Hanks buffer (HBSS)  Sigma Aldrich, Dorset, UK  
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HiPure Plasmid Midiprep Kit 

 
Invitrogen, Paisley, UK  

HistoResin Mounting Medium (solution and 

powder)  
Leica Microsystems, Milton Keynes, UK  

Hydrochloric acid  BDH Laboratory Supplies, Poole, Dorset, UK  

Hydroquinone Sigma Aldrich, Dorset, UK 

Isopropanol  Sigma Aldrich, Dorset, UK  

Kaleidoscope  Bio-Rad Laboratories, Hertfordshire, UK  

Kisol foil  Taab Lab, Berkshire, UK  

Knife 16cm long tungsten carbide tipped 

profile D  
Leica Microsystems, Milton Keynes, UK  

Knife Holder NZ  Leica Microsystems, Milton Keynes, UK  

Lenti-X Concentrator  ClonTech 

Lenti-X GoStix  ClonTech 

L-Glutamine  Invitrogen, Paisley, UK  

Low molecular weight DNA ladder  New England Biolabs, Hitchin, Hertfordshire, UK  

Magic Marker  Invitrogen, Paisley, UK  

Magnesium chloride  Sigma Aldrich, Dorset, UK  

M-CSF  Prospec Tech 

Methanol  Fisher Scientific, Leicestershire, UK  

Methyl Methacrylate  Sigma Aldrich, Dorset, UK  

Microtubes (0.5, 1.5, 2 ml)  Sarstedt Ltd, Leicester, UK  

Minimum Essential Medium (αMEM)  Sigma Aldrich, Dorset, UK  

Mission mouse Optn shRNA pLKO.1-puro 

clones 
Sigma Aldrich, Dorset, UK 

N,N-Dimethylformamide  Fisher Scientific, Leicestershire, UK  

N,N-dimethyl-p-toluidine  Leica Microsystems, Milton Keynes, UK  

Napthol-AS-BI-phosphate  Sigma Aldrich, Dorset, UK  

Needles (19, 21 and 25G)  Fisher Scientific, Leicestershire, UK  

Neubauer Haemocytometer  Hawksley, Lancing, UK  

Nitrile gloves  Fisher Scientific, Leicestershire, UK  

Optineurin pAb Rabbit/IgG Abcam  

Optineurin pAb Rabbit/IgG Cayman 

Paraformaldehyde  Taab Lab, Berkshire, UK  

Pararosanilin  Sigma Aldrich, Dorset, UK  

PBS tablets  Invitrogen, Paisley, UK  

PCR lid strip  Fisher Scientific, Leicestershire, UK  

PCR microplate 96 well and lids  Fisher Scientific, Leicestershire, UK  

PCR microtubes  Fisher Scientific, Leicestershire, UK  

PCR primers  Invitrogen, Paisley, UK  

Penicillin/Streptomycin  Invitrogen, Paisley, UK  

Petri Dishes  Becton Dickinson, Berkshire, UK  

Phospho-IκBα mAb Rabbit/IgG Cell Signalling  

Phosphotungstic acid Sigma Aldrich, Dorset, UK 

Picric acid Sigma Aldrich, Dorset, UK 

PINP serum assay (Rat/Mouse PINP EIA)  
Immunodiagnostic Systems Ltd. (IDS), Boldon 

Colliery, UK  

Pipette tips (all sizes)  Starlab, Milton Keynes, UK  

Polysciences Silane coated microscope slides  Park Scientific Ltd., Northampton, UK  

Protein G- agarose  Calbiochem 

Puromycin  GIBCO 

QIAprep Spin Miniprep Kit Qiagen 

QIAquick PCR Purification Kit  Qiagen (UK), West Sussex, UK  
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qScript™ cDNA SuperMix Quanta BioSciences 

Quant-iT RiboGreen RAN  Invitrogen, Paisley, UK  

Rabbit Anti-Actin (AA20-33) IgG  Sigma Aldrich, Dorset, UK  

RANKL human recombinant  Gift from Dr. Patrick Mollat (Proskelia SASU)  

RipoPure-Blood Kit Ambion 

RNase-free water  Invitrogen, Paisley, UK  

Scalpel, disposable  VWR International LTD, Leicestershire, UK  

SensiFast Probe No-ROX kit Bioline 

Silver nitrate  Sigma Aldrich, Dorset, UK  

Slide press cover slips  Taab Lab, Berkshire, UK  

Sodium acetate anhydrous  Sigma Aldrich, Dorset, UK  

Sodium barbiturate  BDH Laboratory Supplies, Poole, Dorset, UK  

Sodium chloride  Sigma Aldrich, Dorset, UK  

Sodium dodecyl sulphate (SDS)  Bio-Rad Laboratories, Hertfordshire, UK  

Sodium hydroxide  VWR International LTD, Leicestershire, UK  

Sodium phosphate  Sigma Aldrich, Dorset, UK  

Sodium tartrate dibasic dihydrate  Sigma Aldrich, Dorset, UK  

Sodium tetraborate  BDH Laboratory Supplies, Poole, Dorset, UK  

Steady Glo Luciferase Assay  Promega 

Steel Knife 16cm  Leica Microsystems, Milton Keynes, UK  

Sterile filter (0.45μm)  
Sartorius Mechatronics UK Ltd., Epsom Surrey, 

UK  

Stripettes (5, 10, 25 and 50 ml)  Sarstedt Ltd, Leicester, UK  

SuperSignal West Dura Extended Duration 

Substrate  
Fisher Scientific, Leicestershire, UK  

Syngene BIO imaging system  Syngene BIO imaging 

Syringes (all sizes)  Becton Dickinson, Berkshire, UK  

Taq DNA Polymerase  Invitrogen, Paisley, UK  

TBE buffer 10X  Invitrogen, Paisley, UK  

Tissue culture 75cm2 flasks  Fisher Scientific, Leicestershire, UK  

Tissue culture microplates (6, 12, 24, 48 and 

96-well plates)  
Fisher Scientific, Leicestershire, UK  

Toluidine Blue  Sigma Aldrich, Dorset, UK  

Trans-lenti Viral Packaging Mix and 

reagents  
Thermo scientific Open Biosystem  

Tris  Bio-Rad Laboratories, Hertfordshire, UK  

Tris-EDTA buffer  Sigma Aldrich, Dorset, UK  

Trypsin/EDTA  Sigma Aldrich, Dorset, UK  

Tween-20  Bio-Rad Laboratories, Hertfordshire, UK  

UPL probes  Roche Diagnostics Ltd., East Sussex, UK  

UV 96 well plates for plate reader  Fisher Scientific, Leicestershire, UK  

Van Gieson stain TAAP 

Vitamin C (Ascorbic acid)  Sigma Aldrich 

XT-MOPS  Bio-Rad Laboratories, Hertfordshire, UK  

Xylene  Sigma Aldrich, Dorset, UK  

β-glycerophosphate  Sigma Aldrich, Dorset, UK  
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Software used in this thesis Supplier  
Aphelion Image Analysis tool kit  ADCIS, Hérouville-Saint-Clair, France  

Bio-Tek Gen5TM plate reader software  Fisher Scientific, Leicestershire, UK  

Chromas Pro Technelysium  

GeneMarker software  Softgenetics 

ImageJ  U. S. National Institutes of Health Bethesda, MA-US  

Minitab 16  Minitab LTD  

Opticon Monitor analysis software version 3  Genetic Research Instrumentation Ltd (GRI), Essex, UK  

QCapture Pro software  Media Cybernetics UK, Berkshire, UK  

Skyscan 1172 MicroCT software  SKYSCAN, Kontich, Belgium  

Skyscan CTAn analysis software  SKYSCAN, Kontich, Belgium  

Skyscan CTVol software  SKYSCAN, Kontich, Belgium  

Skyscan NRecon reconstruction system  SKYSCAN, Kontich, Belgium  

Syngene GeneSnap software  Fisher Scientific, Leicestershire, UK  

Syngene GeneTool software  Fisher Scientific, Leicestershire, UK  

 

  

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCYQFjAA&url=http%3A%2F%2Fwww.softgenetics.com%2FGeneMarker.html&ei=mpY7VJaXIYnY7Ab3kYDACA&usg=AFQjCNGgTehhVkFbCYSLYdLt9GY-ljRHuw&sig2=hZwoVqV03akfd8IvhkAFNw
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Apparatus used in this thesis Supplier  
AA Hoefer protein transfer apparatus  Fisher Scientific, Leicestershire, UK  

Automatic tissue processor  Leica Microsystems, Milton Keynes, UK  

AxioImager A1 upright research microscope  µCarl Zeiss Ltd., Hertfordshire, UK  

Axiovert 200 inverted research Microcope  Carl Zeiss Ltd., Hertfordshire, UK  

Axiovert inverted microscope 40 CFL Carl Zeiss Ltd., Hertfordshire, UK  

Balancer Fisherbrand  Fisher Scientific, Leicestershire, UK  

Bench-top Eppendorf centrifuge  Fisher Scientific, Leicestershire, UK  

Bio-Tek Synergy HT plate reader  Fisher Scientific, Leicestershire, UK  

Class II microbiological safety cabinet Biomart  

CO2 Incubators Cell 240  Heraeus 

Electrophoresis tanks  Fisher Scientific, Leicestershire, UK  

Grant OLS 200 water bath  Thistle Scientific, Glasgow, UK  

Heat Block  Grant 

Hotplate/stirrer  Thistle Scientific, Glasgow, UK  

Ice Maker  Scotsman AF 103 

MJ Research Chromo 4 Real Time PCR 

thermocycler  

Genetic Research Instrumentation Ltd (GRI), 

Essex, UK  

MJ Research Tetrad Thermal cycler  
Genetic Research Instrumentation Ltd (GRI), 

Essex, UK  

Nitchipet and Gilson Pipettes (2, 10, 100, 200 and 

1000μl)  
Thistle Scientific, Glasgow, UK  

NuAir Class II Biological safety cabinet  TripleRed Ltd., Buckinghamshire, UK  

PowerPac basicTM  Bio-Rad Laboratories, Hertfordshire, UK  

Refrigerated centrifuges Sigma 

Rockin Table  Biometra 

Rotary Microtome  Leica Microsystems, Milton Keynes, UK  

Rotary tool  Dremel UK, Uxbridge, UK  

SkyScan 1172 X-ray Microtomography system  SKYSCAN, Kontich, Belgium  

SkyScan 1176 in-vivo µCT  SKYSCAN, Kontich, Belgium  

Syngene GeneGenius Gel Bio-Imaging system  Fisher Scientific, Leicestershire, UK  

SynSyngene GeneGnome Bio-Imaging system for 

chemiluminescence  
Fisher Scientific, Leicestershire, UK  

Tube Rotator  Stuart 

Vortex  Thistle Scientific, Glasgow, UK  

Water Bath Grant 
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Appendix 2: Solutions and Recipes 

 

 

 

 

Appendix 2.1 Solutions for TRAcP staining 
 

Naphthol-AS-BI-phosphate  
10 mg/ml Naphthol-AS-BI-phosphate in Dimethylformamide  

 

Veronal buffer  
1.17 g sodium acetate anhydrous and 2.94g sodium barbiturate both dissolved in 100 ml 

of dH2O  

 

Acetate buffer  
0.82 g sodium acetate anhydrous dissolved in 100 ml of dH2O and pH adjusted to 5.2 

with 0.6 ml glacial acetic acid made up to 100 ml with dH2O  

 

Pararosanilin  
1 g Pararosanilin dissolved in 20 ml of dH2O and 5 ml of 5M HCl added to it  

The solution was heated carefully whilst stirring and filtered after cooling.  

 

TRAcP Staining Solution  
The TRAcP staining solution was freshly prepared by mixing solution A and B as 

outlined below.  

 

Solution A  
150 ml of Napthol-AS-BI-phosphate  

750 ml of Veronal buffer  

900 ml Acetate buffer  

900 ml Acetate buffer with 100 mM Sodium Tartate  

 

Solution B  
120 ml of Pararosanilin  

120 ml of Sodium Nitrate (4% w/v) 
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Appendix 2.2: Solutions for Histology 

Infiltrating solution  
89 g MMA, 10 g Dibutyl phthalate, 1 g Perkadox 16, and 0.01 g Novoscave for 

100 g of infiltration solution  

 

TRAcP stain with Aniline Blue counterstain  

TRAcP solution  

70 mg Napthol AS-TR Phosphate, 250 µl N-N Dimethyl formanide, 50 ml 0.2M 

Sodium Acetate Buffer pH5.2, 155 mg Sodium Tartrate dehydrate and 70 Fast 

Red Salt TR For 50 ml of TRAcP solution.  

Aniline Blue counterstain  

0.166 g Aniline Blue, 3 g for Phosphotungstic Acid and 500 ml dH20 

 

VON KOSSA with Van Gieson Counterstain 

Working solutions  

1% aqueous silver nitrate,  

0.5 % hydroquinone  

 

Van Gieson Counterstain: 

50 ml Saturated Aqueous  picric  acid, 1% Aqueous acid fuchsine (9 ml) and 50 

ml dH20. 

 

Aniline Blue without Phosphotungstic Acid for Calcein labelling   

0.1 g Aniline Blue and 150 ml dH20    

Appendix 2.3: 2X LB broth (low salt) media preparation  

10 g/l Enzymatic Digest of Casein, 10 g/l Yeast Extract, 10 g/l Peptone and 5 g/l 

Sodium Chloride with a final pH: 7.3 ± 0.2 at 25°C.  
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Appendix 2.4: Solutions for Western Blot 

Electrophoresis running buffer  

50 ml of XT-MOPS (20X) in 1000 ml of dH2O  

 

Samples loading protein buffer (5X stock)  

5.2 ml of 1M Tris-HCl pH adjusted to 6.8, 1 g of DL-Dithiothreitol (DTT), 3 g 

SDS, 6.5 ml glycerol and 130 l of 10% (w/v) Bromophenol Blue.  

 

Transfer buffer  

3.63 g of Tris, 14.4g of Glycine, 200 ml of Methanol and 3.75 ml of 10% (w/v) 

SDS made up to 1000 ml with dH2O.  

 

TBS  

1 M of Tris and 1 M Tris-HCl. pH adjusted to 7.9 prior to addition of 3 M Sodium 

Chloride. Stored at room temperature.  

 

TBST  

0.1% (v/v) Tween-20 in TBS.  

 

Stripping buffer  

1 mM DTT, 2% (w/v) SDS and 62.5 mM Tris-HCl (pH 6.7). 
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Appendix 3: Abstracts and Publications  
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