427 research outputs found

    The surface coat of procyclic Trypanosoma brucei: Programmed expression and proteolytic cleavage of procyclin in the tsetse fly

    Get PDF

    IMPORTANCIA DE LAS DISTINTAS FASES DEL PROCESO DE RECLUTAMIENTO EN HORMIGAS PARA LA EXPLOTACION DE SUS RECURSOS ALIMENTICIOS

    Get PDF
    Se realiza un estudio de los sistemas de pecoreo en diversas especies de hormigas, a partir de recuentos sucesivos del número de individuos empleados en dicha labor por distintas colonias. El aumento del número de individuos empleado en las primeras fases del proceso de pecoreo muestra una gran uniformidad, tanto para distintas especies como para distintas condiciones experimentales, aproximándose a una función logística. Las fases finales del proceso de pecoreo, que suponen el cese de la explotación de una fuente de alimento localizada (tanto ante la persistencia de ésta como ante su extinción. espontánea o provocada), muestran una mayor variabilidad, aunque parecen señalar la existencia de finos mecanismos de control por parte de las sociedades, aspecto que se considera de gran interés para comprender, de forma completa, la eficacia de los sistemas de pecoreo

    Variations in the Peritrophic Matrix Composition of Heparan Sulphate from the Tsetse Fly, Glossina morsitans morsitans

    Get PDF
    Tsetse flies are the principal insect vectors of African trypanosomes—sleeping sickness in humans and Nagana in cattle. One of the tsetse fly species, Glossina morsitans morsitans, is host to the parasite, Trypanosoma brucei, a major cause of African trypanosomiasis. Precise details of the life cycle have yet to be established, but the parasite life cycle involves crossing the insect peritrophic matrix (PM). The PM consists of the polysaccharide chitin, several hundred proteins, and both glycosamino- and galactosaminoglycan (GAG) polysaccharides. Owing to the technical challenges of detecting small amounts of GAG polysaccharides, their conclusive identification and composition have not been possible until now. Following removal of PMs from the insects and the application of heparinases (bacterial lyase enzymes that are specific for heparan sulphate (HS) GAG polysaccharides), dot blots with a HS-specific antibody showed heparan sulphate proteoglycans (HSPGs) to be present, consistent with Glossina morsitans morsitans genome analysis, as well as the likely expression of the HSPGs syndecan and perlecan. Exhaustive HS digestion with heparinases, fluorescent labeling of the resulting disaccharides with BODIPY fluorophore, and separation by strong anion exchange chromatography then demonstrated the presence of HS for the first time and provided the disaccharide composition. There were no significant differences in the type of disaccharide species present between genders or between ages (24 vs. 48 h post emergence), although the HS from female flies was more heavily sulphated overall. Significant differences, which may relate to differences in infection between genders or ages, were evident, however, in overall levels of 2-O-sulphation between sexes and, for females, between 24 and 48 h post-emergence, implying a change in expression or activity for the 2-O-sulphotransferase enzyme. The presence of significant quantities of disaccharides containing the monosaccharide GlcNAc6S contrasts with previous findings in Drosophila melanogaster and suggests subtle differences in HS fine structure between species of the Diptera

    Parasite Glycobiology:A Bittersweet Symphony

    Get PDF
    Human infections caused by parasitic protozoans and helminths are among the world's leading causes of death. More than a million people die each year from diseases like malaria and neglected tropical diseases like leishmaniasis, trypanosomiasis, and schistosomiasis. Patients also endure disabilities that cause lifelong suffering and that affect productivity and development [1]. More insidiously, parasites generate important economic losses, since they often also infect commercially valuable animals. Worldwide, exposure to parasites is increasing due to growing international travel and migrations, as well as climate changes, which affect the geographic distribution of the parasite vectors. The parasitic threat is also aggravated by the rise of the immunocompromised population, which is particularly sensitive to parasite infections (e.g., individuals with AIDS and other immunodeficiencies). A common feature of protozoan parasites and helminths is the synthesis of glycoconjugates and glycan-binding proteins for protection and to interact and respond to changes in their environment. To address the many challenges associated with the study of the structure, the biosynthesis, and the biology of parasitic glycans, the authors of this article have established GlycoPar, a European Marie Curie training program steered by some of the world's academic leaders in the field of parasite glycobiology, in close association with European industrial enterprises. The main scientific goal of this network is the description of novel paradigms and models by which parasite glycoconjugates play a role in the successful colonization of the different hosts. By means of a training-through-research program, the aim of the network is to contribute to the training of a generation of young scientists capable of tackling the challenges posed by parasite glycobiology

    Proline Metabolism is Essential for Trypanosoma brucei brucei Survival in the Tsetse Vector

    Get PDF
    Adaptation to different nutritional environments is essential for life cycle completion by all Trypanosoma brucei sub-species. In the tsetse fly vector, L-proline is among the most abundant amino acids and is mainly used by the fly for lactation and to fuel flight muscle. The procyclic (insect) stage of T. b. brucei uses L-proline as its main carbon source, relying on an efficient catabolic pathway to convert it to glutamate, and then to succinate, acetate and alanine as the main secreted end products. Here we investigated the essentiality of an undisrupted proline catabolic pathway in T. b. brucei by studying mitochondrial Δ1-pyrroline-5- carboxylate dehydrogenase (TbP5CDH), which catalyzes the irreversible conversion of gamma-glutamate semialdehyde (γGS) into L-glutamate and NADH. In addition, we provided evidence for the absence of a functional proline biosynthetic pathway. TbP5CDH expression is developmentally regulated in the insect stages of the parasite, but absent in bloodstream forms grown in vitro. RNAi down-regulation of TbP5CDH severely affected the growth of procyclic trypanosomes in vitro in the absence of glucose, and altered the metabolic flux when proline was the sole carbon source. Furthermore, TbP5CDH knocked-down cells exhibited alterations in the mitochondrial inner membrane potential (ΔΨm), respiratory control ratio and ATP production. Also, changes in the proline-glutamate oxidative capacity slightly affected the surface expression of the major surface glycoprotein EP-procyclin. In the tsetse, TbP5CDH knocked-down cells were impaired and thus unable to colonize the fly's midgut, probably due to the lack of glucose between bloodmeals. Altogether, our data show that the regulated expression of the proline metabolism pathway in T. b. brucei allows this parasite to adapt to the nutritional environment of the tsetse midgut

    Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast

    Get PDF
    In the present article, we describe a study of antitumor activity in breast cell lines using silver nanoparticles (Ag NPs) synthesized by a microbiological method. These Ag NPs were tested for their antitumor activity against MCF7 and T47D cancer cells and MCF10-A normal breast cell line. We analyzed cell viability, apoptosis induction, and endocytosis activity of those cell lines and we observed that the effects of the biosynthesized Ag NPs were directly related with the endocytosis activity. Moreover, Ag NPs had higher inhibition efficacy in tumor lines than in normal lines of breast cells, which is due to the higher endocytic activity of tumor cells compared to normal cells. In this way, we demonstrate that biosynthesized Ag NPs can be an alternative for the treatment of tumors.Support from Universidad Nacional de San Luis, to the Agencia Nacional de Promoción Científica y Tecnológica, from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina), and from GENYO, Centre for Genomics and Oncological Research: Pfizer-University of Granada, Andalusian Regional Government, Granada, Spain are acknowledged

    Seagrass blue carbon stocks and sequestration rates in the Colombian Caribbean

    Get PDF
    Seagrass ecosystems rank amongst the most efficient natural carbon sinks on earth, sequestering CO2 through photosynthesis and storing organic carbon (Corg) underneath their soils for millennia and thereby, mitigating climate change. However, estimates of Corg stocks and accumulation rates in seagrass meadows (blue carbon) are restricted to few regions, and further information on spatial variability is required to derive robust global estimates. Here we studied soil Corg stocks and accumulation rates in seagrass meadows across the Colombian Caribbean. We estimated that Thalassia testudinum meadows store 241 ± 118 Mg Corg ha−1 (mean ± SD) in the top 1 m-thick soils, accumulated at rates of 122 ± 62 and 15 ± 7 g Corg m−2 year−1 over the last ~ 70 years and up to 2000 years, respectively. The tropical climate of the Caribbean Sea and associated sediment run-off, together with the relatively high primary production of T. testudinum, influencing biotic and abiotic drivers of Corg storage linked to seagrass and soil respiration rates, explains their relatively high Corg stocks and accumulation rates when compared to other meadows globally. Differences in soil Corg storage among Colombian Caribbean regions are largely linked to differences in the relative contribution of Corg sources to the soil Corg pool (seagrass, algae Halimeda tuna, mangrove and seston) and the content of soil particles \u3c 0.016 mm binding Corg and enhancing its preservation. Despite the moderate areal extent of T. testudinum in the Colombian Caribbean (661 km2), it sequesters around 0.3 Tg CO2 year−1, which is equivalent to ~ 0.4% of CO2 emissions from fossil fuels in Colombia. This study adds data from a new region to a growing dataset on seagrass blue carbon and further explores differences in meadow Corg storage based on biotic and abiotic environmental factors, while providing the basis for the implementation of seagrass blue carbon strategies in Colombia

    Identification and functional characterization of a highly divergent N-acetylglucosaminyltransferase I (TbGnTI) in <em>Trypanosoma brucei</em>

    Get PDF
    Trypanosoma brucei expresses a diverse repertoire of N-glycans, ranging from oligomannose and paucimannose structures to exceptionally large complex N-glycans. Despite the presence of the latter, no obvious homologues of known β1–4-galactosyltransferase or β1–2- or β1–6-N-acetylglucosaminyltransferase genes have been found in the parasite genome. However, we previously reported a family of putative UDP-sugar-dependent glycosyltransferases with similarity to the mammalian β1–3-glycosyltransferase family. Here we characterize one of these genes, TbGT11, and show that it encodes a Golgi apparatus resident UDP-GlcNAc:α3-d-mannoside β1–2-N-acetylglucosaminyltransferase I activity (TbGnTI). The bloodstream-form TbGT11 null mutant exhibited significantly modified protein N-glycans but normal growth in vitro and infectivity to rodents. In contrast to multicellular organisms, where the GnTI reaction is essential for biosynthesis of both complex and hybrid N-glycans, T. brucei TbGT11 null mutants expressed atypical “pseudohybrid” glycans, indicating that TbGnTII activity is not dependent on prior TbGnTI action. Using a functional in vitro assay, we showed that TbGnTI transfers UDP-GlcNAc to biantennary Man(3)GlcNAc(2), but not to triantennary Man(5)GlcNAc(2), which is the preferred substrate for metazoan GnTIs. Sequence alignment reveals that the T. brucei enzyme is far removed from the metazoan GnTI family and suggests that the parasite has adapted the β3-glycosyltransferase family to catalyze β1–2 linkages
    corecore