104 research outputs found

    Localized Algorithm for Segregation of Critical/Non-critical Nodes in Mobile Ad Hoc and Sensor Networks

    Get PDF
    AbstractTimely segregation of connectivity-centric critical/non-critical nodes is extremely crucial in mobile ad hoc and sensor networks to assess network vulnerabilities against critical node failures and provide precautionary means for survivability. This paper presents a localized algorithm for segregation of critical/non-critical nodes (LASCNN) that opts to distinguish critical/non-critical nodes to the network connectivity based on limited topology information. Each node establishes and maintains a k-hop connection list and employ LASCNN to determine whether it is critical/non- critical. Based on the list, LASCNN marks a node as critical if its k-hop neighbor's become disconnected without the node, non-critical otherwise. Simulation experiments demonstrate the scalability of LASCNN and shows the performance is quite competitive compared to a scheme with global network information. The accuracy of LASCNN in determining critical nodes is 87% (1-hop) and 93% (2-hop) and non-critical nodes 91% (1-hop) and 93% (2-hop)

    Biochar: A promising soil amendment to mitigate heavy metals toxicity in plants

    Get PDF
    Heavy metals (HMs) toxicity is serious abiotic stress that is significantly reducing crop productivity and posing a serious threat to human health, soil and environmental quality. Therefore, it is urgently needed to find appropriate measures to mitigate the adverse impacts of HMs on soil, plants, humans and the environment. Biochar (BC) has emerged as an excellent soil amendment to minimize the adverse impacts of HMs and to improve soil fertility and environmental quality. Biochar application decreases HMs uptake and their translocation to plant parts by forming complexes and precipitation. Biochar also has improved soil pH, soil fertility and soil cation exchange capacity (CEC) and it also increases adsorption of HMs thus reduces their mobility and subsequent availability to plants. BC application also maintains membrane stability and improves uptake of nutrients, osmolytes accumulation, antioxidant activities, and gene expression, therefore, improves the plant performance under HMs stress. Biochar application also improves the photosynthetic performance by increasing the synthesis of photosynthetic pigments, stomata conductance and increasing the water uptake by plants. Besides this, BC also scavenges ROS by increasing the antioxidant activities, gene expression, and accumulation of proline in HMs contaminated soils. This review highlights the role of BC to mitigate the HMs toxicity in plants. We have discussed the role of BC in the modification of soil properties to induce tolerance against HMs toxicity. Moreover, we have discussed various mechanisms mediated by BC at the plant level to induce tolerance against HMs. Additionally, we also identified research gaps that must be fulfilled in future research studies

    Amidolysis of Oxirane: Effect of Protein Type, Oils, and ZnCl 2

    Get PDF
    Amidolysis of oxirane group of epoxidized sesame, sunflower, and cottonseed oils was achieved by reaction with primary amide of millet and gluten proteins. Gluten is a coproduct of wheat starch industry and available commercially. Millet is a major part of the staple food of the semiarid region of the tropics. Gluten is a mixture of glutenins and gliadins rich in glutamine residues; however, millet is rich in glutamine and leucine. We have taken advantage of the available primary amide of glutamine for cross-linking with the oxirane of sunflower, sesame, and cottonseed oils under controlled conditions to give a resin of amidohydroxy of gluten and millet proteins. Cross-linking gave a resin with a wide range of textural properties. The texture of the resin was dependent on the source of the oxirane, the amide group, and the amount of the catalyst (ZnCl2). The thermal properties, textural, solubility, and rheological properties were determined as well as the reaction time. The data showed direct relationships between the ZnCl2, nature of oil, and protein type and the properties of the final resin. Consistently, the results pointed to similarity among the outcome of the reactions between sesame and sunflower oils. Depending on the amount of ZnCl2, the texture of the resin can range from viscose to rubbery. The reaction time was influenced by oxirane source, protein type, and catalyst and ranged from 30 min to 4 hr

    Genome-Wide Association Mapping for Yield and Related Traits Under Drought Stressed and Non-stressed Environments in Wheat

    Get PDF
    Understanding the genetics of drought tolerance in hard red spring wheat (HRSW) in northern USA is a prerequisite for developing drought-tolerant cultivars for this region. An association mapping (AM) study for drought tolerance in spring wheat in northern USA was undertaken using 361 wheat genotypes and Infinium 90K single-nucleotide polymorphism (SNP) assay. The genotypes were evaluated in nine different locations of North Dakota (ND) for plant height (PH), days to heading (DH), yield (YLD), test weight (TW), and thousand kernel weight (TKW) under rain-fed conditions. Rainfall data and soil type of the locations were used to assess drought conditions. A mixed linear model (MLM), which accounts for population structure and kinship (PC+K), was used for marker–trait association. A total of 69 consistent QTL involved with drought tolerance-related traits were identified, with p ≤ 0.001. Chromosomes 1A, 3A, 3B, 4B, 4D, 5B, 6A, and 6B were identified to harbor major QTL for drought tolerance. Six potential novel QTL were identified on chromosomes 3D, 4A, 5B, 7A, and 7B. The novel QTL were identified for DH, PH, and TKW. The findings of this study can be used in marker-assisted selection (MAS) for drought-tolerance breeding in spring wheat

    A Single DC Source Nine-Level Switched-Capacitor Boost Inverter Topology with Reduced Switch Count

    Get PDF
    This paper presents a new boost inverter topology with nine level output voltage waveform using a single dc source and two switched capacitors. The capacitor voltages are self-balancing and thus is devoid of any sensors and auxiliary circuitry. The output voltage is twice higher than the input voltage, which eliminates the need for an input dc boost converter especially when the inverter is powered from a renewable source. The merits of the proposed topology in terms of the number of devices and cost are highlighted by comparing the recent and conventional inverter topologies. In addition to this, the total voltage stress of the proposed topology is lower and have a maximum efficiency of 98.25%. The operation and dynamic performance of the proposed topology have been simulated using PLECS software and are validated using an experimental setup considering a different dynamic operation.This work was supported in part by the Scientific Research Deanship, Taif University, Saudi Arabia, under Grant 1-439 - 6072.Scopu

    Unveiling the therapeutic potential of exogenous β-hydroxybutyrate for chronic colitis in rats: novel insights on autophagy, apoptosis, and pyroptosis

    Get PDF
    Ulcerative colitis (UC) is a chronic relapsing inflammatory disease of the colorectal area that demonstrates a dramatically increasing incidence worldwide. This study provides novel insights into the capacity of the exogenous β-hydroxybutyrate and ketogenic diet (KD) consumption to alleviate dextran sodium sulfate (DSS)-induced UC in rats. Remarkably, both interventions attenuated disease activity and colon weight-to-length ratio, and improved macro and microstructures of the damaged colon. Importantly, both β-hydroxybutyrate and KD curbed the DSS-induced aberrant NLRP3 inflammasome activation as observed in mRNA and protein expression analysis. Additionally, inhibition of the NLRP3/NGSDMD-mediated pyroptosis was detected in response to both regimens. In parallel, these modalities attenuated caspase-1 and its associated consequences of IL-1β and IL-18 overproduction. They also mitigated apoptosis as indicated by the inactivation of caspase-3. The anti-inflammatory effects of BHB and KD were confirmed by the reported decline in the levels of inflammatory markers including MPO, NFκB, IL-6, and TNF-α. Moreover, these interventions exhibited antioxidative properties by reducing ROS production and improving antioxidative enzymes. Their effectiveness in mitigating UC was also evident in the renovation of normal intestinal epithelial barrier function, as shown by correcting the discrepancies in the levels of tight junction proteins ZO-1, OCLN, and CLDN5. Furthermore, their effects on the intestinal microbiota homeostasis were investigated. In terms of autophagy, exogenous β-hydroxybutyrate upregulated BECN-1 and downregulated p62, which may account for its superiority over KD in attenuating colonic damage. In conclusion, this study provides experimental evidence supporting the potential therapeutic use of β-hydroxybutyrate or β-hydroxybutyrate-boosting regimens in UC

    Incidence of hip fracture in Saudi Arabia and the development of a FRAX model

    Get PDF
    Summary A prospective hospital-based survey in representative regions of Saudi Arabia determined the incidence of fractures at the hip. The hip fracture rates were used to create a FRAX® model to facilitate fracture risk assessment in Saudi Arabia. Objective This paper describes the incidence of hip fracture in the Kingdom of Saudi Arabia that was used to characterize the current and future burden of hip fracture, to develop a country-specific FRAX® tool for fracture prediction and to compare fracture probabilities with neighbouring countries. Methods During a 2-year (2017/2018) prospective survey in 15 hospitals with a defined catchment population, hip fractures in Saudi citizens were prospectively identified from hospital registers. The number of hip fractures and future burden was determined from national demography. Age- and sex-specific incidence of hip fracture and national mortality rates were incorporated into a FRAX model for Saudi Arabia. Fracture probabilities were compared with those from Kuwait and Abu Dhabi. Results The incidence of hip fracture applied nationally suggested that the estimated number of hip fractures nationwide in persons over the age of 50 years for 2015 was 2,949 and is predicted to increase nearly sevenfold to 20,328 in 2050. Hip fracture rates were comparable with estimates from Abu Dhabi and Kuwait. By contrast, probabilities of a major osteoporotic fracture or hip fracture from the age of 70 years were much lower than those seen in Abu Dhabi and Kuwait due to higher mortality estimates for Saudi Arabia. Conclusion A country-specific FRAX tool for fracture prediction has been developed for Saudi Arabia which is expected to help guide decisions about treatment

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
    corecore