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Abstract

We performed a genetic association study of rare variants and single nucleotide polymorphisms 

(SNPs) of UCMA/GRP and OPTN genes, in French-Canadian patients with Paget’s disease of 

bone (PDB) and in healthy controls from the same population. We reproduced the variant found in 

the UCMA/GRP basal promoter and tested its functionality using in vitro transient transfection 

assays. Interestingly, this SNP rs17152980 appears to affect the transcription level of UCMA/
GRP. In addition, we have identified five rare genetic variants in UCMA/GRP gene, four of them 

being population-specific, although none were found to be associated with PDB. Six Tag SNPs of 

UCMA/GRP gene were associated with PDB, particularly the SNP rs17152980 (uncorrected 

P=3.8 × 10−3), although not significant after Bonferroni’s correction. More importantly, we 

replicated the strong and statistically significant genetic association of two SNPs of the OPTN 
gene, the rs1561570 (uncorrected P=5.7 × 10−7) and the rs2095388 (uncorrected P=4.9 × 10−3), 

with PDB. In addition, we identified a very rare variant found to be located close to the basal 

promoter of the OPTN gene, at −232 bp from its distal transcription start site. Furthermore, 

depending on the type of allele present (G or A), the binding of several important nuclear factors 

such as the vitamin D or the retinoic acid receptors is predicted to be altered at this position, 

suggesting a significant effect in the regulation of transcription of the OPTN gene. In conclusion, 

we identified a functional SNP located in the basal promoter of the UCMA/GRP gene which 

provided a weak genetic association with PDB. In addition, we replicated the strong genetic 

association of two already known SNPs of the OPTN gene, with PDB in a founder effect 

population. We also identified a very rare variant in the promoter of OPTN, and through 
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bioinformatic analysis, identified putative transcription factor binding sites likely to affect OPTN 
gene transcription.
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regulation

Introduction

Paget’s disease of bone (PDB) is the second most frequent metabolic bone disorder after 

osteoporosis. The prevalence of PDB increases with age, affecting up to three percent of 

adults over 55 years of age [1]. PDB is characterized by focal increases in bone turnover, 

resulting in abnormal bone architecture and weakened bone strength. Approximately 30% of 

PDB patients experience disabilities due to bone pain, osteoarthritis secondary to bone 

deformities, fractures, or nerve root compression [2]. Genetic factors play a key role in PDB, 

and one-third of patients with PDB have a familial form transmitted in an autosomal 

dominant pattern of inheritance with incomplete penetrance [3]. Genetic heterogeneity has 

been demonstrated in familial forms of PDB, which have been linked to several 

chromosomal regions. In the 5q35-qter (PDB3) locus [4], the first and still most common 

mutation, P392L, within the Sequestosome 1 (SQSTM1) gene was reported in French-

Canadian PDB patients [5]. The 10p13 (PDB6) locus was suggested in a genome-wide scan 

linkage analysis in British PDB families [6, 7], but no PDB-causing mutation has been 

reported in this locus until now. Furthermore, this locus was not suggested either in the 

genome-wide scan of three French-Canadian families, who were linked to PDB3 in one 

family and to the PDB4 locus in the two others [4]. However, linkage to PDB6 was not 

investigated in the remaining PDB families in the French-Canadian population. Albagha et 
al. reported recently that the stronger association, within the 10p13 (PDB6) locus, was with 

three single nucleotide polymorphisms (SNPs), particularly the rs1561570 which is located 

in the Optineurin (OPTN) gene [8]. This genetic association with the gene, coding for a 

NEMO-related protein, was already known to be mutated in two other aging-related 

disorders: adult-onset primary open angle glaucoma and amyotrophic lateral sclerosis [9, 

10]; it was further confirmed with PDB in replication studies [11, 12].

The Upper zone of growth plate and Cartilage Matrix Associated/Gla-Rich Protein (UCMA/
GRP) gene, located within the linkage interval of the 10p13 (PDB6) locus, only 83kb distant 

from the OPTN gene, encodes a recently described vitamin K-dependent protein, which was 

suggested to be a modulator of calcium in the extracellular environment [13]. This highly 

conserved protein may be involved in the negative control of osteogenic differentiation of 

osteochondrogenic precursor cells in peripheral zones of fetal cartilage and at the cartilage-

bone interface as well as in the early phase of chondrocyte differentiation [14, 15]. More 

recently, the UCMA/GRP protein was suggested to directly influence mineral formation and 

to play a role in processes involving soft tissue mineralization and abnormal calcification in 

the vascular system [16]. Investigation for alternatively spliced transcripts of UCMA/GRP in 

mice led to the identification of 4 isoforms, two of them probably secreted and two others 
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reported to form aggregates in a structure similar to aggresome, an organelle where 

aggregated proteins are stored or degraded by autophagy [17]. Interestingly, the catabolic 

process of macroautophagy may be involved in PDB pathophysiology since SQSTM1/p62 

protein plays a central role in autophagy, acting as an adaptor allowing specific molecules to 

undergo selective degradation by autophagy [18, 19]. The UCMA/GRP gene was then 

considered as a candidate gene of PDB because of its location within the PDB6 linkage 

interval and its proposed functions in the negative control of osteogenic differentiation, in 

modulation of mineral formation and maybe in autophagy processes (reviewed in [20]). In 

the present study, we performed a genetic association study of the UCMA/GRP gene and of 

the OPTN gene, in French-Canadian patients affected by PDB and in healthy controls from 

the same population. Taking advantage of the influence of genetic drift and the strong 

founder effect of the French-Canadian population, we first performed bidirectional 

sequencing to search for rare variants in coding sequences, exon-intron boundaries and in 

the basal promoter of UCMA/GRP and OPTN genes. Second, we genotyped Tag single 

nucleotide polymorphisms (Tag SNPs) and rare variants identified to test for genetic 

association with each variant separately, followed by haplotype analysis. We also analyzed 

the structure of all known isoforms for OPTN and identified, through bioinformatic analysis, 

several isoforms derived from alternative promoter usage or alternative splicing. These 

allowed us to position the rare variant identified for this gene within its distal promoter and 

predict its involvement in the transcription regulation of this gene. Finally, we performed 

functional in vitro studies to determine the effect of the variant rs17152980 found in the 

UCMA/GRP basal promoter on transcription transactivation of this gene.

Materials and methods

Patients

The present study was approved by the Centre Hospitalier de l’Université Laval (CHUL) 

Ethics Committee and by the Columbia University Medical Center Institutional Review 

Board. All individuals signed an informed-consent document before entering in the study. 

Phenotype assessment comprised a complete bone evaluation, including total serum alkaline 

phosphatase, a total body bone scan and skull and pelvis x-rays. We investigated patients 

with familial form of PDB (one patient per family), unrelated PDB patients and healthy 

controls, all from the French-Canadian population. Unrelated PDB patients, living in the 

New York City area, with a more heterogeneous genetic background and no founder effect 

population, were used for comparison to the French-Canadian population. Clinical 

characteristics of these cohorts were previously published [3, 5, 21]. For each individual, 

peripheral blood was obtained by venipuncture and DNA was extracted from blood samples, 

using standard procedures. All patients and healthy donors studied here were non-carrier of 

the P392L mutation within the SQTM1 gene (PDB3 locus).

UCMA/GRP and OPTN sequencing

To search for rare variants, the exons of UCMA/GRP and OPTN genes, their exon-intron 

boundaries and the basal promoters were PCR amplified. Amplification products were 

purified before bidirectional sequencing on a 3730 ABI sequencer using the Big Dye Deoxy 

Terminator Cycle Sequencing kit (ABI). Both strands were analyzed using STADEN 
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package 1.1 [22]. We considered here the DNA coding strand (mRNA like strand) as the 

reference sequence, corresponding to the minus strand for UCMA/GRP and the plus strand 

for OPTN. Rare variants were suggested in the presence of a nucleotide variation not 

reported in the SNP database of the NCBI web site (http://www.ncbi.nlm.nih.gov/snp). We 

sequenced a first sample consisting of 31 PDB patients, each one belonging to a different 

PDB multiplex family (five of them were previously linked to the PDB4 locus), and four 

healthy controls from the French-Canadian population. Seventy unrelated PDB patients from 

the New York population were further sequenced for the promoter and exons 2-3 of 

UCMA/GRP gene PCR products in which rare variants were suggested in the first sample to 

estimate whether suggested rare variants were population-specific. In patients with a familial 

form of PDB in which rare variants were suggested, PCR products from several available 

relatives were further sequenced in order to investigate if those rare variants segregated with 

the disease within the family. For the association study, all rare variants identified in at least 

one PDB patient were further determined by bidirectional sequencing in 240 unrelated PDB 

patients and 297 unrelated healthy controls from the French-Canadian population.

Tag SNPs selection, genotyping and in silico prediction of function

Tag SNPs selection was based on the data provided by the HAPMAP database (http://

www.hapmap.org/). We selected a region of 28.01 kb surrounding UCMA/GRP gene 

(HapMap Data Phase III/Rel#2, Feb09, on NCBI B36 assembly, dbSNP b126; 

chr10:13301779..13329790). We selected Tag SNPs with minor allele frequency ≥0.05 and 

r2 at 0.8, picked out for the population CEU, with the aggressive Tagger program. 

Genotyping of the Tag SNPs was performed by Sequenom MassARRAY SNP Multiplex 

Technology in unrelated PDB patients and healthy controls from the French-Canadian 

population. Purified DNA solution containing multiplexed primer-based extension reaction 

(iPLEX reaction) products was dispensed from the 384-well microplate onto a 384-pad 

silicon microchip using the MassARRAY nanodispenser. The mass of each SNP allele was 

detected on the MassARRAY Compact MALDI-TOF (Matrix-Assisted Laser Desorption/

Ionization - Time of Flight) mass spectrometer, and the results were analyzed with 

MassARRAY Typer software. Duplicated samples were included to verify the allele calls. 

All Tag SNPs and rare variants were in Hardy-Weinberg equilibrium, except rs17152975 

which was removed from the analyses. The three SNPs of the OPTN gene previously 

reported to be associated with PDB [8], i.e. rs1561570, rs825411 and rs2095388, were also 

genotyped by the use of the same method and technology. In silico prediction of function 

was searched by Human Splicing Finder (http://www.umd.be/HSF/) [23] for each intronic 

rare variant or PDB-associated SNP and by TFsearch for variants located in promoter or 

flanking regions (http://www.cbrc.jp/research/db/TFSEARCH.html).

Haplotype analyses

Haplotypes composed of the Tag SNPs with an uncorrected P ≤ 0.05 in the genetic 

association study by individual Tag SNP of the UCMA/GRP gene, of the OPTN gene and of 

both UCMA/GRP and OPTN genes, were inferred in nineteen nuclei of French-Canadian 

PDB families by the use of SIMWALK 2.89. Then we inferred haplotypes by Bayesian 

inference with PHASE software in the sample of unrelated PDB patients and unrelated 

healthy controls from the French-Canadian population. Although the UCMA/GRP gene was 
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only 83kb distant from the OPTN gene, the HAPMAP linkage disequilibrium plots in this 

region (Figure 1) indicated that both genes were located in different blocks and possible 

recombination hot spots>20cM/Mb were recently reported in the literature between OPTN, 
and MCM10 and UCMA/GRP genes [8].

Power calculation

The power of our sample of 240 PDB patients and 297 healthy controls to provide an 

association with an OR ≥ 1.5 is of 85% considering the hypothesis of one gene following an 

additive model of inheritance with a risk allele frequency of 0.25, as determined by the use 

of the computer program QUANTO 1.2.4 (http://hydra.usc.edu/gxe).

Statistical analysis

We tested for genetic association for each Tag SNP and each rare variant separately in the 

UCMA/GRP and the OPTN genes, between PDB patients and healthy controls. Allelic ORs, 

95% Confidence Interval and P values (df=1) were calculated. Further genotype relative 

risks (RR) were calculated in case of uncorrected P-value of < 0.01 in the comparison of 

minor allele frequencies. Search for genotype-phenotype correlations, relying on Chi-

squared or Fisher exact tests when appropriate for nominal values and t test for continuous 

variables, were performed for the most significantly PDB-associated SNP in each gene. 

Conservative Bonferroni correction was applied for multiple testing. Haplotype analyses 

relied first on a WHAP omnibus analysis, in which all haplotypes with a frequency ≥1% 

were handled simultaneously. In case of P-value of the omnibus analysis <0.05, a haplotype-

specific analysis (df=1) was performed for the UCMA/GRP gene, for the OPTN gene and 

for both UCMA/GRP and OPTN genes [8].

Real-time quantitative PCR of the UCMA/GRP gene

In order to test if the most strongly associated Tag SNP of the UCMA/GRP promoter, 

rs17152980, had an impact on gene expression, total intracellular RNA from whole blood 

was extracted by the use of the PAXgene Blood RNA kit from PAXgene Blood RNA tubes 

(Qiagen) in 45 PDB patients and 43 healthy donors. Total RNA was measured in duplicate 

by Nano Drop and RNA quality was validated by Bioanalyzer (Agilent). Primers for the 

UCMA/GRP gene were designed by the use of the GeneTools software (Biotools Inc.), 

sense GCGAGTGAAGATGCAAAACAGAAGATT and antisense 

CCTCGTAATATTCTCTCCGCAGCT, and were synthesized by Integrated DNA 

Technologies. cDNA was synthesized by reverse transcriptase using 0.5–3 μg of total RNA 

in a reaction containing 200 U of Superscript III Rnase H-RT (Invitrogen Life 

Technologies). A quantity of cDNA corresponding to 20 ng of total RNA was used for the 

quantification of mRNA, by the use of a LightCycler 480 (Roche Diagnostics). G6PD, PPIB 
and 18S genes were used as internal controls. The LightCycler 480 v1.5 software was used 

to determine the Crossing point by the second derivative calculation, as previously reported 

[24]. Real-time quantitative PCR analyses were performed by the Q_RTPCR platform of the 

CHUQ research centre (Quebec City, QC, Canada).
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Cloning of the human UCMA/GRP promoter variants in the reporter vector

A 1.8 kb fragment of the UCMA/GRP promoter was amplified from human genomic DNA 

using the primer set 5′-TAAATAGACATGGGGGTCTCGCTA-3′ and 5′-

TTGCAGAGGTAGGGGCTCCG-3′. The amplified PCR product was cloned into 

pCRIITOPO (Invitrogen) and the fidelity of the sequence was confirmed by DNA 

sequencing. This 1.8 kb insert, ranging from −1705 to +71 of the UCMA/GRP gene and 

corresponding to the C allele, was then cloned between the XhoI and HindIII sites of the 

pGL3-Basic luciferase reporter gene vector (Promega), resulting in the pHsGRP(−493C) 

construct. A point mutation in this sequence was generated by PCR using the QuickChange 

Lightning site-directed mutagenesis kit (Stratagene), and primers: 5′-

TCCAGTCATTATGAGCCCTTGTTGACTGACATTTAGATCAA-3′ (forward) and 5′-

TTGATCTAAATGTCAGTCAACAAGGGCTCATAATGACTGGA-3′ (reverse) according 

to the manufacturer’s protocol. Mutated bases are indicated in bold. Mutations in the 

resulting construct were confirmed by DNA sequencing. The resulting plasmid construct 

was named pHsGRP(−493G) and contains a 1-bp mutation corresponding to the 

polymorphism identified in the UCMA/GRP promoter at position −493 (G allele). The Sox2 

expression plasmid pCMV-Taq2-Sox2 was the generous gift of Dr. Alka Mansukhani (New 

York University School of Medicine).

Cell transfections

Human embryonic kidney HEK 293 cells cultured on 12 well plates were transiently 

transfected using the standard calcium phosphate coprecipitation technique, with 20, 100, 

200 or 500ng of either UCMA/GRP reporter gene pHsGRP(−493G or −493C) or empty 

reporter vector (pGL3-basic, 500ng), at a total concentration of 2μg DNA per well. A renilla 

luciferase reporter (Promega), 20 ng/well, was used to control for transfection efficiency. 

Co-transfection of an additional expression construct (50ng) was performed using a similar 

approach. Cells were maintained in Dulbecco’s modified eagle medium (DMEM) 

supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. Cells were 

lysed and luciferase activity was assayed using a Dual-luciferase Reporter Assay kit 

(Promega) in accordance with the manufacturer’s instructions. All luciferase activities were 

normalized to the Renilla luciferase reporter pRL-TK Luc plasmid (Promega).

Comparative promoter transcription factor-binding sites (TFBSs) analysis

A set of thirteen mammalian UCMA/GRP genes, derived from human (Homo sapiens), 

Ord’s kangaroo rat (Dipodomys ordii), American pikas (Ochotona princeps), African 

elephant (Loxodonta africana), common bottlenose dolphin (Tursiops truncatus), dog (Canis 
familiaris), bat (Pteropus vampyrus), gorilla (Gorilla gorilla), chimpanzee (Pan troglodytes), 

common marmoset (Callithrix jacchus), rhesus monkey (Macaca mulatta), gray mouse lemur 

(Microcebus murinus), and mouse (Mus musculus) were selected for this analysis. For each 

promoter pair (human plus other species), the DNA Block Aligner (DBA) software (http://

www.ebi.ac.uk/Tools/Wise2) was used to extract conserved blocks of nucleotide sequences 

using the default parameter settings. The promoter sequences were then assessed for the 

TFBSs by running the web-based prediction program MatInspector (http://
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www.genomatix.de/), with thresholds for core and matrix similarity set to 0.85 and 0.90, 

respectively.

Collection of OPTN sequences and promoter analysis

For the analysis of the OPTN gene and the different transcripts the Ensembl genome and 

NCBI databases were used. The promoter sequences were assessed for the TFBSs by 

running MatInspector, with thresholds for core and matrix similarity set to 0.85 and 0.90, 

respectively.

Results

Rare variant identification

Bidirectional sequencing in the discovery sample allowed us to identify in the UCMA/GRP 
gene, fourteen SNPs already reported in the SNP database (NCBI), and five variants 

previously unknown: three were detected in the promoter, in intron 2 and in intron 3, 

respectively. A deletion GT/− at position −618 was identified in three healthy individuals, 

but absent from PDB patients. This variant was unlikely to be associated with PDB and was 

not further investigated in the genetic association study. A second variant in the promoter, 

−448C/T, was identified in a PDB patient with a familial form of the disease but was absent 

from healthy controls. Further sequencing of available relatives of this patient showed that 

the −448C/T variant did not segregate with the affected phenotype in family and was 

unlikely to be a PDB causal mutation. However, this promoter rare variant may be 

functionally relevant through dominant effects on UCMA/GRP gene expression. The third 

variant in the promoter, −222C/T, was identified in a French-Canadian patient, and was 

absent from controls. This −222C/T variant was considered as a possible rare variant with 

functional relevance on gene expression. The variant in intron 2, IVS2+20A/C, was 

identified in a French-Canadian patient, and was absent from healthy controls. The change 

of the A into the C allele of this variant was in silico predicted to create a potential new 

acceptor site for splicing (new splice motif cccccggggcagGG) and to break a potential 

branch point (loss of branch point motif cacccAc), therefore this variant was further 

investigated in the genetic association study with PDB. The last identified variant was 

located in the intron 3, IVS3+56C/T, and was in silico predicted to break a potential branch 

point (loss of branch point motif cccccCg). This variant is the only rare variant which was 

not French-Canadian population-specific, since it was identified in one French-Canadian 

patient and in one PDB patient from the New York population, but was absent from healthy 

controls.

Bidirectional sequencing of the OPTN gene in the discovery sample allowed us to identify 

eleven SNPs already reported in the SNP database (NCBI) (Table 1), and one unknown 

variant located in the OPTN 5′ flanking region (−9906G/A) identified in one French-

Canadian patient and absent from controls. Analysis of the structure of the various OPTN 
transcripts present in public databases allowed us to locate this variant within −232bp of the 

most distal transcription start site of this gene and therefore within a basal promoter region 

(Supplementary Fig 1 and Fig 2). We were unable to study the segregation of this variant 

within the family since no other DNA from affected family member was available. The 
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change of the G into the A allele of this variant was in silico predicted to affect binding of 

several transcription factors relevant for OPTN function (Table 2), therefore this variant was 

further investigated in the genetic association study with PDB.

Individual Tag SNP and rare variant genetic association analysis

The genetic association study of the nineteen Tag SNPs selected from the HAPMAP 

database and rare variants identified within the UCMA/GRP gene, demonstrated that six Tag 

SNPs were associated with PDB (uncorrected P≤0.05 for rs7917620, rs727518, rs4750328, 

rs17152980, rs2476981 and rs533672) (Table 3). The most strongly associated Tag SNP 

being the SNP rs17152980 (10% of PDB patients carried the G allele of this Tag SNP versus 

16% of healthy controls, uncorrected P=3.8 × 10−3, OR=0.58 (0.39–0.85)), but none of these 

allelic associations remained statistically significant following conservative Bonferroni’s 

correction. A difference in the RR of the GC and GG genotypes when compared to the CC 
genotype of rs17152980, was also observed (20% in PDB patients versus 30% in controls, 

RR=0.57; 95% CI: 0.38–0.85, uncorrected P=5.5 × 10−3).

More importantly, the statistically significant association, even after conservative 

Bonferroni’s correction, was replicated in two SNPs of the OPTN gene, particularly for the 

rs1561570 (Table 4). 36% of PDB patients carried the C allele of this SNP versus 52% of 

healthy controls, uncorrected P=5.7 × 10−7, OR=0.53 (0.42–0.69). The C allele instead of a 

T in the SNP rs1561570 was in silico predicted to create a potential new acceptor site for 

splicing (new splice motif tctgtagtatagAC), and to break a potential branch point (loss of 

branch point motif tggtcAc). A statistically significant difference in the RR of the TC and 

CC genotypes when compared to the TT genotype of rs1561570, was observed (58% in 

PDB patients versus 77% in controls, RR=0.41; 95% CI: 0.28–0.60, uncorrected P=1.9 × 

10−6). An association of the 3′ flanking region SNP rs2095388 (uncorrected P=4.9 × 10−3) 

with PDB was also replicated, and a statistically significant difference in the RR of the AG 
and GG genotypes when compared to the AA genotype of rs2095388, was observed (43% in 

PDB patients versus 57% in controls, RR=0.57; 95% CI: 0.41–0.81, uncorrected P=1.4 × 

10−3). The rare variant of the OPTN 5′ flanking region (−9906G/A), which was found in 

one patient with a familial form of PDB and absent from the other French-Canadian families 

with PDB, was not found in 246 unrelated pagetic patients and was identified in one healthy 

control out of 293 healthy individuals, from the same population.

Searches for genotype-phenotype correlations in the most significantly PDB-associated SNP 

in each gene, ie rs17152980 for UCMA/GRP gene and rs1561570 for OPTN gene, 

suggested that the mean age at diagnosis was younger in PDB patients carrying at least one 

G allele of the rs17152980 (59.7 ± 13.5 years in patients carrying a G allele versus 63.6 

± 10.5 in patients carrying the ancestral genotype CC, uncorrected P=0.04). There was a 

trend for a higher mean number of affected bones in patients carrying at least one G allele of 

this SNP (3.1 ± 3.5 in patients carrying a G allele versus 2.4 ± 1.8 in patients carrying the 

ancestral genotype CC, uncorrected P=0.06) (Table 5), but those results were not significant 

after Bonferroni’s correction.
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Haplotype analyses

The six Tag SNPs of the UCMA/GRP gene resulted in eleven different haplotypes with a 

frequency ≥1%. The WHAP omnibus analysis (df=10), in which all haplotypes with a 

frequency ≥1% were handled simultaneously, provided an uncorrected P=1.8 × 10−2, 

suggesting a difference in the distribution of haplotypes between PDB patients and healthy 

donors. The haplotype-specific analysis provided that one haplotype, GTCCAT, which also 

contains the ancestral C allele of SNP rs17152980, was associated with PDB (27% in 

patients versus 19% in controls, uncorrected P=2.5 × 10−3, OR=1.57 (1.14–2.16)) (Table 6), 

and remained statistically significant after conservative Bonferroni’s correction.

Haplotypes of the OPTN gene were formed by rs1561570 and rs2095388, which resulted in 

four haplotypes with a frequency ≥1%. The WHAP omnibus analysis (df =3) provided a 

significant difference in the distribution of haplotypes between PDB patients and healthy 

donors (uncorrected P=9.5 × 10−5). The haplotype-specific analysis indicated that three 

haplotypes were associated with PDB, and remained statistically significant after 

conservative Bonferroni’s correction, particularly the TA haplotype (61% in patients versus 

47% in controls, uncorrected P=1.2 × 10−5, OR=1.73 (1.35–2.22)) (Table 7).

Haplotypes constituted by eight SNPs from both UCMA/GRP and OPTN genes resulted in 

27 haplotypes with a frequency ≥1%. The WHAP omnibus analysis (df =26) provided a 

significant difference in the distribution of haplotypes between PDB patients and healthy 

donors (uncorrected P=6.5 × 10−3). The haplotype-specific analysis provided that five 

haplotypes were associated with PDB, but none of them remained statistically significant 

after conservative Bonferroni’s correction (Table 8).

Real-time quantitative PCR of the UCMA/GRP gene

The real-time quantitative PCR of the first 24 samples out of the 88 samples collected from 

PDB patients and healthy donors showed no detectable level of expression for the 

UCMA/GRP gene in total RNA from whole blood, suggesting that this gene was unlikely to 

be expressed in the blood tissue of humans. Therefore real-time quantitative PCR was not 

carried out in the remaining samples.

Functional analysis of the SNP rs17152980 (UCMA/GRP gene)

To directly determine the allele-specific effect of UCMA/GRP −493C/G polymorphism 

(rs17152980) on native promoter activity, two luciferase reporter gene constructs were 

generated, spanning 1.8 Kb of the UCMA/GRP promoter region and containing either a G or 

a C at the −493 polymorphic site. As shown in Figure 2, and following transient 

transfections of HEK 293 cells, the C allele of the UCMA/GRP promoter had a significantly 

higher activity than the G allele at all used DNA concentrations. These results suggest that 

the presence of the mutation corresponding to the −493 G allele decreases the transcriptional 

activity of the UCMA/GRP gene.

As noted, the SNP rs17152980 is located in the basal promoter of the UCMA/GRP gene. 

Bioinformatic analysis using the web-based prediction program MatInspector (http://

www.genomatix.de/) identified a putative binding site for Sox2 transcription factor 
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overlapping the SNP containing the G, whereas it was absent in the sequence containing the 

C. We hypothesized then that Sox2 might bind to the less widely spread G allele of this 

promoter and affect the expression of UCMA/GRP. To investigate this hypothesis, we tested 

the ability of Sox2 to transactivate the GRP promoter containing either the C or the G allele 

using cotransfection experiments. We observed a significant induction of LuC expression 

only when using the latter (Figure 3). No significant difference in transcriptional activity was 

obtained when transfecting the pHsGRP(−493C) construct in the presence or absence of 

Sox2 expression vector (Figure 3), indicating that the results obtained are specific of the G 

allele.

Next, we performed a comparative analysis of genomic sequences using DNA Block Aligner 

(DBA, see Materials and methods), that aligns two sequences under the assumption that they 

share a number of colinear blocks of conservation separated by potentially large and varied 

lengths of DNA in each of the two sequences. Using the default setting of DBA, we 

compared the human UCMA/GRP promoter with those of its orthologs from other 

mammalian species to identify conserved blocks. A highly conserved block was found to be 

located in mammals, within the region of the SNP rs17152980. Among these, the C allele 

was found to be the most widely distributed among mammalian species analyzed 

(Supplementary Fig 3).

Discussion

In the present study, we identified five rare genetic variants located in putative functionally 

important regions of the UCMA/GRP gene, and four of them were French-Canadian 

population-specific, but none of them were found to be significantly associated with PDB. 

Among the nineteen Tag SNPs which were genotyped for the UCMA/GRP gene, the G 
allele of the SNP rs17152980 was found to be associated with PDB (10% in PDB patients 

versus 16% in healthy controls, uncorrected P=3.8 × 10−3, OR=0.58 (0.39–0.85)) and the 

mean age at diagnosis was suggested to be younger in PDB patients carrying at least G allele 

of the rs17152980 (uncorrected P=0.04), although not statistically significant after 

conservative Bonferroni’s correction. Considering the potential protective effect of this 

allele, results of the genotype phenotype correlation analysis may reflect an underpowered 

analysis. More importantly, we replicated the strong and statistically significant genetic 

association of two SNPs of the OPTN gene, the rs1561570 (36% of PDB patients carried the 

C allele of this SNP versus 52% of healthy controls, uncorrected P=5.7 × 10−7, OR=0.53 

(0.42–0.69)) and the 3′ flanking region SNP rs2095388 (uncorrected P=4.9 × 10−3), with 

PDB; these SNPs were recently reported to be associated with PDB in several West-

European countries [8, 11, 12]. We also identified one very rare variant in the 5′ flanking 

region of the OPTN, not reported in NCBI database. This rare variant is located at −232bp 

and at −865bp from the first and second transcription start sites of the OPTN gene and, by in 
silico analysis, we have detected the presence of putative transcription factor-binding sites 

(TFBSs) overlapping this SNP region. We found that the presence of a G was consistent with 

TFBSs for VDR/RXR, Sp1 and PAX4 and the presence of an A was consistent with TFBSs 

for PPARG and HNF4 (Table 2). Since PAX4 has been reported to be strongly expressed in 

the retina of the rat [25] and SP1 has been involved in the regulation of genes in the lens 

[26], this putative regulation of OPTN by these TFs might be relevant. It is worth noting that 
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OPTN is highly expressed in the brain, retina and skeletal muscle. In addition VDR and 

PPARG are known regulators of bone and cartilage metabolism [27, 28].

Then, considering the six more associated Tag SNPs of the UCMA/GRP gene, we 

performed a haplotype analysis which provided that the GTCCAT haplotype, was more 

frequent in PDB patients when compared to healthy controls (uncorrected P=2.5 × 10−3). 

The two PDB-associated SNPs of the OPTN gene determined four haplotypes with a 

frequency >1%, which provided a statistically significant difference in their distribution 

between PDB patients and healthy controls (uncorrected P=9.5 × 10−5). Three of the four 

haplotypes, TA, CA and CG, provided a statistically significant association with PDB 

(uncorrected P=1.2 × 10−5, uncorrected P=3.5 × 10−3 and uncorrected P=4.3 × 10−3, 

respectively). However, after conservative Bonferroni’s correction, haplotypes constituted by 

both UCMA/GRP and OPTN gene SNPs failed to provide statistically significant 

associations with PDB.

Since the OPTN gene is only 83kb distant from the UCMA/GRP gene and although both 

genes are not on the same linkage disequilibrium blocks in HAPMAP database, we cannot 

exclude that Tag SNPs of the UCMA/GRP gene studied here may be in linkage 

disequilibrium with polymorphisms located in the OPTN gene and strongly associated with 

PDB. The other hypothesis may be that UCMA/GRP gene is a genetic factor, although 

minor, weakly associated with PDB, and the lack of significant genetic association after 

conservative’s Bonferroni’s correction may be explained by the large number of 

polymorphisms tested in this study. Because only a few studies have reported the tissue 

distribution of UCMA/GRP in adult humans, it is not possible yet to correlate changes in 

tissue expression of this gene with bone pathologies. Until now different levels of 

UCMA/GRP expression and/or accumulation were essentially detected at sites of abnormal 

calcifications (reviewed in [20]).

To examine whether the SNP rs17152980, located in the basal promoter of the UCMA/GRP 
gene has any effect on the transcriptional regulation of the gene, a luciferase reporter assay 

was performed. The in vitro result offered strong evidence that the G allele containing 

construct displayed markedly lower promoter activity compared with the C allele, 

suggesting that it may reduce the UCMA/GRP levels of expression. We have used an in 
silico approach to detect the TFBSs overlapping this SNP region. We found that the presence 

of a G (instead of a C) was consistent with a putative binding site for the transcription factor 

(TF) Sox2. This possibility was further analyzed using a luciferase in vitro assay, and our 

data confirmed that the promoter construct corresponding to the G allele allows binding of 

Sox2 and transactivation of the UCMA/GRP promoter. Moreover, this effect was not 

observed when using the promoter construct overlapping the C allele, thus indicating that 

Sox2 binding was specific of the G allele. The transcription factor Sox2, a member of the 

SY-related, HMG box family, plays a critical role in embryonic development and 

maintenance of pluripotency and self-renewal of embryonic stem cells [29, 30]. 

Furthermore, Sox2 is also involved in the maintenance of self-renewal of the osteoblastic 

lineage [31]. Recently, it was shown that mesenchymal stem cells derived from human 

umbilical cord constitutively express SOX2 and are capable of differentiating into osteoblast 

as well as adipocytes, indicating the involvement of SOX2 in osteoblast differentiation [32]. 
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Since one of the cellular abnormalities in PDB involves an increase in bone-forming 

osteoblast activity [33], and expression of UCMA/GRP gene has been detected in 

osteoblasts at levels comparable to those of osteocalcin [13], the transactivation by Sox2 of 

only one of the two UCMA/GRP promoter alleles analyzed could be of relevance to PDB. It 

also suggests that this functional SNP of UCMA/GRP could be further explored as a 

possible candidate biomarker of PDB susceptibility and/or severity. In contrast, osteocalcin, 

another gla protein associated with mineralized matrix of bone and a known marker of bone 

formation, has proven disappointing in PDB. Its levels are less consistently raised in active 

disease than other formation markers due either to altered synthesis by pagetic osteoblasts or 

increased incorporation by the high mineral content of woven bone with decreased release 

into the circulation [34].

In conclusion, we identified one functional SNP located in the basal promoter of the 

UCMA/GRP gene which provides a weak genetic association with PDB, and replicated the 

strong genetic association of two already known SNPs of the OPTN gene, with PDB in a 

founder effect population. Furthermore, we identified a very rare variant not previously 

described for OPTN gene, located in one of its basal promoters and within the putative 

binding sites of several nuclear factors likely to be relevant for OPTN function. Further 

replication studies and functional analyses are required to confirm those genetic 

associations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Linkage disequilibrium plots within the PDB6 locus
(from HAPMAP database HapMap Data Rel 27 Phase II+III, Feb 09, on NCBI B38 

assembly, dbSNP b126; chr10:13168347.13368346; accessed on the 3rd of February 2011). 

C10orf49 is an alias of the UCMA/GRP gene.
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Figure 2. Allele dependent Ucma/GRP promoter activity in vitro
HEK293 cells were transfected with a luciferase reporter gene with the 1.8 kb GRP 

promoter containing either the −493C or the −493G allele. Luciferase expression in each 

case was normalized for an internal transfection control (renilla). Data are mean ± SD of at 

least five experiments. Ucma/GRP −493C allele, solid bars; Ucma/GRP −493G allele, gray 
bars. Significance was determined by One-way Anova. Asterisk * indicates that values are 

statistically different (p<0.05).
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Figure 3. Allele dependent binding of Sox2 to Ucma/GRP promoter in vitro
HEK 293 cells were cotransfected with human Ucma/GRP promoter constructs including 

either the −493C or the −493G allele and Sox2 expressing plasmid. Data are mean ± SD of 

at least five experiments. Luciferase expression levels controlled by Ucma/GRP promoter 

alleles −493C or −493G in the presence of Sox2 expression vector are relative to luciferase 

expression mediated by each promoter allele alone. Significance was determined by One-

way Anova. Asterisk * indicates that the value is statistically different (p<0.05).
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Table 1

Results of the detection of genetic variants in the OPTN gene in the discovery sample consisting in 33 PDB 

patients non-carrier of a SQSTM1/P392L mutation and five healthy non-mutated donors.

SNP* Minor allele frequency

PDB patients Healthy controls

rs3829924 G/A 0.018 0.000

rs2234968 G/A 0.306 0.417

rs11258194 T/A 0.031 0.083

rs72043574 delT 0.422 0.333

rs2244380 C/T 0.156 0.083

rs11258211 G/A 0.016 0.000

rs765884 T/C 0.375 0.583

rs489040 A/G 0.422 0.250

rs523747 A/G 1.000 1.000

rs676302 G/T 0.179 0.100

rs10906310 C/A 0.219 0.083

*
The rare variant identified in the 5′ flanking region of the OPTN gene is reported in the Results section.
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Table 2

Results of the in silico analysis of transcription factor-binding sites (TFBSs) for the three SNPs and the rare 

variant located close to the promoter of the OPTN gene.

Variant name Region (position) Flanking region TFBSs# only in Major allele TFBSs# only in Minor allele

rs1561570 Intron 7 tataga[c/t]ggt LyL1-e12.01 NUDR.01

rs825411 Intron 13 tgatac[c/t]gtt - MIF1.01
FHXB.01

rs2095388 3′ Flanking region aattaa[a/g]tta MSX.01
CART1.01
LMX1A.01
EN1.01
HOXC4.01
LBX2.01
EN1.01
SHOX2.01
TST1.01
BRIGHT.01

S8.01
BRN5.02
SL2.01
BARX2.01
PSE.02
HNF1.04

Rare variant*
−9906G/A

5′ flanking region gggcag[g/a]gtt VDR_RXR.06
SP1.01

PAX4PD.01**

PPARG.02
HNF4.03

#
TFBSs: Transcription Factor-Binding Sites

*
This position corresponds to −9906bp from the ATG (located in the exon 5 of OPTN gene), and is located at −232bp from Transcription Start Site 

1 and at −865bp from Transcription Start Site 2.

**
Transcription Factor associated to ocular development.
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