
ar
X

iv
:c

ha
o-

dy
n/

97
06

01
1v

1 
 1

0 
Ju

n 
19

97

Curvature Fluctuations and the Lyapunov exponent at Melting
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Abstract

We calculate the maximal Lyapunov exponent in constant-energy molec-

ular dynamics simulations at the melting transition for finite clusters of 6 to

13 particles (model rare–gas and metallic systems) as well as for bulk rare–

gas solid. For clusters, the Lyapunov exponent generally varies linearly with

the total energy, but the slope changes sharply at the melting transition. In

the bulk system, melting corresponds to a jump in the Lyapunov exponent,

and this corresponds to a singularity in the variance of the curvature of the

potential energy surface. In these systems there are two mechanisms of chaos

– local instability and parametric instability. We calculate the contribution

of the parametric instability towards the chaoticity of these systems using a

recently proposed formalism. The contribution of parametric instability is

a continuous function of energy in small clusters but not in the bulk where

the melting corresponds to a decrease in this quantity. This implies that the

melting in small clusters does not lead to enhanced local instability.

I. INTRODUCTION

In recent years the dynamics of finite condensed matter systems, especially atomic and

molecular clusters, has been extensively studied from a nonlinear dynamics perspective [1].
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Various quantities of interest like Lyapunov exponents, Lyapunov spectra, distributions of

finite-time Lyapunov exponents and the Kolmogorov entropy have been computed to see

evolution of chaoticity and ergodicity. Very general considerations lead to the expectation

that the Lyapunov exponents and the Kolmogorov entropy should increase with energy.

However, there are indications that different systems can display a variety of behaviour, and

details of how such indices change and the different kinds of possible (qualitative as well as

quantitative) behaviour—the various universality classes, so to speak—have not yet been

completely characterized.

In the present work we calculate the largest Lyapunov exponent, Λ,for small rare-gas

and metal clusters (modelled, respectively, by the Lennard-Jones (LJ) and the many–body

Gupta (Gu) [2] potentials) as well as for bulk rare-gas solid, namely 256 LJ atoms in a box

with periodic boundary conditions. In the range studied, Λ is generally linearly related to

energy (except at very low energies) but shows a sharp change in slope at an energy which

can be related to the melting transition.

We also compute an estimate for Λ through a semi-empirical methodology provided by a

recently proposed geometrical theory of hamiltonian chaos [3]. Under certain approximations

this allows for the estimation of the relative contribution of stable modes of a hamiltonian

system towards chaotic behaviour. The approximations inherent in the theory [3] are fulfilled

in bulk systems (where N is large), but do not appear entirely satisfactory in small clusters.

This geometrical theory has as its input the curvature of the configuration space manifold

and its fluctuation. These quantities and their variation with temperature are themselves

interesting because they yield a statistical quantification of the potential energy surface.

Recent approaches to the computation of Lyapunov exponents from (local) instantaneous

mode analysis [4,5] use this information implicitly.

The simplest understanding of chaotic dynamics in such (hamiltonian) systems is the

standard KAM picture [6]. When the number of freedoms becomes large (for 13 atoms,

the phase space is 78 dimensional) the picture of a phase space foliated by tori, with sur-

rounding stochastic regions [6] is not particularly relevant. However, the motion for specific
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initial conditions remains nearly periodic, while for others there can be a positive Lyapunov

exponent. In particular the KAM theorem underestimates the chaotic thresholds by several

orders of magnitudes [7] in high-dimensional systems as the critical perturbation scales as

∼ exp−αNf which rapidly goes to zero with increasing Nf (degrees of freedom), contrary

to the experience in numerical simulations beginning with FPU’s famous result [8]. And

attainment of chaoticity does not exhaust the interest in dynamics—in particular the evolu-

tion of the dynamics near a thermodynamic phase–transition is nontrivial. At the energies

corresponding to the phase–transition phenomenon, the accessible phase space increases

greatly, and correspondingly Λ shows a signature of the transition. An alternate means of

analysis is through decorrelation of the eigenvectors of the instantaneous Jacobian along a

trajectory [4]. The timescale for this process is greatly reduced by the presence of the regions

of negative curvature (unstable modes) which also increase at the melting phase–transition

point.

Such ideas have been at the root of a variety of studies of the Lyapunov exponent or

related quantities. Posch and Hoover [9] calculated Lyapunov spectra of solid and liquid

LJ systems in two and three dimensions, and attempted to fit a power law to this data,

obtaining different exponents in the solid and liquid phases, although no definite significance

could be ascribed to these. Berry and coworkers [10] have examined a variety of quantities

including finite-time or local approximations to Kolmogorov entropy and Lyapunov spectrum

in Lennard-Jones (LJ) and Morse clusters containing between 3 and 13 particles [10]. These

studies have been able to make contact between the features of the potential energy surface

and the variation of different dynamical indicators. Recently Sastry [4] has computed the

maximal Lyapunov exponent as well as the entire Lyapunov spectra for a 32 atom Lennard-

Jones fluid in the temperature range 50–800 K. A power law fit of Λ with temperature does

not yield a single exponent but a crossover (around T = 1) between the exponent = 1 at low

temperature to 1/2 at high temperatures [11]. In a finite lattice system, Butera and Caravati

[13] simulated the coupled rotor system in two dimensions which has a Kosterlitz-Thouless

(KT) transition at constant energy and observed that the scaling of Λ with the temperature
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changes at precisely the KT temperature. Recent simulations on the XY model in 2 and

3 dimensions by Caiani et. al. [14] have shown the differences between KT transition and

true symmetry–breaking transition in three dimensions. The crossover in scaling of Λ with

temperature or energy per particle, also observed in other lattice models where it had purely

dynamical significance [15], was suggested to coincide with the crossover from slow to fast

diffusion in the phase space [7] and was labelled as the strong stochasticity threshold (SST).

The generality of SST in nonlinear hamiltonian systems is not obvious, although it appears

to persist even for large degrees of freedom in the models studied. It was also found that

SST occurs in lattice models with Lennard–Jones interactions in two and three dimensions

[16], the signature being a rapid relaxation of the specific heat and independence of Λ on the

initial conditions. Similar transitions have also been observed in small rare-gas and metal

clusters [17]. A somewhat different interpretation of these results has also been proposed

[18].

In small rare-gas atomic clusters, Λ has been calculated at the melting transition [19],

which is a finite-size analogue of the bulk melting transition [20]. Whereas Λ changes

discontinuously with energy for LJ13 and LJ55, for LJ7, the slope changes discontinuously.

At the energy of this change, indicators of melting like Lindemann index or density of states

show characteristic signature, so it was proposed that Λ is a good indicator of melting

transition [19,21]. Subsequent work [22] has revealed that the behaviour of Λ as a function

of the energy is more complicated and can be different depending on the nature of the low

energy configuration that the system starts from. More recently Dellago and Posch [23]

have calculated Λ,the Lyapunov spectra and related quantities like the fraction of unstable

modes for the melting transition of modified LJ systems in 2D (the so-called WCA and LJS

potentials). They find that Λ has a broad peak near the melting density and a steplike

increase at the melting temperature, and further suggest that there is a change in the

shape of the Lyapunov spectra at the transition density. Critical phenomena which occur

at higher temperatures in larger fragmenting clusters have also been studied [25], although

the claimed form for the (finite-time) Lyapunov exponent, namely Λ ∼ (T − Tc)
−µ, with
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universal behaviour for µ is questionable [14,26].

Our work in the present paper is focussed on the study of clusters and bulk at the

melting transition, with particular emphasis on the Lyapunov exponent and the curvature

fluctuations. In the next section, we examine the behaviour of Λ,and in Section 3, the

nature of the curvature fluctuations are analysed in order to make contact between theory

and simulations. The methodology and theoretical background for the extraction of Λ from

curvature data is elaborated in Section 3, where our results for bulk as well as cluster systems

are also presented. This is followed by a summary and discussion in Section 4.

II. MELTING AND LYAPUNOV EXPONENT IN CLUSTERS AND BULK

As is by now well–known [30], atomic clusters with as few as six or seven particles

undergo a finite size analogue of the bulk melting phase transition, which is marked by a

jump in the Lindemann index and the onset of rapid isomerization. The liquidlike phase

of the small clusters is however unlike the bulk liquid in one important respect: due to

the phase space constraints, the atomic displacements (“hopping processes”) are highly

correlated, giving rise to 1/f spectra of single particle potential energy fluctuations [28]. It

has been observed that in metal clusters particles can occupy two types of sites—of low and

high energy respectively, and the onset of the liquid phase corresponds to the onset of an

isomerization occuring through four particle interchange between high and low energy sites

[29]. Similar features are expected for rare–gas clusters also. This peculiar dynamics has

interesting consequences which we examine in this section.

We consider clusters of up to 13 atoms interacting via Lennard-Jones (LJ) potential

V = 4ǫ
∑

i<j





(

σ

rij

)12

−
(

σ

rij

)6


 (1)

which is appropriate for rare–gas atoms; we work in reduced units when σ = ǫ = 1. In order

to model metallic clusters the manybody Gupta (Gu) potential [2],

V = (1/2)U
∑

j

{A
∑

i

exp(−p(rij − r0))
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−[
∑

i

exp(−2q(rij − r0))]
1/2}. (2)

is commonly used. Here rij is the distance between the atoms i and j and r0 is the interatomic

distance in the bulk (fcc) crystal. The specific metallic cluster system we model corresponds

notionally to Ni, for which we use parameters given in Ref. [30]: p = 9/r0, q = 3/r0, A =

0.101035 and U/Ebulk = 0.85505 (Ebulk is the bulk cohesive energy of the metal by which all

energies are scaled). Quantities like Λ and Kolmogorov-Sinai entropy have been calculated

for small rare–gas clusters and the relation of the potential energy surface to local dynamical

behaviour has been analysed [10,12]. In particular it is known that smooth saddles cause a

drop in local chaoticity indicators [10].

Time is measured in units of (mσ2/ǫ)1/2 for LJ clusters and (mr2
0/Ebulk)

1/2 for Gupta

clusters. Constant energy simulations are done using the Verlet algorithm with stepsize

∆t = 0.01 in these units, and the total energy is conserved to 0.01%. The total integration

time varies between 105∆t to 5 × 105∆t depending on the potential and the system size.

Simulations start at the global minimum of the structure and then gradually move up in

energy; at the highest temperatures studied evaporation does not set in within the time

period of the computation. Temperature is defined in the usual manner, as proportional to

the average kinetic energy per particle, T = 2〈Ek〉/(kB(3N − 6)), kB being the Boltzmann

constant.

At very low energies the dynamics is nonergodic, in particular for 13 particle clusters the

nonergodicity can be persistent upto rather high energies. The breathing mode in LJ13 was

recently studied by Salian et. al. [31]. This mode is stable (i. e. nondecaying) up to an

energy E = 0.150 per particle above the global minimum; the corresponding mode for LJ7

survives only up to energy 0.042 above the minimum. Stability here is tested by starting

trajectories with isotropic stretching of the global minimum structure. In this nonergodic

region the system initialised with small random distortion of the icosahedral structure has

a very small positive Lyapunov exponent while for larger distortions at the same energy,

Λ can be much larger. As energy increases, the overall cluster distortions increase and this
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mode becomes markedly unstable. For large initial distortions from icosahedral geometry

of LJ13, a chaotic transition occurs at a lower energy and is manifested as the divergence

of the microcanonical specific heat. [17]. This energy depends on the equilibration time but

tends to a nonzero value for large equilibration times. Such transitions are not size–specific,

and have been seen for non–magic clusters as well.

Fig. 1 shows the variation of Λ(ǫ) with the reduced energy per particle, ǫ, for LJ and Gu

clusters of various sizes. At higher energies Λ(ǫ) is linear but at a certain energy a sharp

change in the slope is evident in all cases. Precisely at this energy the conventional criterion

of melting applies, namely the Lindemann index crosses the value 0.1 (Lindemann indices

for Gu clusters have been studied in [30]). In LJ13 which has a large solid–liquid coexistence

region between −2.6 < ǫ < −2.2, Λ changes slope at ǫ ≈ −2.6. In LJ6 where the Lindemann

index increases continuously, the discontinuity in Λ appears just after the Lindemann index

has reached its critical value 0.1. The slope in the liquid phase is always smaller, indicating

that the diffusive modes have different chaotic properties, giving rise to different energy

dependence of Λ.The change in the slope of Λ(ǫ) can also be taken to be a characteristic

signature of melting in small clusters. The slope of the Λ(ǫ) curves are generally smaller for

the larger cluster; furthermore, the sharpness of the discontinuity (in slope) is reduced as

the cluster size increases.

For the Gupta clusters, however, these trends with N are not strongly–marked which is

a consequence of the manybody character of the Gu potential: even if a pair of particles is

not interacting directly (being outside the potential cutoff) the corresponding elements of

the Hessian matrix need not vanish because of the manybody term. We find that the slope

changes distinctly at an energy corresponding to top of the jump in the Lindemann curve.

The third system we study is bulk, and Fig. 2(a) shows Λ(ǫ) for the system of 256 LJ

particles in a cubic box with periodic boundary conditions at the reduced density ρ = 0.93

and reduced melting temperature 1.15. Initial conditions for these simulations were as

follows: the atoms were initially at fcc lattice positions, with initial velocities taken randomly

from an appropriate gaussian distribution. For ǫ > −4.25 the crystal is unstable and soon
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melts. It is possible for melting to occur for slightly lower energies if integration is carried

for longer times but the time required to melt is not a monotonically decreasing function

of energy. Here Λ(ǫ) shows a jump which obviously can be ascribed to the increase in the

disorder at melting. The data shown is the Lyapunov exponent of solid phase or the liquid

phase trajectory only which are obtained by discarding the premelting portion of a trajectory

that melts. Similar results for bulk melting have also been reported by Dellago et. al. [23]

and Nayak et. al. [24].

While both the bulk and the cluster are disordered by melting (change in entropy at

melting, ∆S/N = 1.0 for LJ55 and 1.7 for LJ crystal [20] and specific heat of even 6 particle

cluster shows a peak) Λ in the cluster liquid phase is significantly smaller than the value

obtained by extrapolating from the solid phase, in contrast with Λ obtained in bulk liquid.

This suggests that in the cluster liquid phase there are stabilizing influences on the dynamics

which are absent in the bulk liquid. We conjecture that the correlated hopping processes

in clusters [28,29] provide the necessary mechanism. This is consistent with the observation

made above that the Λ(ǫ) curve gets smoother with the cluster size.

The observed Lyapunov phenomenon for the clusters is not just an effect of the smeared–

out bulk transition i. e. a manifestation of finite dynamical coexistence region in the clusters

which vanishes in the bulk limit. The properties of the coexistence region (in particular its

width) depend sensitively on the cluster geometry e. g. the fact that the cluster is magic

or not. But the trends in the Lyapunov exponent depend on the size in a simple manner

and are independent of the magic–nonmagic relation.

The spectra of 3N − 7 positive Lyapunov exponents for the clusters vary smoothly with

energy. For LJ clusters they are linear in the entire range with a slope that increases with

energy while in Gu clusters they acquire increasing curvature. This is contrast to the results

of Dellago and Posch [23] for bulk melting in two dimensions where the curvature of the

spectra changes sign smoothly at certain densities (at constant temperature). It remains a

task to extract more useful information from the shape of the Lyapunov spectra. However

the smoothness of the spectra at cluster melting implies that the relation (if any) between
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thermodynamic and dynamic entropies is nontrivial.

III. CURVATURE FLUCTUATIONS

In this section we apply the geometric theory of Hamiltonian chaos developed by Pettini

and coworkers [3] in order to interpret and rationalize the results of our numerical simulations

in terms of an underlying (microscopic) mechanism. This theory, the salient features of which

are summarized below, is attractive because it attempts to unite features of the potential

energy surface with the dynamical properties of the system as encoded in the Lyapunov

exponents. One additional motivation in applying this theory to finite cluster systems is

to determine the limits of applicability of the general framework, which has mainly been

applied to lattice models where the calculated Lyapunov exponents are found to be in good

agreement with empirical exponents [3,14].

A. The Geometric theory of chaos in High-dimensional systems

It is well known that the classical dynamics on manifolds of constant negative curvature

is chaotic [32]. The dynamics on a manifold with fluctuating positive curvature can also be

chaotic [33]: this fluctuation, via the mechanism of parametric instability, is responsible for

creating chaos in systems such as the Fermi–Pasta–Ulam β and φ4 chains [7] and for a driven

one–dimensional oscillator studied by Chaudhuri et. al. [34]. These studies have provided

much of the motivation for the development of the geometric theory of chaos [3]. Barnett

et. al. [35] have applied similar ideas to calculation of Lyapunov exponent of a dilute gas.

The geometric theory makes a diagonal approximation in the sense that it uses infor-

mation only about the trace of the instantaneous Hessian matrix i. e. ∆V . When

the equations of motion are put in a differential-geometric form, this term appears as the

Ricci curvature (curvature locally averaged over the directions) of the enlarged configuration

manifold in the Eisenhart metric [3],
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ds2 = −2V (q)dt2 + aijdqidqj + dtdqNf+1. (3)

Here V (q) is the potential energy and the kinetic energy is T = aij q̇
iq̇j . The relevance

of potential curvature has been noted before [36]. The Ricci curvature does not have this

simple form in other metrics but the essence of the assumption is that all the directions in the

phase space are equally curved after a coarse-graining along a trajectory. The dynamical

trajectories are the geodesics of this manifold. In above models this appears to be the

dominant mechanism for chaos as there are no unstable modes (corresponding to the negative

eigenvalues of the instantaneous Hessian matrix or regions of negative curvature) which are

local mechanism of chaos.

If it is assumed that the curvature fluctuations have gaussian spectra upto a high-

frequency cutoff i. e. the dynamics generates a gaussian random process for curvatures, then

one can dispense with the necessity of following a trajectory and an estimate of the largest

Lyapunov exponent, λ can be obtained via Monte Carlo sampling. This is the essence of the

gaussian approximation [3], within which excellent agreement is obtained between Λ and λ.

The presence of additional unstable modes renormalizes the calculated exponent, although

this is nontrivial to calculate. Therefore the unrenormalized exponent gives an estimate of

the chaoticity caused by stable modes only (the unstable modes also contribute to paramet-

ric instability by their presence in ∆V but it is not their major effect on chaoticity). The

theoretical basis of the diagonal approximation assumption is that the local fluctuation of

the Ricci curvature detects deviation from isotropy (at a point) because isotropic manifolds

are necessarily of constant curvature by Schur’s theorem [3].

The crossover between the regimes of weak and strong chaos in high-dimensional systems

can be detected by examining the behaviour of the mean curvature, k, as a function of the

energy density. In the integrable limit k is independent of energy [3]. Corresponding to a

Hamiltonian H of N particles with an interaction V ,

H =
∑

i

p2
i

2
+ V (q) (4)

there are 3N equations of motion,
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d2qi

dt2
= −∂V

∂qi

. (5)

The associated Jacobi equation for the second deviations is then

d2Ji

dt2
+
∑

j

∂2V

∂qi∂qj

Jj = 0, (6)

where Ji are the components of the vector of second deviations. After some approximations

[3] this can be converted to an equation for u = |J |,

d2u

dt2
+
∑

ij

∂2V

∂qi∂qj

JiJj

|J |2 u ≡ d2u

dt2
+ Q(t)u = 0 (7)

which is, in effect, an equation for a linear oscillator with time–dependent frequency
√

Q.

The solutions of this equation are unbounded for typical Q(t) and the Lyapunov exponent is

just given by the rate of exponential growth of the envelope of u [37]. Pettini et. al. [3] show

that Q(t) is just the sectional curvature (which is the generalization of gaussian curvature

to many dimensions) relative to the plane containing J and dq/dt in the Eisenhart metric.

The diagonal approximation consists in replacing Q by the simpler quantity

∆V

Nf
=

1

Nf

∑

i

∂2V

∂q2
i

(8)

with Nf the number of degrees of freedom, which is [3], the Ricci curvature per degree of

freedom i. e. sectional curvature has been averaged over relative orientations of J and the

velocity vector. Under the further assumption that the curvature is gaussian distributed

with a mean k = 〈∆V〉/Nf and variance σ2 = (〈(∆V )2〉 − 〈∆V〉2)/Nf and are δ-correlated,

Pettini et. al. [3] derive an expression for an estimate of the Lyapunov exponent

λ =
1

2
(l − 4k

3l
) (9)

l =



σ2τ +

√

64k3

27
+ (σ2τ)2





1/3

, (10)

where τ is a characteristic time implied by the smoothness of the underlying manifold i.

e. the time-interval below which dynamics of curvatures cannot be regarded as a random

process.
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B. Application of the Geometric theory

The main result of the geometric theory is an estimate of the Lyapunov exponent, λ

given in Eq. (9), for which it is necessary to obtain the mean curvature, k and the variance,

σ2. These quantities can be calculated along a typical trajectory using Eq. (8), and the

assumption of δ−correlated curvature fluctuations can be directly verified.

The determination of the timescale τ (see Eq. 10) is more tricky. One estimate which

has been used [3,14,38] is

τ =
π
√

k

2
√

k(k + σ) + πσ
. (11)

This expression for τ here is actually that for τ⋆ in Ref. [3] (see the discussion following

Eq. 45 there). However in the presence of negative curvatures it may be more accurate to

use a different timescale [3]

τ2 =
k1/2

σ
(12)

We find (see the next subsection) that τ2 is more accurate than τ insofar as it provides a

better numerical match with the autocorrelation decay timescale for the systems studied

here.

One additional minor point is that the effective number of freedoms is Nf = 3N − 6

rather than 3N , since the six conserved quantities (linear and angular momenta) give rise

to zero frequency modes and thus do not contribute to the chaoticity. This does not change

qualitative conclusions (indeed it must not) and improves results in most cases.

The application of the geometric theory to the systems considered in Sec.II is of interest

for two reasons. Firstly, this formalism has so far been mostly applied to lattice models,

where parametric instability is the main source of chaos. It would be useful to determine the

extent to which the formalism works for off–lattice models with significant local instability.

Secondly, the partition of the chaoticity of the system into local and nonlocal components

may help in clarifying the behaviour of Lyapunov exponent at melting. In particular, it
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would be interesting to know whether the overall instability of the system can be separated

into these two components, and if so, whether they behave differently at phase transitions.

The melting transition in finite systems appears to have a distinct signature—the Lya-

punov exponent shows a knee, where the slope changes discontinuously [21]. For bulk, the

fraction of the unstable modes has a discontinuous jump at melting. Therefore a rapid

increase in local instability and consequently, a jump in the Lyapunov exponent can be ex-

pected. Such a change may not be apparent in the contribution of the parametric instability,

and therefore in the situation of cluster melting where Lyapunov exponent does not increase,

it is an open question whether the local instability increases or not.

C. Results

As should be clear from the preceeding discussion, application of the geometric theory in

order to make comparison with the results of our numerical simulations involves a number

of sensitive estimates and several approximations.

Following the general procedure outlined in Sec. IIIB above, we have calculated the

estimate λ (cf. Eq. 9) for bulk (LJ) and various LJ and Gu clusters in an energy range

which encompasses melting, from long trajectories of duration up to 2 × 106∆t. The data

for k, σ and λ is shown in Figs. 2-6. The detailed comparisons of theory and simulations are

presented separately for bulk and cluster systems below.

1. Bulk LJ system

Casetti and Macchi [38] have calculated the curvature for bulk LJ in a exponentially

large energy range in order to detect the crossover between weakly and strongly chaotic

regimes. Earlier calculations by LaViolette and Stillinger [39] of the mean curvature (which

is proportional to the squared Einstein frequency) show that k increases linearly in the

bulk LJ system with a jump of about 20% at melting. This increase is a manifestation of
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the positive high-frequency tail in the instantaneous normal spectrum in the liquid phase.

However, the slope in the liquid phase is smaller than the solid phase by about 6%.

We find that the variance σ2 has a discontinuity at an energy ǫm = −4.17. At energies

well away from ǫm, σ increases linearly with energy but in a very narrow range preceding

ǫm, roughly corresponding to the solid–liquid coexistence region, σ increases sharply. As

the system melts σ falls by about 30%. (The discontinuity in σ has been confirmed by

repeating the calculations with longer trajectories and finer energy mesh. Data in the

coexistence region was computed from long trajectories of total time 2 × 105∆t. Care was

taken to ensure that computed averages are over either solid or liquid phase exclusively.)

This behaviour may be contrasted with the cusp singularity found recently in XY model in

three dimensions by Caiani et. al. [14] which was interpreted as suggestive of a topological

transition in the potential energy surface.

The assumption of δ−correlated curvature fluctuation can be substantiated by examining

the power spectra of curvature fluctuations. Fig. 7 shows that these are satisfied in the bulk.

However the observed correlation time does not agree with τ given in Eq. 11 (see Table 1).

We therefore use τ2 to calculate the relative contribution of unstable modes, namely

δλu ≡ (Λ − λ)/Λ. (13)

Indeed λ(τ2) is much better fit to Λ than λ(τ) (Fig 2). δλu can become slightly negative in

the solid phase (implying some correction due to correlations), while in the liquid phase, it

can be as large as 0.35. Assignment of the difference Λ − λ to the effect of unstable modes

is justified by the following two observations. Firstly, λ does not increase at melting (it

actually falls) whereas Λ has significant jump which can accounted for by an increase in

the fraction of unstable modes.. In addition, the agreement of λ and Λ is better at lower

temperatures, namely when the occurrence of negative curvatures is infrequent.
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2. Clusters

Owing to the finiteness of cluster systems, correlations do not decay sufficiently rapidly

[28]. As a consequence, curvature fluctuations are far from being uncorrelated, and the

framework of the geometric theory breaks down for such systems and deviations from Eq. 9

can be expected. The observed correlation times do not agree with analytical estimates for

τ and τ2 (Table 1).

The mean curvature for specific LJ clusters has been computed previously [40,41], and in

contrast to bulk, decreases uniformly with energy for all clusters (except LJ13); likewise for

Gupta clusters. No trend is apparent either for k or its variation with energy, although there

are some size effects in the case of Gupta clusters. The behaviour of the variance, σ2 is more

complex. Although this quantity usually increases smoothly with energy, in the coexistence

regime near melting there are large fluctuations which persist for very long averaging times.

The liquid phase in LJ13 also shows nonmonotonic dependence of variance on energy.

The net result of the persistence of correlations is that the estimates λ for cluster systems

do not agree with Λ.While λ(τ) is a rather good fit for LJ clusters, it is of doubtful validity

because τ is far from the observed fluctuation timescale τc (Table 1). Using τ2 in Eq. 9

gives λ/Λ ≈ 1.3 − 2.5 for LJ clusters, although for the tightly bound Gupta clusters, this

discrepancy is smaller, λ/Λ ≈ 0.8 − 1.2.

3. Discussion

Our results indicate that unstable modes have suppressed chaoticity in certain circum-

stances. In particular, in the solid LJ system, where δλu is very small, the fraction of unstable

modes is substantial (∼ 0.2) while slightly higher (∼ 0.25− 0.3) fraction of unstable modes

in liquid gives greatly enhanced δλu (∼ 0.35). In the cluster even after melting δλu does not

increase very much: it has smooth dependence on energy. A tentative conclusion that can

be drawn from these cases is that the unstable modes have effective chaoticity only when

15



the particles are free to execute large–scale motion.

If the coarse–grained curvature is everywhere positive, the ratio σ/k provides a crude

measure of the ruggedness or roughness of the underlying potential energy surface. As it

is this feature which causes nearby trajectories to diverge, it is interesting to study the

variation of this index with energy, as this will give some indication of the nature of the

region that is being dynamically probed on the potential energy surface.

At low energies σ/k is small as expected, typical values being ∼ 0.2 − 0.4. At highest

energies reached, it is between 0..8 and 1.2 for various clusters with somewhat higher values

for LJ clusters and smaller N . In the bulk system, a peak σ/k ≈ 0.8 is reached at the melting

point (from the solid phase) and then it remains nearly constant. The correspondence of

the maximal roughness with melting point is very suggestive. One can visualize destruction

of the crystal lattice being driven by large scale roughness of the potential.

IV. CONCLUSION

In this paper we have examined the behaviour of the largest Lyapunov exponent Λ as a

function of energy in finite clusters of 6-13 rare–gas and metal atoms, and in bulk rare–gas

solids. These systems undergo a phase transition from a regime wherein the dynamics is

purely oscillatory (involving individual particle vibrations) to a regime where the dynamics

is both oscillatory as well as diffusive.

Diffusive dynamics is linked to the presence of delocalized unstable modes in the bulk

[42]. In small clusters the onset of the diffusion does not appear to enhance the chaoticity:

the observed value of the Lyapunov exponent is smaller compared to the value expected

by a simple extrapolation of the exponent from the low energy regime,namely from the

oscillatory dynamics or the “solid” phase. This suppression of chaos, which we attribute to

the correlated hopping dynamics, is strongest for smallest clusters but is then progressively

reduced. It is possible that for particular clusters, the enhancing and suppressing effects of

the unstable modes can balance and Λ(ǫ) curve is smooth across the melting (infact LJ17
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shows no signature of melting according to this measure [27]). This conjecture can be tested

by studies of the larger clusters with calculations of the participation ratios of the unstable

modes which will clarify their role in the chaoticity of a dynamical system.

One may intuitively expect that unstable modes (i. e. negative curvatures) cause

the dynamics to be chaotic. As noted by Dellago and Posch in their study of melting in

two dimensional systems [23], the fraction of unstable modes, which is a rough measure

of negative curvatures, has a similar dependence on the parameters as Λ.These unstable

modes can however become important only when particles are capable of large scale motion.

(In a related context, it has been seen [24] that Λ falls when a liquid is cooled through its

glass–transition temperature, namely as the unstable modes get localized [42].)

Using the framework of a geometric theory of Hamiltonian chaos, we compute an esti-

mate for the Lyapunov exponent from the curvature of the potential energy surface and its

fluctuation. We have studied the variation of these quantities with the temperature of the

system and found that the mean curvature is always a monotonic function of energy but the

variance has a simple energy dependence only for smaller clusters. In the coexistence region

of 13 particle clusters—these are the cases in which potential energy surface has a deep

global minimum which is well separated from the next lowest structure—σ is nonmonotonic.

The LJ bulk system shows singular behaviour for σ at melting, which may indicate some

sort of topological change in the configuration space [14].

The resulting estimate λ is generally larger than Λ in the solid phase. For bulk, the

discrepancy is small, but for clusters, the agreement is only qualitative. Curvature fluctu-

ations for clusters are correlated, and this effectively reduces the parametric instability in

the dynamics. The spectral features of the curvature fluctuations such as bandwidth are

not well accounted for by the geometric theory even for the bulk system. At higher tem-

peratures λ is lower than Λ which is attributed to the unstable modes (negative curvatures)

which are ignored in the geometric theory. The contribution of the unstable modes towards

chaoticity (obtained by subtracting λ from Λ and therefore only approximate) is small in

the solid phase but can be as large as one–third in the liquid phase. Since σ and k do not
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show any singularity at melting for clusters, the parametric contribution coming from the

change in topography of the potential energy surface is changing smoothly. Therefore, the

fractional chaoticity coming from the unstable modes, δλu, also seems to vary continuously

with energy.

In summary, our application of the geometric theory to the dynamics of the melting

transition for cluster and bulk systems has provided a satisfactory qualitative understanding

of the underlying mechanisms in terms of the change in roughness of the potential energy

surface, curvature fluctuations and and parametric instability. While agreement between

theory and simulation is reasonable for the bulk system, for the case of finite clusters, the

situation is less satisfactory. The main source of the discrepancy seems to lie in the fact

that in cluster systems, correlations are temporally long lived. This aspect requires to be

incorporated within the present framework of the geometric theory (see e. g. Refs. [34,37])

in order to achieve quantitative accuracy.
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FIGURES

FIG. 1. (a) Λ as the function of reduced energy per particle for LJ clusters with N=6,7,9,11,13.

Note that the list includes both magic and nonmagic clusters. (b) Λ for Gu clusters with N=6,7,13.

The reduced energy scale is set by Ebulk (Eq. 2)

FIG. 2. (a) Lyapunov exponents for the bulk LJ system of 256 particles in a cubical box with

periodic boundary conditions. Circles refers to Λ and squares to the estimate λ generated using

Eq. 8 with τ defined in Eq. 10. Pluses (+) denote values of λ calculated using τ2 = k1/2/σ. (b)

Mean curvature (k), and fluctuation σ for bulk LJ system as a function of energy. k and σ are

measured in units of frequency squared.

FIG. 3. (a) Mean curvature k and (b) fluctuation σ for LJN clusters with N=6, 11, 13 as a

function of energy. Units are as in Fig. 2.

FIG. 4. The estimate λ for LJN clusters with N=6, 11, 13 as the function of energy. Shown

with circles are λ calculated with τ defined in Eq. 10; + are values of λ calculated using τ2 = k1/2/σ.

Also, for comparision, are the correspnding values of Λ from Fig 1 (squares)

FIG. 5. (a) Mean curvature (k), and (b) fluctuation (σ) GuN clusters with N=6, 7, 13 as a

function of energy. k and σ are scaled by Ebulk/mr2
0.

FIG. 6. The estimate λ for GuN clusters with N=6, 7, 13 as a function of energy (same

conventions as Fig. 4).

FIG. 7. Power spectra of curvature distribution calculated along a trajectory for (a) bulk LJ

(solid), (b) bulk LJ (liquid), (c) LJ13 at energy= -2.4 corresponding to the temperature 34K

(coexistence region) and, (d) Gu13 at ǫ = −0.67 (liquid phase). The vertical axis is in arbitrary

units.
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TABLE 1. Typical timescales (in reduced units) associated with power spectra for various

systems studied here.

System τa τ b
2 τ c

B τd
c Λ

Gu6 solid 0.30 1.5 0.8 2.0 0.2

Liquid 0.18 0.4 0.7 1.1 0.7

Gu13 solid 0.28 0.9 0.8 1.4 0.3

Liquid 0.18 0.36 0.7 0.9 0.8

LJ6 solid 0.55 1.6 2.5 10. 0.05

Liquid 0.4 0.8 1.0 1.0 .25

LJ13 solid 0.5 1.4 1.7 2.5 0.1

Liquid 0.3 0.6 1.0 1.0 0.3

Bulk solid 0.2 0.5 0.6 0.6 0.3

Liquid 0.2 0.6 0.4 0.4 0.8

a calculated with Eq. 10.

b calculated with Eq. 11

c Obtained from approximate upper cutoff of the power spectrum.

d Inverse bandwidth of the power spectrum (approximate)

23



0

0.2

0.4

0.6

0.8

1.0

-0.85 -0.80 -0.75 -0.70 -0.65 -0.60

N=13
N=7
N=6

b)

εε

ΛΛ

0

0.1

0.2

0.3

0.4

-3.5 -3.0 -2.5 -2.0 -1.5 -1.0

N=9
N=13
N=11
N=7
N=6

a)

εε

Λ



0

4

8

12

-7 -6 -5 -4 -3 -2

σσ
k

b)

εε

0

0.2

0.4

0.6

0.8

1.0

-7 -6 -5 -4 -3 -2

a)

εε

λλ,
  ΛΛ



1.5

2.0

2.5

3.0

3.5

-3.5 -3.0 -2.5 -2.0 -1.5 -1.0

N=13
N=11
N=6

a)

εε

k

0

1

2

3

-3.5 -3.0 -2.5 -2.0 -1.5 -1.0

N=13
N=11
N=6

b)

εε

σσ



0

0.15

0.30

0.45

-3.4 -3.0 -2.6 -2.2 -1.8

a)

εε

λλ

0

0.1

0.2

0.3

0.4

0.5

-3.0 -2.6 -2.2 -1.8 -1.4

b)

εε

λλ

0

0.1

0.2

0.3

0.4

-2.2 -2.0 -1.8 -1.6 -1.4 -1.2

c)

εε

λλ



9

11

13

15

-0.85 -0.80 -0.75 -0.70 -0.65 -0.60

N=13
N=7
N=6

εε

mm
mm
�

mm
mm
�

k

0

2.5

5.0

7.5

10.0

-0.85 -0.80 -0.75 -0.70 -0.65 -0.60

N=13
N=7
N=6

b)

a)

εε

mm
mm
�

mm
mm
�

σσ



0

0.3

0.6

0.9

-0.85 -0.80 -0.75 -0.70 -0.65

a)

         εε

λλ

0

0.2

0.4

0.6

0.8

-0.76 -0.72 -0.68 -0.64

b)

εε

λλ

0

0.2

0.4

0.6

0.8

-0.75 -0.70 -0.65 -0.60

c)

εε

λλ



0 0.5 1.0 1.5 2.0 2.5

d)

f

P
ow

er

0 1 2 3 4 5

b)

f

P
ow

er

0 0.2 0.4 0.6 0.8 1.0

c)

f

P
ow

er

0 1 2 3 4

a)

f

P
ow

er


