119 research outputs found

    Confronting Flavour Symmetries and extended Scalar Sectors with Lepton Flavour Violation Bounds

    Full text link
    We discuss the tension between discrete flavour symmetries and extended scalar sectors arising from lepton flavour violation experiments. The key point is that extended scalar sectors will generically lead to flavour changing neutral currents, which are strongly constrained by experiments. Due to the large parameter space in the scalar sector such models will, however, usually have no big problems with existing and future bounds (even though the models might be constrained). This changes considerably once a flavour symmetry is imposed in addition: Due to the symmetry, additional relations between the different couplings arise and cancellations become impossible in certain cases. The experimental bounds will then constrain the model severely and can easily exclude it. We consider two examples which show how these considerations are realized. The same logic should apply to a much wider class of models.Comment: 19 pages, 2 figures; Introduction extended, typos corrected, charged lepton sector of model 2 corrected; matches journal versio

    Non-Abelian Discrete Groups from the Breaking of Continuous Flavor Symmetries

    Full text link
    We discuss the possibility of obtaining a non-abelian discrete flavor symmetry from an underlying continuous, possibly gauged, flavor symmetry SU(2) or SU(3) through spontaneous symmetry breaking. We consider all possible cases, where the continuous symmetry is broken by small representations. "Small" representations are these which couple at leading order to the Standard Model fermions transforming as two- or three-dimensional representations of the flavor group. We find that, given this limited representation content, the only non-abelian discrete group which can arise as a residual symmetry is the quaternion group D_2'.Comment: 15 page

    A Fresh Look at keV Sterile Neutrino Dark Matter from Frozen-In Scalars

    Get PDF
    Sterile neutrinos with a mass of a few keV can serve as cosmological warm dark matter. We study the production of keV sterile neutrinos in the early universe from the decay of a frozen-in scalar. Previous studies focused on heavy frozen-in scalars with masses above the Higgs mass leading to a hot spectrum for sterile neutrinos with masses below 8-10 keV. Motivated by the recent hints for an X-ray line at 3.55 keV, we extend the analysis to lighter frozen-in scalars, which allow for a cooler spectrum. Below the electroweak phase transition, several qualitatively new channels start contributing. The most important ones are annihilation into electroweak vector bosons, particularly W-bosons as well as Higgs decay into pairs of frozen-in scalars when kinematically allowed.Comment: 19 pages, 4 figures, model section (sec. 2) splits in effective description (sec. 2) and UV completion (sec. 5), minor changes, references added, matches published versio

    Connections between the Seesaw and Dark Matter Searches

    Full text link
    In some dark matter models, the coupling of the dark matter particle to the standard model Higgs determines the dark matter relic density while it is also consistent with dark matter direct detection experiments. On the other hand, the seesaw for generating the neutrino masses probably arises from a spontaneous symmetry breaking of global lepton number. The dark matter particle thus can significantly annihilate into massless Majorons when the lepton number breaking scale and hence the seesaw scale is near the electroweak scale. This leads to an interesting interplay between neutrino physics and dark matter physics and the annihilation mode has an interesting implication on dark matter searches.Comment: 4 pages. Major revision. To appear in PR

    Non-Abelian Discrete Flavor Symmetries on Orbifolds

    Full text link
    We study non-Abelian flavor symmetries on orbifolds, S1/Z2S^1/Z_2 and T2/Z3T^2/Z_3. Our extra dimensional models realize DND_N, Σ(2N2)\Sigma(2N^2), Δ(3N2)\Delta(3N^2) and Δ(6N2)\Delta(6N^2) including A4A_4 and S4S_4. In addition, one can also realize their subgroups such as QNQ_N, T7T_7, etc. The S3S_3 flavor symmetry can be realized on both S1/Z2S^1/Z_2 and T2/Z3T^2/Z_3 orbifolds.Comment: 16 page

    Golden Ratio Prediction for Solar Neutrino Mixing

    Full text link
    It has recently been speculated that the solar neutrino mixing angle is connected to the golden ratio phi. Two such proposals have been made, cot theta_{12} = phi and cos theta_{12} = phi/2. We compare these Ansatze and discuss a model leading to cos theta_{12} = phi/2 based on the dihedral group D_{10}. This symmetry is a natural candidate because the angle in the expression cos theta_{12} = phi/2 is simply pi/5, or 36 degrees. This is the exterior angle of a decagon and D_{10} is its rotational symmetry group. We also estimate radiative corrections to the golden ratio predictions.Comment: 15 pages, 1 figure. Matches published versio

    Tri-Bimaximal Neutrino Mixing and Discrete Flavour Symmetries

    Full text link
    We review the application of non-Abelian discrete groups to Tri-Bimaximal (TB) neutrino mixing, which is supported by experiment as a possible good first approximation to the data. After summarizing the motivation and the formalism, we discuss specific models, mainly those based on A4 but also on other finite groups, and their phenomenological implications, including the extension to quarks. The recent measurements of \theta_13 favour versions of these models where a suitable mechanism leads to corrections to \theta_13 that can naturally be larger than those to \theta_12 and \theta_23. The virtues and the problems of TB mixing models are discussed, also in connection with lepton flavour violating processes, and the different approaches are compared.Comment: 26 pages, 5 figures, 4 tables. V3 submitted to add an acknowledgment to a network. Review written for the special issue on "Flavor Symmetries and Neutrino Oscillations", published in Fortschritte der Physik - Progress of Physic

    Discrete symmetries and models of flavor mixing

    Full text link
    Evidences of a discrete symmetry behind the pattern of lepton mixing are analyzed. The program of "symmetry building" is outlined. Generic features and problems of realization of this program in consistent gauge models are formulated. The key issues include the flavor symmetry breaking, connection of mixing and masses, {\it ad hoc} prescription of flavor charges, "missing" representations, existence of new particles, possible accidental character of the TBM mixing. Various ways are considered to extend the leptonic symmetries to the quark sector and to reconcile them with Grand Unification. In this connection the quark-lepton complementarity could be a viable alternative to TBM. Observational consequences of the symmetries and future experimental tests of their existence are discussed.Comment: 14 pages, 5 figures. Talk given at the Symposium "DISCRETE 2010", 6 - 11 December 2010, La Sapienza, Rome, Ital

    Reactor mixing angle from hybrid neutrino masses

    Get PDF
    In terms of its eigenvector decomposition, the neutrino mass matrix (in the basis where the charged lepton mass matrix is diagonal) can be understood as originating from a tribimaximal dominant structure with small deviations, as demanded by data. If neutrino masses originate from at least two different mechanisms, referred to as "hybrid neutrino masses", the experimentally observed structure naturally emerges provided one mechanism accounts for the dominant tribimaximal structure while the other is responsible for the deviations. We demonstrate the feasibility of this picture in a fairly model-independent way by using lepton-number-violating effective operators, whose structure we assume becomes dictated by an underlying A4A_4 flavor symmetry. We show that if a second mechanism is at work, the requirement of generating a reactor angle within its experimental range always fixes the solar and atmospheric angles in agreement with data, in contrast to the case where the deviations are induced by next-to-leading order effective operators. We prove this idea is viable by constructing an A4A_4-based ultraviolet completion, where the dominant tribimaximal structure arises from the type-I seesaw while the subleading contribution is determined by either type-II or type-III seesaw driven by a non-trivial A4A_4 singlet (minimal hybrid model). After finding general criteria, we identify all the ZN\mathbb{Z}_N symmetries capable of producing such A4A_4-based minimal hybrid models.Comment: 18 pages, 5 figures. v3: section including sum rules added, accepted by JHE
    corecore