2,739 research outputs found

    Room temperature "optical nanodiamond hyperpolarizer": Physics, design, and operation.

    Get PDF
    Dynamic Nuclear Polarization (DNP) is a powerful suite of techniques that deliver multifold signal enhancements in nuclear magnetic resonance (NMR) and MRI. The generated athermal spin states can also be exploited for quantum sensing and as probes for many-body physics. Typical DNP methods require the use of cryogens, large magnetic fields, and high power microwave excitation, which are expensive and unwieldy. Nanodiamond particles, rich in Nitrogen-Vacancy (NV) centers, have attracted attention as alternative DNP agents because they can potentially be optically hyperpolarized at room temperature. Here, unraveling new physics underlying an optical DNP mechanism first introduced by Ajoy et al. [Sci. Adv. 4, eaar5492 (2018)], we report the realization of a miniature "optical nanodiamond hyperpolarizer," where 13C nuclei within the diamond particles are hyperpolarized via the NV centers. The device occupies a compact footprint and operates at room temperature. Instrumental requirements are very modest: low polarizing fields, low optical and microwave irradiation powers, and convenient frequency ranges that enable miniaturization. We obtain the best reported optical 13C hyperpolarization in diamond particles exceeding 720 times of the thermal 7 T value (0.86% bulk polarization), corresponding to a ten-million-fold gain in averaging time to detect them by NMR. In addition, the hyperpolarization signal can be background-suppressed by over two-orders of magnitude, retained for multiple-minute long periods at low fields, and deployed efficiently even to 13C enriched particles. Besides applications in quantum sensing and bright-contrast MRI imaging, this work opens possibilities for low-cost room-temperature DNP platforms that relay the 13C polarization to liquids in contact with the high surface-area particles

    Transcriptomic analysis of the response of Acropora millepora to hypo-osmotic stress provides insights into DMSP biosynthesis by corals

    Get PDF
    © 2017 The Author(s). Background: Dimethylsulfoniopropionate (DMSP) is a small sulphur compound which is produced in prodigious amounts in the oceans and plays a pivotal role in the marine sulfur cycle. Until recently, DMSP was believed to be synthesized exclusively by photosynthetic organisms; however we now know that corals and specific bacteria can also produce this compound. Corals are major sources of DMSP, but the molecular basis for its biosynthesis is unknown in these organisms. Results: Here we used salinity stress, which is known to trigger DMSP production in other organisms, in conjunction with transcriptomics to identify coral genes likely to be involved in DMSP biosynthesis. We focused specifically on both adults and juveniles of the coral Acropora millepora: after 24 h of exposure to hyposaline conditions, DMSP concentrations increased significantly by 2.6 fold in adult corals and 1.2 fold in juveniles. Concomitantly, candidate genes enabling each of the necessary steps leading to DMSP production were up-regulated. Conclusions: The data presented strongly suggest that corals use an algal-like pathway to generate DMSP from methionine, and are able to rapidly change expression of the corresponding genes in response to environmental stress. However, our data also indicate that DMSP is unlikely to function primarily as an osmolyte in corals, instead potentially serving as a scavenger of ROS and as a molecular sink for excess methionine produced as a consequence of proteolysis and osmolyte catabolism in corals under hypo-osmotic conditions

    Enhanced Optical 13C Hyperpolarization in Diamond Treated by High-Temperature Rapid Thermal Annealing

    Get PDF
    Methods of optical dynamic nuclear polarization open the door to the replenishable hyperpolarization of nuclear spins, boosting their nuclear magnetic resonance/imaging signatures by orders of magnitude. Nanodiamond powder rich in negatively charged nitrogen vacancy defect centers has recently emerged as one such promising platform, wherein 13C nuclei can be hyperpolarized through the optically pumped defects completely at room temperature. Given the compelling possibility of relaying this 13C polarization to nuclei in external liquids, there is an urgent need for the engineered production of highly “hyperpolarizable” diamond particles. Here, a systematic study of various material dimensions affecting optical 13C hyperpolarization in diamond particles is reported on. It is discovered surprisingly that diamond annealing at elevated temperatures ∌1720 °C has remarkable effects on the hyperpolarization levels enhancing them by above an order of magnitude over materials annealed through conventional means. It is demonstrated these gains arise from a simultaneous improvement in NV− electron relaxation/coherence times, as well as the reduction of paramagnetic content, and an increase in 13C relaxation lifetimes. This work suggests methods for the guided materials production of fluorescent, 13C hyperpolarized, nanodiamonds and pathways for their use as multimodal (optical and magnetic resonance) imaging and hyperpolarization agents

    Biogeography of Triatominae (Hemiptera: Reduviidae) in Ecuador: implications for the design of control strategies.

    Get PDF
    Chagas disease control strategies strongly depend on the triatomine vector species involved in Trypanosoma cruzi transmission within each area. Here we report the results of the identification of specimens belonging to various species of Triatominae captured in Ecuador (15 species from 17 provinces) and deposited in the entomological collections of the Catholic University of Ecuador (Quito), Instituto Oswaldo Cruz (Brazil), the Natural History Museum London (UK), the London School of Hygiene and Tropical Medicine (UK), the National Institute of Hygiene (Quito), and the Vozandes Hospital (Quito). A critical review of published information and new field records are presented. We analysed these data in relation to the life zones where triatomines occur (11 life zones, excluding those over 2,200 m altitude), and provide biogeographical maps for each species. These records are discussed in terms of epidemiological significance and design of control strategies. Findings relevant to the control of the main vector species are emphasised. Different lines of evidence suggest that Triatoma dimidiata is not native to Ecuador-Peru, and that synanthropic populations of Rhodnius ecuadoriensis in southern Ecuador-northern Peru might be isolated from their sylvatic conspecifics. Local eradication of T. dimidiata and these R. ecuadoriensis populations might therefore be attainable. However, the presence of a wide variety of native species indicates the necessity for a strong longitudinal surveillance system

    The prevalence of chronic diseases and major disease risk factors at different ages among 150 000 men and women living in Mexico City: cross-sectional analyses of a prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While most of the global burden from chronic diseases, and especially vascular diseases, is now borne by low and middle-income countries, few large-scale epidemiological studies of chronic diseases in such countries have been performed.</p> <p>Methods</p> <p>From 1998–2004, 52 584 men and 106 962 women aged ≄35 years were visited in their homes in Mexico City. Self reported diagnoses of chronic diseases and major disease risk factors were ascertained and physical measurements taken. Age- and sex-specific prevalences and means were analysed.</p> <p>Results</p> <p>After about age 50 years, diabetes was extremely common – for example, 23.8% of men and 26.9% of women aged 65–74 reported a diagnosis. By comparison, ischaemic heart disease was reported by 4.8% of men and 3.0% of women aged 65–74, a history of stroke by 2.8% and 2.3%, respectively, and a history of cancer by 1.3% and 2.1%. Cancer history was generally more common among women than men – the excess being largest in middle-age, due to breast and cervical cancer. At older ages, the gap narrowed because of an increasing prevalence of prostate cancer. 51% of men and 25% of women aged 35–54 smoked cigarettes, while 29% of men and 41% of women aged 35–54 were obese (i.e. BMI ≄30 kg/m<sup>2</sup>). The prevalence of treated hypertension or measured blood pressure ≄140/90 mmHg increased about 50% more steeply with age among women than men, to 66% of women and 58% of men aged 65–74. Physical inactivity was highly prevalent but daily alcohol drinking was relatively uncommon.</p> <p>Conclusion</p> <p>Diabetes, obesity and tobacco smoking are highly prevalent among adults living in Mexico City. Long-term follow-up of this and other cohorts will establish the relevance of such factors to the major causes of death and disability in Mexico.</p

    Internal delensing of cosmic microwave background polarization B-Modes with the POLARBEAR experiment

    Get PDF
    International audienceUsing only cosmic microwave background polarization data from the polarbear experiment, we measure B-mode polarization delensing on subdegree scales at more than 5σ significance. We achieve a 14% B-mode power variance reduction, the highest to date for internal delensing, and improve this result to 22% by applying for the first time an iterative maximum a posteriori delensing method. Our analysis demonstrates the capability of internal delensing as a means of improving constraints on inflationary models, paving the way for the optimal analysis of next-generation primordial B-mode experiments

    Bridging reproductive and microbial ecology: a case study in arbuscular mycorrhizal fungi

    Get PDF
    Offspring size is a key trait for understanding the reproductive ecology of species, yet studies addressing the ecological meaning of offspring size have so far been limited to macro-organisms. We consider this a missed opportunity in microbial ecology and provide what we believe is the first formal study of offspring-size variation in microbes using reproductive models developed for macro-organisms. We mapped the entire distribution of fungal spore size in the arbuscular mycorrhizal (AM) fungi (subphylum Glomeromycotina) and tested allometric expectations of this trait to offspring (spore) output and body size. Our results reveal a potential paradox in the reproductive ecology of AM fungi: while large spore-size variation is maintained through evolutionary time (independent of body size), increases in spore size trade off with spore output. That is, parental mycelia of large-spored species produce fewer spores and thus may have a fitness disadvantage compared to small-spored species. The persistence of the large-spore strategy, despite this apparent fitness disadvantage, suggests the existence of advantages to large-spored species that could manifest later in fungal life history. Thus, we consider that solving this paradox opens the door to fruitful future research establishing the relationship between offspring size and other AM life history traits

    Direct spectrum of the benchmark t dwarf HD 19467 B

    Get PDF
    This is the final version of the article. Available from the American Astronomical Society / IOP Publishing via the DOI in this record.HD 19467 B is presently the only directly imaged T dwarf companion known to induce a measurable Doppler acceleration around a solar-type star. We present spectroscopy measurements of this important benchmark object taken with the Project 1640 integral field unit at Palomar Observatory. Our high-contrast R ≈ 30 observations obtained simultaneously across the JH bands confirm the cold nature of the companion as reported from the discovery article and determine its spectral type for the first time. Fitting the measured spectral energy distribution to SpeX/IRTF T dwarf standards and synthetic spectra from BT-Settl atmospheric models, we find that HD 19467 B is a T5.5 ± 1 dwarf with effective temperature Teff = 978+20 -43 K. Our observations reveal significant methane absorption affirming its substellar nature. HD 19467 B shows promise to become the first T dwarf that simultaneously reveals its mass, age, and metallicity independent from the spectrum of light that it emits.The TrenDS high-contrast imaging program is supported by NASA Origins of Solar Systems grant NNX13AB03G and the NASA Early Career Fellowship program. A portion of this work was supported by the National Science Foundation under Grant Numbers AST-0215793, 0334916, 0520822, 0804417 and 1245018. This work was partially supported by NASA ADAP grant 11-ADAP11-0169 and NSF award AST 1211568. A portion of the research in this Letter was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. J.A. is supported by the National Physical Science Consortium. This research has benefitted from the SpeX Prism Spectral Libraries, maintained by Adam Burgasser.1
    • 

    corecore