10 research outputs found

    Integration of cardiovascular risk assessment with COVID-19 using artificial intelligence

    Get PDF
    Artificial Intelligence (AI), in general, refers to the machines (or computers) that mimic "cognitive" functions that we associate with our mind, such as "learning" and "solving problem". New biomarkers derived from medical imaging are being discovered and are then fused with non-imaging biomarkers (such as office, laboratory, physiological, genetic, epidemiological, and clinical-based biomarkers) in a big data framework, to develop AI systems. These systems can support risk prediction and monitoring. This perspective narrative shows the powerful methods of AI for tracking cardiovascular risks. We conclude that AI could potentially become an integral part of the COVID-19 disease management system. Countries, large and small, should join hands with the WHO in building biobanks for scientists around the world to build AI-based platforms for tracking the cardiovascular risk assessment during COVID-19 times and long-term follow-up of the survivors

    Thoracic paravertebral block for analgesia after modified radical mastectomy

    No full text
    Background: Surgical intervention is associated with postoperative pain, nausea and vomiting. Paravertebral blockade (PVB) has been advocated as a useful technique for analgesia after breast surgery. Aims and Objectives: The aim is to study the efficacy of PVB and associated complications against intramuscular diclofenac sodium 0.75mg. Materials and Methods: Fifty patients of ASA grade I and II were randomized to receive either PVB (group A) or intramuscular diclofenac sodium (group B); there were 25 patients in each group. Group A patients received PVB with catheter at T3 and T6 levels with 0.3ml/kg 0.25% bupivacaine, whereas group B patients received intramuscular diclofenac sodium preoperatively. All patients were observed for quality and duration of analgesia, incidence of nausea and vomiting, hemodynamic stability, and complication. Results: The patients given PVB experienced lower visual analog score (VAS) at rest (P < 0.001) and longer duration of analgesia (P < 0.001) on movement (P < 0.0001) for 1 to 12 h in postoperative period as compared to group B. In group A, fewer patients required rescue analgesia and experienced less postoperative nausea and vomiting as compared to group B. Conclusion: PVB provides better pain control and decreased nausea and vomiting after modified radical mastectomy

    Integration of cardiovascular risk assessment with COVID-19 using artificial intelligence

    No full text
    Artificial Intelligence (AI), in general, refers to the machines (or computers) that mimic “cognitive” functions that we associate with our mind, such as “learning” and “solving problem”. New biomarkers derived from medical imaging are being discovered and are then fused with non-imaging biomarkers (such as office, laboratory, physiological, genetic, epidemiological, and clinical-based biomarkers) in a big data framework, to develop AI systems. These systems can support risk prediction and monitoring. This perspective narrative shows the powerful methods of AI for tracking cardiovascular risks. We conclude that AI could potentially become an integral part of the COVID-19 disease management system. Countries, large and small, should join hands with the WHO in building biobanks for scientists around the world to build AI-based platforms for tracking the cardiovascular risk assessment during COVID-19 times and long-term follow-up of the survivors

    COVID-19 pathways for brain and heart injury in comorbidity patients: A role of medical imaging and artificial intelligence-based COVID severity classification: A review

    No full text
    corecore