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A fine balancing act: a delicate kinase-phosphatase equilibrium that protects against chromosomal 

instability and cancer. 
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Cancer cells rewire signalling networks to acquire specific hallmarks needed for their proliferation, 

survival, and dissemination throughout the body. Although this is often associated with the 

constitutive activation or inactivation of protein phosphorylation networks, there are other contexts 

when the dysregulation must be much milder. For example, chromosomal instability is a widespread 

cancer hallmark that relies on subtle defects in chromosome replication and/or division, such that 

these processes remain functional, but nevertheless error-prone. In this article, we will discuss how 

perturbations to the delicate kinase-phosphatase balance could lie at the heart of this type of 

dysregulation. In particular, we will explain how the two principle mechanisms that safeguard the 

chromosome segregation process rely on an equilibrium between at least two kinases and two 

phosphatases to function correctly. This balance is set during mitosis by a central complex that has 

also been implicated in chromosomal instability - the BUB1/BUBR1/BUB3 complex – and we will put 

forward a hypothesis that could link these two findings. This could be relevant for cancer treatment 

because most tumours have evolved by pushing the boundaries of chromosomal instability to the 

limit. If this involves subtle changes to the kinase-phosphatase equilibrium, then it may be possible to 

exacerbate these defects and tip tumour cells over the edge, whilst still maintaining the viability of 

healthy cells. 

Running title: Balancing kinases and phosphatases at the kinetochore. 

Introduction  

Protein phosphorylation is critical for regulating protein function, propagating intracellular signals, 

and maintaining cell and tissue homeostasis (Day et al., 2016). It is not surprising, therefore, that 

dysregulated phosphorylation is a major cause of several human diseases, including cancer (Creixell 

et al., 2015; Fleuren et al., 2016). In the context of cancer, mutations within key oncogenes or tumour 

suppressors enable tumour cells to acquire characteristic traits needed for their growth, survival, and 

metastasis (Hanahan and Weinberg, 2011). These mutations are frequently associated with the 

constitutive activation, inactivation, or rewiring, of protein phosphorylation networks (Creixell et al., 

2015; Fleuren et al., 2016; Julien et al., 2011; Reimand et al., 2013). For example, the ability to sustain 

uncontrolled proliferation can result from the hyperactivation of tyrosine kinase receptors, such as 

EGFR (Henson et al., 2017), the inactivation of other receptor types, such as TGF-beta (Huang and 

Blobe, 2016), or the constitutive activation of downstream signalling intermediates, such as Ras 

(Stephen et al., 2014), Raf (Holderfield et al., 2014) or PI3-Kinase (Lim et al., 2015). In addition, this 

can be supported by the inactivation of tumour suppressor phosphatases, such as PTEN (Lim et al., 

2015) or PP2A (Grech et al., 2016), or the activation of oncogenic phosphatases, including many 

members of the Protein Tyrosine Phosphatase (PTP) superfamily (Hardy et al., 2012; Julien et al., 

2011). In this way, tumour cells are able to grossly alter their ‘phosphatome’ in a manner that best 

befits their continued proliferation and survival. 

In addition to these individual gene mutations, the genomic landscape of cancer cells can be radically 

reshuffled by the continual gain, loss and/or rearrangement of whole chromosomes or parts of 

chromosomes. This is referred to as chromosomal instability, or CIN, and it represents perhaps the 
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most dangerous of all cancer hallmarks, because it provides a rich source of genetic variability that 

tumours can then use to evolve (Funk et al., 2016; Greaves, 2015; McGranahan and Swanton, 2017; 

Roschke and Rozenblum, 2013). The more heterogeneous the tumour, the greater the chance that it 

can positively select lethal subclones that can survive the hostile tumour microenvironment, escape 

to colonise new areas, and ultimately resist chemotherapy treatments (Greaves, 2015; Lee et al., 2011; 

McGranahan and Swanton, 2017). That is why CIN is such a good predictor of poor patient outcome 

(Jamal-Hanjani et al., 2017) and it is also why there is an urgent need to uncover the underlying 

mechanistic causes. 

Beneath the seemingly chaotic exterior of CIN cells, lie some surprisingly mild perturbations to the 

processes of chromosome replication and/or division (Bastians, 2015; Funk et al., 2016). If one were 

to visualise mitosis in these cells, for example, it would still look surprisingly well organised, save for 

the odd one or two chromosomes that occasionally lag in the division plane. Delve a little deeper, 

however, and there is a perfectly good explanation for this relatively mild dysregulation: these 

processes are essential for survival, even for a resilient tumour cell, and they cannot tolerate gross 

perturbations because excessive aneuploidy is detrimental to tumour fitness (Duijf and Benezra, 2013; 

Roschke and Rozenblum, 2013; Silk et al., 2013; Tang and Amon, 2013; Weaver et al., 2007). Instead, 

tumours rely on the fact that perpetual low-grade errors can eventually build up a vast bank of 

different karyotypes, that crucially, are still viable.  

In this article, we will discuss how dysregulated protein phosphorylation could still lie at the heart of 

these defects. However, rather than the sledgehammer-type of dysregulation that is typically 

associated with cancer, CIN may instead rely on subtle alterations to the kinase-phosphatase 

equilibrium to allow essential processes to become mildly dysfunctional. We will focus on 

chromosome segregation, because this process is known to fail in a wide variety of CIN cells and, as 

we will come on to discuss, it also critically depends on a fine balance of activities between multiple 

kinases and phosphatases to function correctly. In particular, we will highlight how a key node in this 

network that has well established links to CIN - the BUB1/BUBR1/BUB3 complex – is critical for setting 

the correct kinase-phosphatase balance during mitosis. The signalling output of this complex, and its 

ability to promote or protect against CIN, is well known to depend on the expression levels of its 

constituent proteins (Baker et al., 2013; Baker et al., 2009; Jeganathan et al., 2007; Ricke et al., 2011; 

Ricke and van Deursen, 2011; Suijkerbuijk et al., 2010). Therefore aneuploidy itself, which alters gene 

dosage and introduces protein imbalances, could drive the type of mild errors that generate further 

aneuploidy in an evolutionary cycle that pushes the boundaries of CIN to the limit (Giam and Rancati, 

2015).  

Chromosome segregation errors as a source of CIN  

There are two main regulatory processes that safeguard the chromosome segregation process: the 

spindle assembly checkpoint (SAC) and kinetochore-microtubule error-correction (Joglekar, 2016; 

Krenn and Musacchio, 2015; Musacchio, 2015). The SAC delays mitosis until each and every 

chromosome has attached to microtubules via the kinetochore (a large protein complex assembled at 

the centromere of chromosomes). The error-correction network monitors this process and removes 

any faulty microtubule attachments that may form. The main kinases that regulate these processes, 

MPS1 and Aurora B, are both essential for viability because efficient inhibition of either one causes 

catastrophic chromosome segregation errors and cell death (Kwiatkowski et al., 2010; Sliedrecht et 

al., 2010; Wilkinson et al., 2007; Yang et al., 2007). Not surprisingly, therefore, inactivating mutations 

within these kinases have never been found in tumours, and in fact, MPS1 and Aurora B inhibitors are 

currently in clinical trials as anti-cancer agents (Bavetsias and Linardopoulos, 2015; Dominguez-Brauer 

et al., 2015; Falchook et al., 2015; Mason et al., 2017; Tang et al., 2017; Wengner et al., 2016).  



Although the kinases themselves are not inactivated in cancer, the SAC and error-correction networks 

that they control may, however, still be defective. Partial inhibition of MPS1 or Aurora B causes 

premature mitotic exit with kinetochore-microtubule attachment defects (Cimini et al., 2006; 

Santaguida et al., 2010). This results in chromosome gains, losses and/or translocations, as cells divide 

with unattached or merotelically attached kinetochores (i.e. a single kinetochore attached to both 

spindle poles). These merotelic attachments cause chromosomes to lag in the division plane during 

anaphase, where they can be damaged during cytokinesis and then repaired incorrectly by non-

homologous end joining in G1 (Janssen et al., 2011), or incorporated into micronuclei and damaged 

during subsequent DNA replication (Crasta et al., 2012; Zhang et al., 2015). If cells continue to divide 

in this manner, then they develop the type of karyotype heterogeneity that is typical of tumours with 

CIN. So, do these defects cause or contribute to CIN in tumour cells? The direct evidence implies that 

they do, and you only have to visualise these cells dividing to begin to understand why. 

CIN cells display an abnormally high proportion of lagging chromosomes during anaphase due to 

merotelic kinetochore-microtubule attachments (Bakhoum et al., 2014; Gascoigne and Taylor, 2008; 

Godek et al., 2015; Thompson and Compton, 2008). Furthermore, artificially destabilising these 

incorrect attachments is sufficient to reduce chromosome segregation errors and supress CIN 

(Bakhoum et al., 2009). Therefore, CIN cells are unable to fully correct their kinetochore-microtubule 

attachment defects, which implies that the error-correction network is partially defective. There does 

not, however, appear to be a similar defect in the SAC, because the same panel of CIN cells that 

displayed elevated merotelic attachments, showed no evidence of unattached chromosomes at 

anaphase (i.e. the SAC is able to halt division until all kinetochores become attached) (Gascoigne and 

Taylor, 2008; Thompson and Compton, 2008). It should be noted, however, that others have observed 

divisions with unattached chromosomes in a breast cancer CIN line (Ryan et al., 2012). Furthermore, 

it is very difficult to identify these unattached chromosomes at anaphase, at least in comparison to 

lagging chromosomes which are clearly visible in the division plane. Therefore, a definitive answer as 

to whether the SAC is impaired will require an accurate quantification of SAC strength (i.e. the amount 

of inhibitory signal generated by each kinetochore) in a wide variety of cancer cell lines. In summary, 

weakening of the error-correction network likely contributes to CIN, and although the current 

evidence implies that SAC weakening does not, it is still too premature to rule this out.  

There have been various mechanisms put forward to explain the mitotic errors in CIN cells (Abe et al., 

2016; Bastians, 2015; Burrell et al., 2013; Ertych et al., 2014; Ganem et al., 2009; Manning et al., 2014; 

Solomon et al., 2011; Tanno et al., 2015; Yu et al., 2016), and many of these have the potential to 

impact, directly or indirectly, on the error-correction network and its main regulator Aurora B. For 

example, CIN has been associated with defects in centromeric cohesion (Manning et al., 2014; 

Solomon et al., 2011), the inner centromeric shugoshin network (Tanno et al., 2015), and 

heterochromatin binding protein 1 (HP1) (Abe et al., 2016), which can all impact on Aurora B 

localisation and activation (Abe et al., 2016; Carmena et al., 2012; Kleyman et al., 2014). In addition, 

the tumour suppressor DAP2IP affects kinetochore-microtubule attachments and the SAC, perhaps by 

regulating the phosphatase pathway that antagonises Aurora B at kinetochores (PP2A-B56) (Yu et al., 

2016). Furthermore, as we will come on to discuss, there are also a variety of expression level 

alterations that can modulate kinetochore Aurora B/PP2A activity to drive CIN and tumourigenesis in 

animal models (Dai et al., 2004; Jeganathan et al., 2007; Rao et al., 2005; Ricke et al., 2011).  

In summary, the phenotypes widely observed in CIN cells are reminiscent of partial Aurora B inhibition, 

and many of the established links to CIN may also impact on Aurora B activity. These two facts alone, 

reinforce the need to understand whether the Aurora B network is frequently perturbed in CIN cells. 

This could be achieved by accurately quantifying kinetochore Aurora B activity, however, the relatively 



mild chromosome segregation errors observed in CIN cells imply that any defects will be subtle. It is 

therefore important to use sensitive assays that can distinguish small changes in Aurora B activity, 

specifically at the outer kinetochore, where it is needed to regulate microtubule attachments. 

We will now discuss the Aurora B network in more detail to highlight how it depends on a fine balance 

of kinase and phosphatase activities to function correctly. This is important, because many of the 

defects discussed above could destabilise this balance to cause kinetochore-microtubule attachment 

defects and CIN. In fact, this particular equilibrium is determined by two kinases and two 

phosphatases, which work together in a single network to regulate both kinetochore-microtubule 

attachments and the SAC. Therefore, by rewiring the same underlying circuitry, cancer cells could 

achieve a ‘double hit’ that weakens both of these key mitotic processes.  

The role of the KMN network in chromosome segregation 

The KMN network (for KNL1, Mis12 and NDC80 complexes) is a major signalling centre at kinetochores 

that regulates both microtubule attachments and the SAC (Musacchio and Desai, 2017) (figure 1). The 

principle microtubule binding component is the NDC80 complex, which has a coiled coil structure that 

reaches out from kinetochores to hold on to microtubules via interactions with the CH domains and a 

N-terminal tail. Aurora B, which is the catalytic component of the Chromosomal Passenger Complex 

(CPC), phosphorylates this tail region of NDC80 to electrostatically interfere with microtubule binding 

(Krenn and Musacchio, 2015). NDC80 also signals to the SAC because it binds the kinase MPS1 and 

allows it to phosphorylate KNL1 on what are known as ‘MELT repeats’. These phosphorylations recruit 

the BUB1/BUB3/BUBR1 complex to kinetochores, which subsequently helps to recruit a variety of 

other proteins needed for SAC signalling, including MAD1 and MAD2. That is why KNL1 is viewed as a 

platform for SAC signalling at the kinetochore (Joglekar, 2016; Musacchio, 2015) (figure 1).  

In addition to recruiting SAC proteins, KNL1 also recruits two phosphatases - PP1 and PP2A-B56 – 

which are needed to antagonise MPS1 and Aurora B signalling at kinetochores. This is important, 

because otherwise microtubule attachments would never form and the SAC would be constitutively 

engaged (Espert et al., 2014; Kruse et al., 2013; Nijenhuis et al., 2014; Suijkerbuijk et al., 2010; Xu et 

al., 2013). Instead, PP2A-B56 dampens Aurora B signalling to allow NDC80 to bind to microtubules and 

to enable KNL1 to bind to PP1 via an ‘RVSF’ motif in its extreme N-terminus. This PP1-KNL1 complex 

can subsequently dephosphorylate the MELTs to antagonise the SAC (figure 1).  

There are therefore various phosphorylation sites on the KMN network that are in dynamic 

equilibrium during prometaphase; the stage of mitosis when kinetochore-microtubule attachments 

form. This equilibrium is critical for the SAC and kinetochore-microtubule attachment processes to 

function correctly, and to explain why, we will now focus on three of these sites in particular, which 

are all highlighted in figure 1: p-NDC80, p-MELT and p-RVSF. Although these phosphorylation sites are 

by no means the only critical sites on the outer kinetochore, they are some of the best characterised, 

and they may in fact act as surrogates for other key phosphorylations that regulate the SAC or 

microtubule attachment (i.e. other Aurora B and MPS1 targets, as highlighted below). 

A kinase-phosphatase equilibrium that controls chromosome segregation 

We will begin by discussing each of these key sites independently to highlight how their 

phosphorylation is delicately balanced and why that is important (points 1-3 below refer to the scales 

in figure 2a). We will then move on to discuss how their interconnected nature means that they all 

function together within a single network that, if unbalanced, can lead to defects in both kinetochore-

microtubule attachments and the SAC (figure 2b). 



1) NDC80 tail phosphorylation. As mentioned previously, Aurora B phosphorylates substrates at the 

kinetochore to inhibit microtubule attachment (Biggins et al., 1999; Cheeseman et al., 2002; Hauf et 

al., 2003; Lampson et al., 2004; Tanaka et al., 2002). Although many different substrates are targeted 

by Aurora B (Krenn and Musacchio, 2015), these are symbolised in figure 2 by NDC80, which is the 

principle microtubule attachment complex at kinetochores (Cheeseman et al., 2006; Ciferri et al., 

2008; DeLuca et al., 2006; Guimaraes et al., 2008; Miller et al., 2008; Wei et al., 2007). Phosphorylation 

of NDC80 needs to be counterbalanced by the phosphatase PP2A-B56 to allow initial microtubule 

attachments to form (Foley et al., 2011; Kruse et al., 2013; Suijkerbuijk et al., 2012; Xu et al., 2013). If 

these attachments are correct (i.e. they generate tension), then the phosphatase wins out and they 

are rapidly stabilised. If not, then Aurora B activity predominates and the microtubules become quickly 

detached. This ability to switch the kinase-phosphatase equilibrium in the presence or absence of 

tension is the underlying basis of error-correction (Krenn and Musacchio, 2015).  

2) KNL1-MELT phosphorylation. MPS1 phosphorylates proteins at the kinetochore to initiate SAC 

signalling; this is also likely to involve many different substrates (Faesen et al., 2017; Ji et al., 2017; 

Maciejowski et al., 2017), but these are symbolised in figure 2 by the ‘MELT repeats’ in KNL1, which 

as mentioned previously, is the major SAC signalling scaffold at kinetochores (London et al., 2012; 

Shepperd et al., 2012; Yamagishi et al., 2012). These MELT phosphorylations also require 

counterbalancing, but this time by a phosphatase relay involving both PP2A-B56 and PP1 (Espert et 

al., 2014; Nijenhuis et al., 2014). When the SAC signal is on, the MELT repeats are rapidly 

phosphorylated and dephosphorylated by the cooperative action of kinase (MPS1) and phosphatase 

(PP1). Although this may seem like an excessive waste of energy, at least one benefit is that the signal 

is rapidly responsive to microtubule occupancy, such that when it needs to shut down it can do so 

incredibly quickly (Nijenhuis et al., 2014).  

3) KNL1-RVSF phosphorylation. A third important balancing act involves the phosphatase PP1, which 

is recruited to an ‘RVSF’ motif in the N-terminus of KNL1 to shut down the SAC (Espeut et al., 2012; 

Liu et al., 2010; Meadows et al., 2011; Rosenberg et al., 2011). Phosphorylation of the serine within 

this motif inhibits PP1 binding, and this phosphorylation site is controlled by the antagonistic actions 

of Aurora B and PP2A-B56 (Liu et al., 2010; Nijenhuis et al., 2014). During mitosis, whenever the SAC 

is on, this motif is also rapidly phosphorylated and dephosphorylated to ensure that KNL1-MELT 

phosphorylation remains dynamic. When microtubules attach correctly and generate tension, Aurora 

B is shut down, the RVSF motif is dephosphorylated, and PP1 predominates at kinetochores to silence 

the SAC (Espeut et al., 2012; Meadows et al., 2011; Nijenhuis et al., 2014; Pinsky et al., 2009; 

Rosenberg et al., 2011; Vanoosthuyse and Hardwick, 2009). Aurora B also inhibits PP1 binding to other 

proteins, which can impact on Aurora B activity at the centromere (Kumar et al., 2016; Qian et al., 

2013) and kinetochore (Kim et al., 2010).  Whilst these PP1 complexes are clearly important, they have 

never been linked to the SAC directly and therefore are omitted from figure 2, which focusses 

exclusively on the KMN network. 

A striking feature of all three of these phosphorylation sites is their interdependence. The RVSF motif 

controls the MELT motifs (via PP1), the MELTs control both the RVSF motif and NDC80 (via Aurora B 

and PP2A-B56), and NDC80 controls microtubule attachment status which regulates MPS1 and thus 

the MELTs ((Aravamudhan et al., 2015; Hiruma et al., 2015; Ji et al., 2015); not depicted in figure 2). 

Therefore, it is not possible to modulate either one site without producing knock-on effects on all the 

others. It will be important in future to determine exactly what these interconnections mean, but it is 

tempting to speculate that they may help to coordinate microtubule stabilisation with SAC silencing.  

The best evidence that kinase and phosphatase inputs are delicately balanced, is that if either of these 

substrates are phosphorylated too much or too little, then the SAC and kinetochore-microtubule 



attachment processes become defective (figure 2b). For example, if kinetochore PP2A-B56 activity is 

reduced then Aurora B becomes dominant, microtubule attachments are destabilised, and SAC 

silencing is delayed (Espert et al., 2014; Foley et al., 2011; Kruse et al., 2013; Nijenhuis et al., 2014; 

Suijkerbuijk et al., 2012; Xu et al., 2013). Conversely, if the phosphatases become dominant, the SAC 

is weakened, microtubule attachments become hyperstable, and the error-correction process fails 

(Ditchfield et al., 2003; Hauf et al., 2003; Santaguida et al., 2011; Saurin et al., 2011; Vader et al., 2007). 

This ‘phosphatase dominant’ situation leads to exactly the type of errors predicted to cause CIN. 

Therefore, it is important to consider whether cancer cells could rewire their underlying circuitry to 

skew this equilibrium towards the phosphatases?  

To answer this question, it is important to first ask what aspects of the underlying circuitry help to 

ensure the system remains balanced in the first place. This is a complicated question, that will no 

doubt require systems biology to help solve, however, the simple diagram in figure 2 already eludes 

to a critical node in this network: the phosphorylated MELT motif. Figure 2a, shows how this motif 

jointly stimulates both kinase and phosphatase arms of the pathway, and importantly, the skewed 

equilibriums in figure 2b stems from an imbalance in kinase or phosphatase stimulation emanating 

from this MELT motif. We will now discuss the mechanistic basis for this co-stimulation because it 

involves a protein complex that has already been implicated in CIN: the BUB1/BUBR1/BUB3 complex 

(figure 3).  

The BUB1/BUBR1/BUB3 complex integrates kinase and phosphatase signalling at kinetochores 

As mentioned previously, an important event in SAC signalling is the phosphorylation of KNL1 on MELT 

repeats by MPS1 (London et al., 2012; Shepperd et al., 2012; Yamagishi et al., 2012). This recruits the 

pseudo-symmetric BUB1-BUB3:BUB3-BUBR1 complex to kinetochores by virtue of interaction 

between BUB1-BUB3 and the phosphorylated MELT motif (figure 3) (Overlack et al., 2015; Primorac 

et al., 2013). One of the best characterised functions of BUB1 at kinetochores is the stimulation of 

Aurora B activity: BUB1 phosphorylates Histone-H2A tails adjacent to the kinetochore to recruit 

shugoshin, which is important for the co-localisation and activation of the Aurora B (Kawashima et al., 

2007; Kawashima et al., 2010; Kitajima et al., 2005; Tsukahara et al., 2010; Wang et al., 2011; 

Yamagishi et al., 2010) (figure 1). BUBR1, on the other hand, recruits PP2A-B56 to kinetochores via 

direct interaction with a phosphorylated ‘LSPI’ motif in BUBR1 (Hertz et al., 2016; Kruse et al., 2013; 

Suijkerbuijk et al., 2012; Wang, J. et al., 2016; Wang, X. et al., 2016; Xu et al., 2013). This is important 

to counteract Aurora B activity at kinetochores and stabilise microtubule attachments. Therefore, the 

BUB1-BUB3:BUB3-BUBR1 heterotetramer has two well-characterised functions at the kinetochore: 1) 

to elevate Aurora B activity, and 2) to elevate PP2A-B56 activity (figure 3a). This complex is therefore 

the key signal integrator that activates both arms of the kinase-phosphatase network outlined in figure 

2. This alone, suggests that it may be a particularly vulnerable node in the network, since protein 

imbalances and/or mutations that interfere with either BUB1 or BUBR1 signalling would be predicted 

to disrupt the kinase-phosphatase balance at kinetochores. We will now discuss the pre-existing links 

between the BUB complex and chromosomal instability, since there is already good evidence that the 

balance of BUB1/BUBR1 expression is critical for regulating chromosome segregation, CIN and 

tumourigenesis.  

The BUB1/BUBR1/BUB3 complex and chromosomal instability 

Modulating the levels of the BUB proteins has dramatic consequences for chromosomal stability and 

tumorigenesis. In mice, loss of BUB1 is embryonic lethal, however, reductions in BUB1 expression 

cause chromosome segregation defects, aneuploidy, and elevated rates of spontaneous 

tumorigenesis (Jeganathan et al., 2007).  These defects, which are associated with reduced 



centromeric Sgo1, are reminiscent of partial Aurora B inhibition (i.e. misaligned and/or lagging 

chromosomes during anaphase (Cimini et al., 2006)). In contrast, elevating BUB1 expression also has 

dramatic effects, but this time due to Aurora B hyperactivation. Transgenic mice that overexpress 

BUB1 exhibit chromosome segregation defects, near-diploid aneuploidies, and an elevated incidence 

of spontaneous tumours (Ricke et al., 2011). These defects are associated with enhanced BUB1 and 

Aurora B activities, and importantly, Aurora B hyperactivation is the principle cause, because partial 

Aurora B inhibition can completely rescue both the mitotic errors and the resulting increase in 

aneuploidy (Ricke et al., 2011). Together, these data suggest that manipulating BUB1 levels affects 

chromosome segregation and tumourigenesis, principally by modulating kinetochore Aurora B 

activity. 

There are at least two ways in which BUB1 expression levels could impact on kinetochore Aurora B 

activity: 1) by controlling the recruitment and activation of Aurora B at centromeres, and 2) by 

modulating the activity of kinetochore PP2A-B56 (figure 3a). Interestingly, BUB1 overexpression 

causes a dramatic increase in kinetochore BUB1 levels, but crucially, this does not cause a reciprocal 

increase in kinetochore BUBR1 (Ricke et al., 2011). The result is that the kinase-phosphatase balance 

is tipped in favour of Aurora B, and kinetochore substrate phosphorylation is enhanced. It is unclear 

why the extra BUB1 at kinetochores does not also bind BUBR1, but this may reflect an imbalance in 

BUB1-BUB3:BUB3-BUBR1 complex formation, such that in the absence of sufficiently over-expressed 

BUBR1, BUB1-BUB3 heterodimers are left free to act at kinetochores instead (figure 3b). In this regard, 

it is perhaps particularly revealing that co-overexpression of BUBR1 can completely rescue the mitotic 

errors and aneuploidy in BUB1 overexpressing cells (Baker et al., 2013; Ricke et al., 2011). In this 

situation, the high kinetochore BUB1 levels are unaffected, but now BUBR1 is also enhanced and 

kinetochore substrate phosphorylation is reduced; presumably due to the extra PP2A-B56 that is co-

recruited by BUBR1, although this was never directly tested. It should be noted, however, that BUBR1 

is also able to protect against aneuploidy in different tumour models, and it has been proposed to 

have pleotropic effects that are independent on PP2A-B56, but maybe related to its ability to engage 

the SAC (Baker et al., 2013; Weaver et al., 2016).  

If the relative expression of BUB1 and BUBR1 is critical to preserve chromosomal stability, then BUBR1 

depletion should have similar effects to BUB1 overexpression. BUBR1 is an essential component of 

the SAC, and efficient knockdown causes a SAC override and kinetochore-microtubule attachment 

defects, which combine to cause catastrophic chromosome segregation errors and cell death (Chan et 

al., 1999; Fang, 2002; Kops et al., 2004; Lampson and Kapoor, 2005; Sudakin et al., 2001; Tang et al., 

2001). The microtubule attachment defects in this case are caused by elevated Aurora B activity 

because chromosomal alignment can be rescued by Aurora B inhibition (Lampson and Kapoor, 2005). 

If BUBR1 expression levels are partially reduced, then cells can survive and proliferate, but they do so 

with mild defects in the SAC and chromosome alignment that lead to aneuploidy (Bohers et al., 2008; 

Suijkerbuijk et al., 2010). In fact, bi-allelic mutations in BUBR1, which reduce BUBR1 expression levels, 

are a major cause of Mosaic Variegated Aneuploidy (MVA) and are associated with susceptibility to 

gastrointestinal neoplasia (Bohers et al., 2008; Burum-Auensen et al., 2008; Hanks et al., 2004; Rao et 

al., 2005; Rio Frio et al., 2010; Suijkerbuijk et al., 2010; Wijshake et al., 2012). In addition, MVA patients 

suffer from a variety of aneuploidy-related conditions, including an increased susceptibility to a wide 

range of early-onset childhood cancers (Kajii et al., 2001). This provides good evidence that aneuploidy 

itself can drive cancer, and in this case, a major contributing factor is an imbalance in kinase-

phosphatase signalling at kinetochores, because the associated microtubule attachment defects can 

be rescued by wild type BUBR1, but not by BUBR1 that is incapable of binding to PP2A-B56 (Xu et al., 

2013). Furthermore, this imbalance is caused only by a reduction in kinetochore phosphatase activity 

because recruiting PP2A-B56 alone to kinetochores can also rescue the chromosome alignment 



defects (Xu et al., 2013). Therefore, in summary, reduced BUBR1 expression causes a shift in the 

equilibrium towards Aurora B at kinetochores by reducing PP2A-B56 (figure 3b), which produces 

similar phenotypes to BUB1 overexpression; in terms of the chromosome segregation defects, 

aneuploidy and cancer predisposition (Ricke et al., 2011; Ricke and van Deursen, 2011). It will be 

interesting to test in future whether BUB1 inhibition, using recently developed small molecules (Baron 

et al., 2016), can help to restore this balance and perhaps limit aneuploidy in MVA patients. 

Alternative ways to upset the kinase-phosphatase balance at kinetochores 

Altering BUB1:BUBR1 expression levels is not the only way to perturb the kinase-phosphatase balance 

at kinetochores. The BUB1:BUBR1 kinetochore equilibrium may also be regulated by other proteins, 

because knockdown of the BUB3 binding protein, BuGZ, selectively reduces kinetochore BUB1, but 

not BUBR1, and causes reciprocal reductions in Histone H2A-T120 phosphorylation and kinetochore 

Aurora B activity (Toledo et al., 2014). Alternatively, the Aurora B or PP2A-B56 pathways could be 

selectively perturbed by direct changes to either their expression levels or their respective regulatory 

pathways. 

Aberrant expression of Aurora B has been previously linked to CIN, and knockout of the tumour 

suppressor ARF causes mitotic defects and CIN by elevating Aurora B levels (Britigan et al., 2014; 

Hindriksen et al., 2015). Altering the expression of proteins within the CPC, or within the larger 

centromeric Aurora B recruitment pathway, could similarly affect Aurora B localisation and activity 

(Hindriksen et al., 2015). For example, the interaction with the centromeric chromatin regulator, HP1, 

appears to be disturbed in a variety of cancer lines, which missegregate chromosomes due to reduced 

Aurora B activity (Abe et al., 2016). Other well-established Aurora B regulators, such as Sgo1 and 

cohesin, have been independently linked to CIN (Manning et al., 2014; Solomon et al., 2011; Tanno et 

al., 2015), and at least part of these effects could be mediated by an imbalance in Aurora B:PP2A-B56 

activity (Gutierrez-Caballero et al., 2012; Kleyman et al., 2014). Sgo1, for example, localises Aurora B 

to centromeres (Kawashima et al., 2007; Kawashima et al., 2010; Tsukahara et al., 2010; Wang et al., 

2011; Yamagishi et al., 2010), but also recruits PP2A-B56 to limit Aurora B activity (Meppelink et al., 

2015; Tang et al., 2006). 

Kinetochore PP2A-B56 activity could also be dependent on expression levels, and in this case, the 

relative expression of individual B56 isoforms may be particularly important, because only a subset of 

these isoforms bind the outer kinetochore (Nijenhuis et al., 2014). This kinetochore binding depends 

on a variety of different kinase inputs (MPS1, PLK1, CDK1 (Kruse et al., 2013; London et al., 2012; 

Shepperd et al., 2012; Suijkerbuijk et al., 2012; Yamagishi et al., 2012)), which could each be selectively 

perturbed in CIN cells. Finally, PP2A-B56 activity is directly regulated by at least one inhibitory protein 

at kinetochores (Porter et al., 2013), and the extent of this inhibition may depend on protein 

expression levels and/or additional regulation. 

Conclusions 

We have outlined here how maintaining the correct kinase-phosphatase balance at kinetochores is 

important to protect against aneuploidy and cancer. Changing the relative protein expression levels 

within the BUB1/BUBR1/BUB3 complex can clearly upset this balance, however, there are likely to be 

many alternative ways to achieve the same end result. The genetic changes that support this kind of 

dysregulation may be very difficult to pinpoint within individual tumours, especially if they produce 

only subtle changes in protein expression, and even harder to detect within the context of a 

population, when each tumour can select different ways to mildly perturb the same network. 

However, if the Aurora B-PP2A network is a central hub onto which many of these genetic changes 



converge, then it may be possible to screen components of this network to categorise CIN cells, and 

potentially, to direct treatment.  

As has been pointed out previously by others, many tumours have evolved by pushing the boundaries 

of CIN to the limit (Giam and Rancati, 2015; Greaves, 2015; Lee et al., 2011; McGranahan and Swanton, 

2017; Sansregret et al., 2017). A key aspect of this is the weakening of otherwise reliable networks 

involved in DNA replication and/or cell division (Bastians, 2015; Funk et al., 2016). To fuel tumour 

evolution, this weakening needs to be sufficient to allow rapid diversification, but not too extensive, 

otherwise viability may be adversely affected. In other words, tumours live life on the edge. If that 

edge is defined by a fine balance of kinase and phosphatase activities, then it may be possible to use 

small molecule inhibitors to either exacerbate these defects and kill tumour cells, or limit the errors 

to restrict CIN and tumour evolution (Bakhoum and Compton, 2012; Janssen et al., 2009; McGranahan 

et al., 2012; Roschke and Kirsch, 2010).  
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Figure legends 

Figure 1. Regulation of the SAC and microtubule attachments at the KMN network. Schematic to 

show how the various kinases, phosphatases and SAC proteins discussed in this review cross-talk at 

the KMN network. 

Figure 2. A kinase-phosphatase equilibrium at kinetochores that regulates microtubule attachments 

and the SAC. A. Schematic to show how three key phosphorylation sites on the KMN network are in a 

dynamic equilibrium during prometaphase. The main function of these phosphorylation sites is to 

control kinetochore-microtubule (KT-MT) attachments and the SAC. B. How changing the kinase-

phosphatase balance at kinetochores can lead to defects in KT-MT attachments and the SAC. 

Figure 3. How the BUB complex stimulates kinase and phosphatase signalling at kinetochores. A. 

BUB1 phosphorylates Histone H2A-T120 to recruit Shugoshin (SGO) to centromeres. This helps to 

recruit and activate the CPC; containing Survivin (Sur), Borealin (Bor), Inner Centromere Protein 

(INCENP) and the catalytic subunit Aurora B (AurB). Aurora B is able to phosphorylate outer 

kinetochore substrates, such as NDC80, to destabilise kinetochore-microtubule (KT-MT) attachments. 

BUBR1, on the other hand, recruits PP2A-B56 which is able to antagonise Aurora B and stabilise KT-

MT attachments. B. How changes to BUB1/BUBR1 expression can disturb the kinase-phosphatase 

equilibrium at kinetochores. BUB1 overexpression elevates SGO recruitment and kinetochore Aurora 

B activity, without increasing kinetochore BUBR1/PP2A-B56. Conversely, BUBR1 knockdown (or MVA 

patient lines with diminished BUBR1 expression) reduces kinetochore BUBR1, whilst BUB1 

recruitment remains unchanged.  The net effect in both cases, is that the kinase-phosphatase 

equilibrium is skewed in favour of the kinase Aurora B and KT-MT attachments are destabilised. 
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