9 research outputs found

    Pcl-PRC2 is needed to generate high levels of H3-K27 trimethylation at Polycomb target genes

    Get PDF
    PRC2 is thought to be the histone methyltransferase (HMTase) responsible for H3-K27 trimethylation at Polycomb target genes. Here we report the biochemical purification and characterization of a distinct form of Drosophila PRC2 that contains the Polycomb group protein polycomblike (Pcl). Like PRC2, Pcl-PRC2 is an H3-K27-specific HMTase that mono-, di- and trimethylates H3-K27 in nucleosomes in vitro. Analysis of Drosophila mutants that lack Pcl unexpectedly reveals that Pcl-PRC2 is required to generate high levels of H3-K27 trimethylation at Polycomb target genes but is dispensable for the genome-wide H3-K27 mono- and dimethylation that is generated by PRC2. In Pcl mutants, Polycomb target genes become derepressed even though H3-K27 trimethylation at these genes is only reduced and not abolished, and even though targeting of the Polycomb protein complexes PhoRC and PRC1 to Polycomb response elements is not affected. Pcl-PRC2 is thus the HMTase that generates the high levels of H3-K27 trimethylation in Polycomb target genes that are needed to maintain a Polycomb-repressed chromatin state

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Protein kinases in myocardial protection

    Get PDF

    Identification of protease-sensitive but not misfolding PNLIP variants in familial and hereditary pancreatitis

    No full text

    The PRSS3P2 and TRY7 deletion copy number variant modifies risk for chronic pancreatitis

    No full text
    Background PRSS1 and PRSS2 constitute the only functional copies of a tandemly-arranged five-trypsinogen-gene cluster (i.e., PRSS1, PRSS3P1, PRSS3P2, TRY7 and PRSS2) on chromosome 7q35. Variants in PRSS1 and PRSS2, including missense and copy number variants (CNVs), have been reported to predispose to or protect against chronic pancreatitis (CP). We wondered whether a common trypsinogen pseudogene deletion CNV (that removes two of the three trypsinogen pseudogenes, PRSS3P2 and TRY7) might be associated with CP causation/predisposition. Methods We analyzed the common PRSS3P2 and TRY7 deletion CNV in a total of 1536 CP patients and 3506 controls from France, Germany, India and Japan by means of quantitative fluorescent multiplex polymerase chain reaction. Results We demonstrated that the deletion CNV variant was associated with a protective effect against CP in the French, German and Japanese cohorts whilst a trend toward the same association was noted in the Indian cohort. Meta-analysis under a dominant model yielded a pooled odds ratio (OR) of 0.68 (95% confidence interval (CI) 0.52–0.89; p = 0.005) whereas an allele-based meta-analysis yielded a pooled OR of 0.84 (95% CI 0.77–0.92; p = 0.0001). This protective effect is explicable by reference to the recent finding that the still functional PRSS3P2/TRY7 pseudogene enhancers upregulate pancreatic PRSS2 expression. Conclusions The common PRSS3P2 and TRY7 deletion CNV was associated with a reduced risk for CP. This finding provides additional support for the emerging view that dysregulated PRSS2 expression represents a discrete mechanism underlying CP predisposition or protection

    Pancreatology

    No full text
    BACKGROUND: PRSS1 and PRSS2 constitute the only functional copies of a tandemly-arranged five-trypsinogen-gene cluster (i.e., PRSS1, PRSS3P1, PRSS3P2, TRY7 and PRSS2) on chromosome 7q35. Variants in PRSS1 and PRSS2, including missense and copy number variants (CNVs), have been reported to predispose to or protect against chronic pancreatitis (CP). We wondered whether a common trypsinogen pseudogene deletion CNV (that removes two of the three trypsinogen pseudogenes, PRSS3P2 and TRY7) might be associated with CP causation/predisposition. METHODS: We analyzed the common PRSS3P2 and TRY7 deletion CNV in a total of 1536 CP patients and 3506 controls from France, Germany, India and Japan by means of quantitative fluorescent multiplex polymerase chain reaction. RESULTS: We demonstrated that the deletion CNV variant was associated with a protective effect against CP in the French, German and Japanese cohorts whilst a trend toward the same association was noted in the Indian cohort. Meta-analysis under a dominant model yielded a pooled odds ratio (OR) of 0.68 (95% confidence interval (CI) 0.52-0.89; p = 0.005) whereas an allele-based meta-analysis yielded a pooled OR of 0.84 (95% CI 0.77-0.92; p = 0.0001). This protective effect is explicable by reference to the recent finding that the still functional PRSS3P2/TRY7 pseudogene enhancers upregulate pancreatic PRSS2 expression. CONCLUSIONS: The common PRSS3P2 and TRY7 deletion CNV was associated with a reduced risk for CP. This finding provides additional support for the emerging view that dysregulated PRSS2 expression represents a discrete mechanism underlying CP predisposition or protection

    The PRSS3P2 and TRY7 deletion copy number variant modifies risk for chronic pancreatitis

    No full text
    International audienc
    corecore