233 research outputs found

    Proliferation dynamics of germinative zone cells in the intact and excitotoxically lesioned postnatal rat brain

    Get PDF
    BACKGROUND: The forebrain subventricular zone (SVZ)-olfactory bulb pathway and hippocampal subgranular zone (SGZ) generate neurons into adulthood in the mammalian brain. Neurogenesis increases after injury to the adult brain, but few studies examine the effect of injury on neural and glial precursors in the postnatal brain. To characterize the spatio-temporal dynamics of cell proliferation in the germinative zones, this study utilized a model of postnatal damage induced by NMDA injection in the right sensorimotor cortex at postnatal day 9. Dividing cell populations were labeled with 5-Bromodeoxyuridine (BrdU) in the intact and damaged postnatal brain. Identity of proliferating cells was determined by double immunolabeling with nestin, GFAP, NeuN and tomato lectin (TL). RESULTS: In the control brain, grouped BrdU+ cells were observed in the Rostral Migratory Stream (RMS), SVZ and SGZ. Maximal proliferation was seen at P12, persisted until P23 and diminished by P49. After injury, a striking reduction in the number of BrdU+ cells was observed in the ipsilateral SVZ from 10 hours (58% decrease) until 14 days post-lesion (88% decrease). In contrast, an increase in grouped BrdU+ cells was seen in the striatum adjacent to the depleted SVZ. Significantly reduced numbers of BrdU+ cells were also seen in the RMS until 3 days post-lesion. No changes were noted in the SGZ. Both in controls and lesioned hemispheres, BrdU+ cells located in the germinal zones were mostly nestin positive and negative for GFAP, NeuN, and TL. In the SVZ area lining the ventricle, BrdU+/nestin+ cells were mainly located between TL+ ependyma and parenchymal GFAP+ astrocytes. After excitotoxicity, a decrease in the number and orientation of GFAP/nestin+ prolongations leaving the SVZ to the cortex, corpus callosum and striatum was noted until 5 days post-lesion. CONCLUSION: Postnatal excitotoxic injury differentially affects proliferating cells in the germinative zones: no change is observed in the dentate gyrus whereas excitotoxicity causes a significant decrease in proliferating cells in the SVZ and RMS. Depletion of BrdU+ cells in the postnatal SVZ and RMS differs from previous studies after adult brain injury and may affect the SVZ-RMS migration and is suggestive of progenitor recruitment to injured areas

    Short and Long-Term Analysis and Comparison of Neurodegeneration and Inflammatory Cell Response in the Ipsilateral and Contralateral Hemisphere of the Neonatal Mouse Brain after Hypoxia/Ischemia

    Get PDF
    Understanding the evolution of neonatal hypoxic/ischemic is essential for novel neuroprotective approaches. We describe the neuropathology and glial/inflammatory response, from 3 hours to 100 days, after carotid occlusion and hypoxia (8% O2, 55 minutes) to the C57/BL6 P7 mouse. Massive tissue injury and atrophy in the ipsilateral (IL) hippocampus, corpus callosum, and caudate-putamen are consistently shown. Astrogliosis peaks at 14 days, but glial scar is still evident at day 100. Microgliosis peaks at 3–7 days and decreases by day 14. Both glial responses start at 3 hours in the corpus callosum and hippocampal fissure, to progressively cover the degenerating CA field. Neutrophils increase in the ventricles and hippocampal vasculature, showing also parenchymal extravasation at 7 days. Remarkably, delayed milder atrophy is also seen in the contralateral (CL) hippocampus and corpus callosum, areas showing astrogliosis and microgliosis during the first 72 hours. This detailed and long-term cellular response characterization of the ipsilateral and contralateral hemisphere after H/I may help in the design of better therapeutic strategies

    Increased circulating T cell reactivity to GM3 and GQ1b gangliosides in primary progressive multiple sclerosis

    Get PDF
    We have previously shown that patients with primary progressive multiple sclerosis (MS) have significantly elevated plasma levels of antibody to GM3 ganglioside compared to patients with relapsing-remitting MS, healthy subjects and patients with other neurological diseases. Anti-GM3 antibody levels were elevated also in patients with secondary progressive MS but to a lesser extent than in primary progressive MS. As gangliosides are particularly enriched in the axonal membrane, these findings suggested that antiganglioside immune responses might contribute to the axonal damage in progressive forms of MS. The present study was performed to determine whether peripheral blood T cell responses to GM3 are also increased in progressive MS. Blood was collected from 98 untreated patients with MS (40 with relapsing-remitting, 27 with secondary progressive and 31 with primary progressive MS), 50 healthy subjects and 24 patients with other disorders of the CNS, and reactivity to GM1, GM3, GD1a, GD1b, GD3, GT1b, GQ1b and sulphatide was assessed by 6-day T cell proliferation assays. Increased T cell reactivity to GM3 and GQ1b occurred significantly more often in patients with primary progressive MS than in healthy subjects and patients with other CNS diseases. These findings suggest that ganglioside-specific T cells may contribute to the axonal damage in primary progressive MS. (C) 2002 Elsevier Science Ltd. All rights reserved

    Effect Of Gender On T-Cell Proliferative Responses To Myelin Proteolipid Protein Antigens In Patients With Multiple Sclerosis And Controls

    Get PDF
    Multiple sclerosis (MS) is an inflammatory demyelinating disorder of the central nervous system. Gender influences both susceptibility to MS, with the disease being more common in women, and the clinical course of disease, with an increased proportion of males developing the primary progressive form of the disease. The basis for these differences may include genetic and immunological factors, and the immunological differences between men and women may be influenced by the effects of the sex hormones. Over several years we have collected blood from MS patients and controls, and measured T-cell responses to myelin proteolipid protein (PLP) and myelin basic protein (MBP) and have shown increased responses to PLP in MS patients compared to healthy controls and patients with other neurological diseases. In the present study we analyzed data from over 500 individuals, to determine whether there are differences between males and females in their responses to PLP and MBP. We found that there was higher frequency of increased T-cell reactivity to immunodominant PLP peptides in women than in men, particularly in non-MS individuals. We suggest that this may be relevant to the higher prevalence of MS in women

    Glucocorticoid Regulation of Astrocytic Fate and Function

    Get PDF
    Glial loss in the hippocampus has been suggested as a factor in the pathogenesis of stress-related brain disorders that are characterized by dysregulated glucocorticoid (GC) secretion. However, little is known about the regulation of astrocytic fate by GC. Here, we show that astrocytes derived from the rat hippocampus undergo growth inhibition and display moderate activation of caspase 3 after exposure to GC. Importantly, the latter event, observed both in situ and in primary astrocytic cultures is not followed by either early- or late-stage apoptosis, as monitored by stage I or stage II DNA fragmentation. Thus, unlike hippocampal granule neurons, astrocytes are resistant to GC-induced apoptosis; this resistance is due to lower production of reactive oxygen species (ROS) and a greater buffering capacity against the cytotoxic actions of ROS. We also show that GC influence hippocampal cell fate by inducing the expression of astrocyte-derived growth factors implicated in the control of neural precursor cell proliferation. Together, our results suggest that GC instigate a hitherto unknown dialog between astrocytes and neural progenitors, adding a new facet to understanding how GC influence the cytoarchitecture of the hippocampus

    Human Mesenchymal Stem Cells Prolong Survival and Ameliorate Motor Deficit through Trophic Support in Huntington's Disease Mouse Models

    Get PDF
    We investigated the therapeutic potential of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) in Huntington's disease (HD) mouse models. Ten weeks after intrastriatal injection of quinolinic acid (QA), mice that received hBM-MSC transplantation showed a significant reduction in motor function impairment and increased survival rate. Transplanted hBM-MSCs were capable of survival, and inducing neural proliferation and differentiation in the QA-lesioned striatum. In addition, the transplanted hBM-MSCs induced microglia, neuroblasts and bone marrow-derived cells to migrate into the QA-lesioned region. Similar results were obtained in R6/2-J2, a genetically-modified animal model of HD, except for the improvement of motor function. After hBM-MSC transplantation, the transplanted hBM-MSCs may integrate with the host cells and increase the levels of laminin, Von Willebrand Factor (VWF), stromal cell-derived factor-1 (SDF-1), and the SDF-1 receptor Cxcr4. The p-Erk1/2 expression was increased while Bax and caspase-3 levels were decreased after hBM-MSC transplantation suggesting that the reduced level of apoptosis after hBM-MSC transplantation was of benefit to the QA-lesioned mice. Our data suggest that hBM-MSCs have neural differentiation improvement potential, neurotrophic support capability and an anti-apoptotic effect, and may be a feasible candidate for HD therapy

    Neuroprotective function for ramified microglia in hippocampal excitotoxicity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most of the known functions of microglia, including neurotoxic and neuroprotective properties, are attributed to morphologically-activated microglia. Resting, ramified microglia are suggested to primarily monitor their environment including synapses. Here, we show an active protective role of ramified microglia in excitotoxicity-induced neurodegeneration.</p> <p>Methods</p> <p>Mouse organotypic hippocampal slice cultures were treated with <it>N</it>-methyl-D-aspartic acid (NMDA) to induce excitotoxic neuronal cell death. This procedure was performed in slices containing resting microglia or slices that were chemically or genetically depleted of their endogenous microglia.</p> <p>Results</p> <p>Treatment of mouse organotypic hippocampal slice cultures with 10-50 μM <it>N</it>-methyl-D-aspartic acid (NMDA) induced region-specific excitotoxic neuronal cell death with CA1 neurons being most vulnerable, whereas CA3 and DG neurons were affected less. Ablation of ramified microglia severely enhanced NMDA-induced neuronal cell death in the CA3 and DG region rendering them almost as sensitive as CA1 neurons. Replenishment of microglia-free slices with microglia restored the original resistance of CA3 and DG neurons towards NMDA.</p> <p>Conclusions</p> <p>Our data strongly suggest that ramified microglia not only screen their microenvironment but additionally protect hippocampal neurons under pathological conditions. Morphological activation of ramified microglia is thus not required to influence neuronal survival.</p
    corecore