775 research outputs found

    Massage Gun Use at a Lower Frequency Does Not Alter Blood Flow

    Get PDF
    Data has shown that whole body vibration can affect blood flow velocity in arteries and improves cutaneous blood flow. However, there is very limited information available on therapeutic localized vibration. Massage guns have become very popular with little to no research validating their efficacy. It is currently unknown if massages guns can affect arterial blood flow. PURPOSE: To determine if massage gun treatment at 30Hz improves and retains blood flow in the popliteal artery as compared to a control condition. METHODS: There were 12 participants in this study (8 males and 4 females). The mean age was 22.7±1.6 yrs, the mean height was 181.1± 11.8 cm, and the mean weight was 78.2±16.2 kg. Participants wore shorts that allowed us to access their popliteal artery using ultrasound imaging. Participants wore electrodes to control the measurement of blood flow from widest artery diameter. Participants lay prone with a foam roller under their ankles to slightly elevate their feet. After ten minutes of rest, ultrasound imaging was used to find the participant’s popliteal artery behind the knee and took two baseline measurements. We measured the mean velocity of blood flow (TAmean) and volume flow (VolF). We measured subjects on 4 different days (30Hz at 5 minutes, 30Hz 10 minutes, Control 5 minutes, Control 10 minutes). Measurements of TAmean and VolF were measured at multiple time points after treatment. RESULTS: A two-factor repeated measures analysis was performed. Each subject was measured under all levels of condition (1=30hz 5 min, 4=Control 5 mi, 5=30hz 10 min, 8=Control 10 min) and time (baseline, post, post1-5, 7, 9, 11, 13, 15, 17, 19). TA mean is significantly greater in 30Hz versus control (p=0.0349). TAmean varies across time, and the effect of the condition on TAmean is related to time (p=0.0104). There is not a significant difference in flow between 30Hz and control (p=0.2425). Blood flow varies across time (pCONCLUSION: Use of a massage gun at a lower frequency setting of 30Hz may cause slight increases in velocity but does not increase mean blood flow as compared to control. Lower frequency settings on massage guns may not be benefit blood flow in the massaged muscle group

    Effect of Localized Vibration Using Massage Gun at 40hz and 50hz on Blood Flow

    Get PDF
    Data has shown that whole body vibration can positively affect blood flow, however, there are very few studies on the effect of localized therapeutic vibration on arterial blood flow. Occupational studies looking at localized vibration effects on skin blood flow normally include high frequency settings. In the last few years, massage guns have become popular, but they operate at lower frequencies. Currently, there is no data on the effects of localized vibration from massage guns on arterial blood flow. PURPOSE: To compare the effects of two different frequencies of localized vibration on blood flow in the popliteal artery. METHODS: 12 subjects participated in this study (8 males and 4 females). Mean age was 22.7±1.6 years; mean height was 181.1±11.8 cm; mean weight was 78.2±16.2 kg. Participants wore shorts to give access to the popliteal artery. Participants were hooked to ECG leads to control measurement of artery diameter and then laid on a treatment table in a prone position with a foam roller under their ankles. Once at resting heart rate, baseline blood flow readings were taken using ultrasound, which measured TA Mean and Volume Flow. The participants were then randomly given a 5-minute treatment of control with no vibration or vibration at 40hz or 50hz. Blood flow readings were taken immediately post-treatment and then every minute for 5 minutes after. RESULTS: A two-factor repeated measures analysis was performed. Each subject was measured under all levels of condition (Control 5 min, 40hz 5 min, and 50hz 5 min) and time (baseline, post, post1-5). TA Mean and Volume Flow for both 40hz and 50hz were significantly greater than control (p=0.0020 and p=0.0110 respectively). The effect of time was significant (

    A New Spherical Harmonics Scheme for Multi-Dimensional Radiation Transport I: Static Matter Configurations

    Get PDF
    Recent work by McClarren & Hauck [29] suggests that the filtered spherical harmonics method represents an efficient, robust, and accurate method for radiation transport, at least in the two-dimensional (2D) case. We extend their work to the three-dimensional (3D) case and find that all of the advantages of the filtering approach identified in 2D are present also in the 3D case. We reformulate the filter operation in a way that is independent of the timestep and of the spatial discretization. We also explore different second- and fourth-order filters and find that the second-order ones yield significantly better results. Overall, our findings suggest that the filtered spherical harmonics approach represents a very promising method for 3D radiation transport calculations.Comment: 29 pages, 13 figures. Version matching the one in Journal of Computational Physic

    Curvature fluctuations and Lyapunov exponent at Melting

    Get PDF
    We calculate the maximal Lyapunov exponent in constant-energy molecular dynamics simulations at the melting transition for finite clusters of 6 to 13 particles (model rare-gas and metallic systems) as well as for bulk rare-gas solid. For clusters, the Lyapunov exponent generally varies linearly with the total energy, but the slope changes sharply at the melting transition. In the bulk system, melting corresponds to a jump in the Lyapunov exponent, and this corresponds to a singularity in the variance of the curvature of the potential energy surface. In these systems there are two mechanisms of chaos -- local instability and parametric instability. We calculate the contribution of the parametric instability towards the chaoticity of these systems using a recently proposed formalism. The contribution of parametric instability is a continuous function of energy in small clusters but not in the bulk where the melting corresponds to a decrease in this quantity. This implies that the melting in small clusters does not lead to enhanced local instability.Comment: Revtex with 7 PS figures. To appear in Phys Rev

    Signals for CPT and Lorentz Violation in Neutral-Meson Oscillations

    Get PDF
    Experimental signals for indirect CPT violation in the neutral-meson systems are studied in the context of a general CPT- and Lorentz-violating standard-model extension. In this explicit theory, some CPT observables depend on the meson momentum and exhibit diurnal variations. The consequences for CPT tests vary significantly with the specific experimental scenario. The wide range of possible effects is illustrated for two types of CPT experiment presently underway, one involving boosted uncorrelated kaons and the other involving unboosted correlated kaon pairs.Comment: Accepted in Physical Review D, scheduled for December 1999 issu

    Implications For The Origin Of GRB 051103 From LIGO Observations

    Get PDF
    We present the results of a LIGO search for gravitational waves (GWs) associated with GRB 051103, a short-duration hard-spectrum gamma-ray burst (GRB) whose electromagnetically determined sky position is coincident with the spiral galaxy M81, which is 3.6 Mpc from Earth. Possible progenitors for short-hard GRBs include compact object mergers and soft gamma repeater (SGR) giant flares. A merger progenitor would produce a characteristic GW signal that should be detectable at the distance of M81, while GW emission from an SGR is not expected to be detectable at that distance. We found no evidence of a GW signal associated with GRB 051103. Assuming weakly beamed gamma-ray emission with a jet semi-angle of 30 deg we exclude a binary neutron star merger in M81 as the progenitor with a confidence of 98%. Neutron star-black hole mergers are excluded with > 99% confidence. If the event occurred in M81 our findings support the the hypothesis that GRB 051103 was due to an SGR giant flare, making it the most distant extragalactic magnetar observed to date.Comment: 8 pages, 3 figures. For a repository of data used in the publication, go to: https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=15166 . Also see the announcement for this paper on ligo.org at: http://www.ligo.org/science/Publication-GRB051103/index.ph

    Gravitational Waves From Known Pulsars: Results From The Initial Detector Era

    Get PDF
    We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom

    Directional limits on persistent gravitational waves using LIGO S5 science data

    Get PDF
    The gravitational-wave (GW) sky may include nearby pointlike sources as well as astrophysical and cosmological stochastic backgrounds. Since the relative strength and angular distribution of the many possible sources of GWs are not well constrained, searches for GW signals must be performed in a model-independent way. To that end we perform two directional searches for persistent GWs using data from the LIGO S5 science run: one optimized for pointlike sources and one for arbitrary extended sources. The latter result is the first of its kind. Finding no evidence to support the detection of GWs, we present 90% confidence level (CL) upper-limit maps of GW strain power with typical values between 2-20x10^-50 strain^2 Hz^-1 and 5-35x10^-49 strain^2 Hz^-1 sr^-1 for pointlike and extended sources respectively. The limits on pointlike sources constitute a factor of 30 improvement over the previous best limits. We also set 90% CL limits on the narrow-band root-mean-square GW strain from interesting targets including Sco X-1, SN1987A and the Galactic Center as low as ~7x10^-25 in the most sensitive frequency range near 160 Hz. These limits are the most constraining to date and constitute a factor of 5 improvement over the previous best limits.Comment: 10 pages, 4 figure
    • …
    corecore