16 research outputs found

    Turbulent convective heat transfer and pressure drop of dilute CuO (copper oxide) - water nanofluid Inside a circular tube

    Get PDF
    This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.Turbulent forced convective heat transfer and pressure drop of 0.01 vol.% CuO-water nanofluid was assessed experimentally. The nanofluids were made flow into a heated horizontal tube under uniform constant heat flux within Reynolds number range of 11,500 to 32,000. The first objective is to know how close traditional correlation/formula for, both, heat transfer and pressure drop can predict nanofluid’s heat transfer and pressure drop. The second is to know how nanofluid’s convective heat transfer and pressure drop are compared to those of its base fluid; in this case water. The results showed that the abovementioned characteristics of the nanofluid can be predicted by the traditional correlation available. It is also found that the nanofluid’s Nusselt number and friction factor, which represent the heat transfer rate and pressure drop, respectively, are close to those of water. Hence, there is no anomaly due to the dispersed nanoparticles within the water.KACST (King Abdulaziz City for Science and Technology

    In the search for reliable biomarkers for the early diagnosis of autism spectrum disorder: the role of vitamin D

    No full text

    A systematic review of gut-immune-brain mechanisms in Autism Spectrum Disorder

    No full text
    Despite decades of research, the etiological origins of Autism Spectrum Disorder (ASD) remain elusive. Recently, the mechanisms of ASD have encompassed emerging theories involving the gastrointestinal, immune, and nervous systems. While each of these perspectives presents its own set of supporting evidence, the field requires an integration of these modular concepts and an overarching view of how these subsystems intersect. In this systematic review, we have synthesized relevant evidences from the existing literature, evaluating them in an interdependent manner and in doing so, outlining their possible connections. Specifically, we first discussed gastrointestinal and immuno-inflammation pathways in-depth, exploring the relationships between microbial composition, bacterial metabolites, gut mucosa, and immune system constituents. Accounting for temporal differences in the mechanisms involved in neurodevelopment, prenatal and postnatal phases were further elucidated, where the former focused on maternal immune activation (MIA) and fetal development, while the latter addressed the role of immune dysregulation in contributing to atypical neurodevelopment. As autism remains, foremost, a neurodevelopmental disorder, this review presents an integration of disparate modules into a "Gut-Immune-Brain" paradigm. Existing gaps in the literature have been highlighted, and possible avenues for future research with an integrated physiological perspective underlying ASD have also been suggested.Accepted versio
    corecore