418 research outputs found

    Precision of the current methods to measure the alkenone proxy UK'37 and absolute alkenone abundance in sediments : results of an interlaboratory comparison study

    Get PDF
    Measurements of the UK'37 index and the absolute abundance of alkenones in marine sediments are increasingly used in paleoceanographic research as proxies of past sea surface temperature and haptophyte (mainly coccolith-bearing species) primary productivity, respectively. An important aspect of these studies is to be able to compare reliably data obtained by different laboratories from a wide variety of locations. Hence the intercomparability of data produced by the research community is essential. Here we report results from an anonymous interlaboratory comparison study involving 24 of the leading laboratories that carry out alkenone measurements worldwide. The majority of laboratories produce data that are intercomparable within the considered confidence limits. For the measurement of alkenone concentrations, however, there are systematic biases between laboratories, which might be related to the techniques employed to quantify the components. The maximum difference between any two laboratories for any two single measurements of UK'37 in sediments is estimated, with a probability of 95%, to be <2.18C. In addition, the overall within-laboratory precision for the UK'37 temperature estimates is estimated to be <1.68C (95% probability). Similarly, from the analyses of alkenone concentrations the interlaboratory reproducibility is estimated at 32%, and the repeatability is estimated at 24%. The former is compared to a theoretical estimate of reproducibility and found to be excessively high. Hence there is certainly scope and a demonstrable need to improve reproducibility and repeatability of UK'37 and especially alkenone quantification data across the community of scientists involved in alkenone research

    Investigation of highly unsaturated fatty acid metabolism in the Asian sea bass, Lates calcarifer

    Get PDF
    Lates calcarifer, commonly known as the Asian sea bass or barramundi, is an interesting species that has great aquaculture potential in Asia including Malaysia and also Australia. We have investigated essential fatty acid metabolism in this species, focusing on the endogenous highly unsaturated fatty acid (HUFA) synthesis pathway using both biochemical and molecular biological approaches. Fatty acyl desaturase (Fad) and elongase (Elovl) cDNAs were cloned and functional characterization identified them as ∆6 Fad and Elovl5 elongase enzymes, respectively. The ∆6 Fad was equally active towards 18:3n-3 and 18:2n-6, and Elovl5 exhibited elongation activity for C18-20 and C20-22 elongation and a trace of C22-24 activity. The tissue profile of gene expression for ∆6 fad and elovl5 genes, showed brain to have the highest expression of both genes compared to all other tissues. The results of tissue fatty acid analysis showed that the brain contained more docosahexaenoic acid (DHA, 22:6n-3) than flesh, liver and intestine. The HUFA synthesis activity in isolated hepatocytes and enterocytes using [1-14C]18:3n-3 as substrate was very low with the only desaturated product detected being 18:4n-3. These findings indicate that L. calcarifer display an essential fatty acid pattern similar to other marine fish in that they appear unable to synthesize HUFA from C18 substrates. High expression of ∆6 fad and elovl5 genes in brain may indicate a role for these enzymes in maintaining high DHA levels in neural tissues through conversion of 20:5n-3

    Fish oil replacement in current aquaculture feed : is cholesterol a hidden treasure for fish nutrition?

    Get PDF
    Teleost fish, as with all vertebrates, are capable of synthesizing cholesterol and as such have no dietary requirement for it. Thus, limited research has addressed the potential effects of dietary cholesterol in fish, even if fish meal and fish oil are increasingly replaced by vegetable alternatives in modern aquafeeds, resulting in progressively reduced dietary cholesterol content. The objective of this study was to determine if dietary cholesterol fortification in a vegetable oil-based diet can manifest any effects on growth and feed utilization performance in the salmonid fish, the rainbow trout. In addition, given a series of studies in mammals have shown that dietary cholesterol can directly affect the fatty acid metabolism, the apparent in vivo fatty acid metabolism of fish fed the experimental diets was assessed. Triplicate groups of juvenile fish were fed one of two identical vegetable oil-based diets, with additional cholesterol fortification (high cholesterol, H-Chol) or without (low cholesterol, L-Chol), for 12 weeks. No effects were observed on growth and feed efficiency, however, in fish fed H-Col no biosynthesis of cholesterol, and a remarkably decreased apparent in vivo fatty acid b-oxidation were recorded, whilst in LChol fed fish, cholesterol was abundantly biosynthesised and an increased apparent in vivo fatty acid b-oxidation was observed. Only minor effects were observed on the activity of stearyl-CoA desaturase, but a significant increase was observed for both the transcription rate in liver and the apparent in vivo activity of the fatty acid D-6 desaturase and elongase, with increasing dietary cholesterol. This study showed that the possible effects of reduced dietary cholesterol in current aquafeeds can be significant and warrant future investigations

    Nutritional and environmental regulation of the synthesis of highly unsaturated fatty acids and of fatty-acid oxidation in Atlantic salmon (Salmo salar L.) enterocytes and hepatocytes

    Get PDF
    The aim was to determine if highly unsaturated fatty acid (HUFA) synthesis and fatty acid oxidation in Atlantic salmon (Salmo salar L.) intestine was under environmental and/or seasonal regulation. Triplicate groups of salmon were grown through a full two-year cycle on two diets containing either fish oil (FO), or a diet with 75% of the FO replaced by a vegetable oil (VO) blend containing rapeseed, palm and linseed oils. At key points in the life cycle, fatty acyl desaturation/elongation (HUFA synthesis) and oxidation activities were determined in enterocytes and hepatocytes using [1-14C]18:3n-3 as substrate. As observed previously, HUFA synthesis in hepatocytes showed peak activity at seawater transfer and declined thereafter, with activity consistently greater in fish fed the VO diet. In fish fed FO, HUFA synthesis in enterocytes in the freshwater stage was at a similar level to that in hepatocytes. However, HUFA synthesis in enterocytes increased rapidly after seawater transfer and remained high for some months after transfer before decreasing to levels that were again similar to those observed in hepatocytes. Generally, enterocyte HUFA synthesis was higher in fish fed the VO diet compared to the FO diet. Oxidation of [1-14C]18:3n-3 in hepatocytes from fish fed FO tended to decrease during the freshwater phase but then increased steeply, peaking just after transfer before decreasing during the remaining seawater phase. At the peak in oxidation activity around seawater transfer, activity was significantly lower in fish fed VO compared to fish fed FO. In enterocytes, oxidation of [1-14C]18:3 in fish fed FO showed a peak in activity just prior to seawater transfer. In fish fed VO, other than high activity at 9 months, the pattern was similar to that obtained in enterocytes from fish fed FO with a high activity around seawater transfer and declining activity in seawater. In conclusion, fatty acid metabolism in intestinal cells appeared to be under dual nutritional and environmental or seasonal regulation. The temporal patterns for fatty acid oxidation were generally similar in the two cell types, but HUFA synthesis in enterocytes peaked over the summer seawater phase rather than at transfer, as with hepatocytes, suggesting possibly different regulatory cues

    Highly unsaturated fatty acid synthesis in marine fish: Cloning, functional characterization, and nutritional regulation of fatty acyl delta6 desaturase of Atlantic cod (Gadus morhua L.)

    Get PDF
    Fish contain high levels of the n-3 highly unsaturated fatty acids (HUFA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids that are crucial to the health of higher vertebrates. Biosynthesis of HUFA requires enzyme-mediated desaturation of fatty acids. Here we report cloning and functional characterisation of a ∆6 fatty acyl desaturase of Atlantic cod (Gadus morhua), and describe its tissue expression and nutritional regulation. PCR primers were designed based on the sequences of conserved motifs in available fish desaturases and used to isolate a cDNA fragment from liver of cod. The full-length cDNA was obtained by Rapid Amplification of cDNA Ends (RACE). The cDNA for the putative fatty acyl desaturase was shown to comprise 1980bp which included a 5’-UTR of 261bp and a 3’-UTR of 375bp. Sequencing revealed that the cDNA included an ORF of 1344 bp that specified a protein of 447 amino acids. The protein sequence included three histidine boxes, two transmembrane regions, and an N-terminal cytochrome b5 domain containing the haem-binding motif HPGG, all of which are characteristic of microsomal fatty acid desaturases. The cDNA displayed Δ6 desaturase activity in a heterologous yeast expression system. Quantitative real time PCR assay of gene expression in cod showed that the ∆6 desaturase gene, was highly expressed in brain, relatively highly expressed in liver, kidney, intestine, red muscle and gill, and expressed at much lower levels in white muscle, spleen and heart. In contrast, the abundance of a cod fatty acyl elongase transcript was high in brain and gill, with intermediate levels in kidney, spleen, intestine and heart, and relatively low expression in liver. The expression of the Δ6 desaturase gene and the PUFA elongase gene may be under a degree of nutritional regulation, with levels being marginally increased in livers and intestine of fish fed a vegetable oil blend by comparison with levels in fish fed fish oil. However, this was not reflected in increased Δ6 desaturase activity in hepatocytes or enterocytes, which showed very little highly unsaturated fatty acid biosynthesis activity irrespective of diet. The study described has demonstrated that Atlantic cod express a fatty acid desaturase gene with functional Δ6 activity in a yeast expression system. This is consistent with an established hypothesis that the poor ability of marine fish to synthesise HUFA is not due to lack of a Δ6 desaturase, but rather to deficiencies in other parts of the biosynthetic pathway. However, further studies are required to determine why the Δ6 desaturase appears to be barely functional in cod under the conditions tested

    Does dietary tocopherol level affect fatty acid metabolism in fish?

    Get PDF
    Fish are a rich source of the n-3 polyunsaturated fatty acids (PUFA), particularly the highly unsaturated fatty acids (HUFA), eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic (DHA; 22:6n-3) acids, which are vital constituents for cell membrane structure and function, but which are also highly susceptible to attack by oxygen and other organic radicals. Resultant damage to PUFA in membrane phospholipids can have serious consequences for cell membrane structure and function, with potential pathological effects on cells and tissues. Physiological antioxidant protection involves both endogenous components, such as free radical scavenging enzymes, and exogenous dietary micronutrients including tocopherols and tocotrienols, the vitamin E-type compounds, widely regarded as the primary lipid soluble antioxidants. The antioxidant activities of tocopherols are imparted by their ability to donate their phenolic hydrogen atoms to lipid (fatty acid) free radicals resulting in the stabilisation of the latter and the termination of the lipid peroxidation chain reaction. However, tocopherols can also prevent PUFA peroxidation by acting as quenchers of singlet oxygen. Recent studies on marine fish have shown correlations between dietary and tissue PUFA/tocopherol ratios and incidence of lipid peroxidation as indicated by the levels of TBARS and isoprostanes. These studies also showed that feeding diets containing oxidised oil significantly affected the activities of liver antioxidant defence enzymes and that dietary tocopherol partially attenuated these effects. However, there is evidence that dietary tocopherols can affect fatty acid metabolism in other ways. An increase in membrane PUFA was observed in rats deficient in vitamin E. This was suggested to be due to over production of PUFA arising from increased activity of the desaturation/elongation mechanisms responsible for the synthesis of PUFA. Consistent with this, increased desaturation of 18:3n-3 and 20:5n-3 in hepatocytes from salmon fed diets deficient in tocopherol and/or astaxanthin has been observed. Although the mechanism is unclear, tocopherols may influence biosynthesis of n-3PUFA through alteration of cellular oxidation potential or “peroxide tone”

    Effect of lactation stage and concurrent pregnancy on milk composition in the bottlenose dolphin

    Get PDF
    Although many toothed whales (Cetacea: Odontoceti) lactate for 2–3 years or more, it is not known whether milk composition is affected by lactation stage in any odontocete species. We collected 64 pooled milk samples spanning 1–30 months postpartum from three captive bottlenose dolphins Tursiops truncatus. Milks were assayed for water, fat, crude protein (TN × 6.38) and sugar; gross energy was calculated. Ovulation and pregnancy were determined via monitoring of milk progesterone. Based on analysis of changes in milk composition for each individual dolphin, there were significant increases (P<0.05) in fat (in all three dolphins) and crude protein (in two of three), and a decrease (P<0.05) in water (in two of three) over the course of lactation, but the sugar content did not change. In all three animals, the energy content was positively correlated with month of lactation, but the percentage of energy provided by crude protein declined slightly but significantly (P<0.05). At mid-lactation (7–12 months postpartum, n=17), milk averaged 73.0±1.0% water, 12.8±1.0% fat, 8.9±0.5% crude protein, 1.0±0.1% sugar, 1.76±0.09 kcal g−1 (=7.25 kJ g−1) and 30.3±1.3% protein:energy per cent. This protein:energy per cent was surprisingly high compared with other cetaceans and in relation to the growth rates of calves. Milk progesterone indicated that dolphins ovulated and conceived between 413 and 673 days postpartum, following an increase in milk energy density. The significance of these observed compositional changes to calf nutrition will depend on the amounts of milk produced at different stages of lactation, and how milk composition and yield are influenced by sampling procedure, maternal diet and maternal condition, none of which are known

    The impact of environmental change on the use of early pottery by East Asian hunter-gatherers

    Get PDF
    The invention of pottery was a fundamental technological advancement with far-reaching economic and cultural consequences. Pottery containers first emerged in East Asia during the Late Pleistocene in a wide range of environmental settings, but became particularly prominent and much more widely dispersed after climatic warming at the start of the Holocene. Some archaeologists argue that this increasing usage was driven by environmental factors, as warmer climates would have generated a wider range of terrestrial plant and animal resources that required processing in pottery. However, this hypothesis has never been directly tested. Here, in one of the largest studies of its kind, we conducted organic residue analysis of >800 pottery vessels selected from 46 Late Pleistocene and Early Holocene sites located across the Japanese archipelago to identify their contents. Our results demonstrate that pottery had a strong association with the processing of aquatic resources, irrespective of the ecological setting. Contrary to expectations, this association remained stable even after the onset of Holocene warming, including in more southerly areas, where expanding forests provided new opportunities for hunting and gathering. Nevertheless, the results indicate that a broader array of aquatic resources was processed in pottery after the start of the Holocene. We suggest this marks a significant change in the role of pottery of hunter-gatherers, corresponding to an increased volume of production, greater variation in forms and sizes, the rise of intensified fishing, the onset of shellfish exploitation, and reduced residential mobility
    corecore