1,319 research outputs found

    The Asian development bank on the eve of commencing activities

    Full text link

    Time-dependent absorption of very high-energy gamma-rays from the Galactic center by pair-production

    Full text link
    Very high energy (VHE) gamma-rays have been detected from the direction of the Galactic center. The H.E.S.S. Cherenkov telescopes have located this gamma-ray source with a preliminary position uncertainty of 8.5" per axis (6" statistic + 6" sytematic per axis). Within the uncertainty region several possible counterpart candidates exist: the Super Massive Black Hole Sgr A*, the Pulsar Wind Nebula candidate G359.95-0.04, the Low Mass X-Ray Binary-system J174540.0-290031, the stellar cluster IRS 13, as well as self-annihilating dark matter. It is experimentally very challenging to further improve the positional accuracy in this energy range and therefore, it may not be possible to clearly associate one of the counterpart candidates with the VHE-source. Here, we present a new method to investigate a possible link of the VHE-source with the near environment of Sgr A* (within approximately 1000 Schwarzschild radii). This method uses the time- and energy-dependent effect of absorption of gamma-rays by pair-production (in the following named pair-eclipse) with low-energy photons of stars closely orbiting the SMBH Sgr A*.Comment: 4 pages, 6 figures, Published in Proceedings of the 4th International Meeting on High Energy Gamma-Ray Astronomy (Gamma 08), Heidelber

    The HI absorption distance of HESS J1943+213 favours its extragalactic nature

    Full text link
    The H.E.S.S. collaboration (Abramowski et al. 2011) dicovered a new TeV point-like source HESS J1943+213 in the Galactic plane and suggested three possible low-energy-band counterparts: a γ\gamma-ray binary, a pulsar wind nebula (PWN), or a BL Lacertae object. We measure the distance to the radio counterpart G57.76-1.29 of HESS J1943+213. We analyze Very Large Array observations to obtain a reliable HI absorption spectrum.The resulting distance limit is \ge 16 kpc. This distance strongly supports that HESS J1943+213 is an extragalactic source, consistent with the preferred counterpart of the HESS collaboration.Comment: 3 figures, 2 pages, A&A accepte

    Exploring the nature of the unidentified VHE gamma-ray source HESS J1507-622

    Full text link
    The nature of the first unidentified VHE gamma-ray source with significant angular offset from the Galactic plane of 3.5 degrees, HESS J1507-622, is explored. Fermi-LAT data in the high-energy (HE, 100 MeV < E < 100 GeV) gamma-ray range collected over 34 month are used to describe the spectral energy distribution (SED) of the source. HESS J1507-622 is detected in the Fermi energy range and its spectrum is best described by a power law in energy with Gamma=1.7 +/- 0.1 stat +/- 0.2_sys and integral flux between (0.3-300) GeV of F = (2.0 +/-0.5_stat +/- 1.0_sys) x 10^-9 cm^-2 s^-1. With the available data it is not possible to discriminate between a hadronic and a leptonic scenario for HESS J1507-622. The location and compactness of the source indicate a considerable physical offset from the Galactic plane for this object. In case of a multiple-kpc distance, this challenges a pulsar wind nebula (PWN) origin for HESS J1507-622 since the time of travel for a pulsar born in the Galactic disk to reach such a location would exceed the inverse Compton (IC) cooling time of electrons that are energetic enough to produce VHE gamma-rays. However, an origin of this gamma-ray source connected to a pulsar that was born off the Galactic plane in the explosion of a hypervelocity star cannot be excluded. The nature of HESS J1507-622 is still unknown to date, and a PWN scenario cannot be ruled out in general. On the contrary HESS J1507-622 could be the first discovered representative of a population of spatially extended VHE gamma-ray emitters with HE gamma-ray counterpart that are located at considerable offsets from the Galactic plane. Future surveys in the VHE gamma-ray range are necessary to probe the presence or absence of such a source population.(abridged)Comment: accepted for publication in A&A, 7 pages, 3 figure

    Very-high energy gamma-ray astronomy: A 23-year success story in high-energy astroparticle physics

    Full text link
    Very-high energy (VHE) gamma quanta contribute only a minuscule fraction - below one per million - to the flux of cosmic rays. Nevertheless, being neutral particles they are currently the best "messengers" of processes from the relativistic/ultra-relativistic Universe because they can be extrapolated back to their origin. The window of VHE gamma rays was opened only in 1989 by the Whipple collaboration, reporting the observation of TeV gamma rays from the Crab nebula. After a slow start, this new field of research is now rapidly expanding with the discovery of more than 150 VHE gamma-ray emitting sources. Progress is intimately related with the steady improvement of detectors and rapidly increasing computing power. We give an overview of the early attempts before and around 1989 and the progress after the pioneering work of the Whipple collaboration. The main focus of this article is on the development of experimental techniques for Earth-bound gamma-ray detectors; consequently, more emphasis is given to those experiments that made an initial breakthrough rather than to the successors which often had and have a similar (sometimes even higher) scientific output as the pioneering experiments. The considered energy threshold is about 30 GeV. At lower energies, observations can presently only be performed with balloon or satellite-borne detectors. Irrespective of the stormy experimental progress, the success story could not have been called a success story without a broad scientific output. Therefore we conclude this article with a summary of the scientific rationales and main results achieved over the last two decades.Comment: 45 pages, 38 figures, review prepared for EPJ-H special issue "Cosmic rays, gamma rays and neutrinos: A survey of 100 years of research

    A Search for Diffuse X-ray Emission from GeV Detected Galactic Globular Clusters

    Full text link
    Recently, diffuse and extended sources in TeV gamma-rays as well as in X-rays have been detected in the direction of the Galactic globular cluster (GC) Terzan 5. Remarkably, this is among the brightest GCs detected in the GeV regime. The nature of both the TeV and the diffuse X-ray signal from Terzan 5 is not settled yet. These emissions most likely indicate the presence of several non-thermal radiation processes in addition to these giving rise to the GeV signal. The aim of this work is to search for diffuse X-ray emission from the GeV detected GCs M 62, NGC 6388, NGC 6541, M 28, M 80 and NGC 6139 to compare the obtained results with the signal detected from Terzan 5. This study will help to determine whether Terzan 5 stands out amongst other GC or whether a whole population of globular clusters feature similar properties. None of the six GCs show significant diffuse X-ray emission on similar scales as observed from Terzan 5 above the particle and diffuse galactic X-ray background components. The derived upper limits allow to assess the validity of different models that were discussed in the interpretation of the multi-wavelength data of Terzan 5. A scenario based on synchrotron emission from relativistic leptons provided by the millisecond pulsar population can not be securely rejected if a comparable magnetic field strength as in Terzan 5 is assumed for every GC. However, such a scenario seems to be unlikely for NGC 6388 and M 62. An inverse-Compton scenario relying on the presence of a putative GRB remnant with the same properties as the one proposed for Terzan 5 can be ruled out for all of the six GCs. Finally, the assumption that each GC hosts a source with the same luminosity as in Terzan 5 is ruled out for all GCs but NGC 6139. (abridged)Comment: 8 pages, 1 Figure, accepted for publication by Astronomy & Astrophysics, final version after language editin

    Interpretation of the flares of M87 at TeV energies in the cloud-jet interaction scenario

    Full text link
    Active galactic nuclei with misaligned jets have been recently established as a class of high-energy gamma-ray sources. M87, a nearby representative of this class, shows fast TeV variability on timescales less than one day. We present calculations performed in the framework of the scenario in which gamma-ray flares in non-blazar active galactic nuclei are produced by a red giant or a gas cloud interacting with the jet. We show that both the light curve and energy spectrum of the spectacular April 2010 flare can be reproduced by this model, assuming that a relatively massive cloud of approx 1.e29 g penetrates into the jet at few tens of Schwarzschild radii from the super-massive black hole.Comment: 8 pages, 8 figures, accepted by Ap

    Dark Matter and Fundamental Physics with the Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array (CTA) is a project for a next-generation observatory for very high energy (GeV-TeV) ground-based gamma-ray astronomy, currently in its design phase, and foreseen to be operative a few years from now. Several tens of telescopes of 2-3 different sizes, distributed over a large area, will allow for a sensitivity about a factor 10 better than current instruments such as H.E.S.S, MAGIC and VERITAS, an energy coverage from a few tens of GeV to several tens of TeV, and a field of view of up to 10 deg. In the following study, we investigate the prospects for CTA to study several science questions that influence our current knowledge of fundamental physics. Based on conservative assumptions for the performance of the different CTA telescope configurations, we employ a Monte Carlo based approach to evaluate the prospects for detection. First, we discuss CTA prospects for cold dark matter searches, following different observational strategies: in dwarf satellite galaxies of the Milky Way, in the region close to the Galactic Centre, and in clusters of galaxies. The possible search for spatial signatures, facilitated by the larger field of view of CTA, is also discussed. Next we consider searches for axion-like particles which, besides being possible candidates for dark matter may also explain the unexpectedly low absorption by extragalactic background light of gamma rays from very distant blazars. Simulated light-curves of flaring sources are also used to determine the sensitivity to violations of Lorentz Invariance by detection of the possible delay between the arrival times of photons at different energies. Finally, we mention searches for other exotic physics with CTA.Comment: (31 pages, Accepted for publication in Astroparticle Physics

    XMM-Newton evidence of shocked ISM in SN 1006: indications of hadronic acceleration

    Get PDF
    Shock fronts in young supernova remnants are the best candidates for being sites of cosmic ray acceleration up to a few PeV, though conclusive experimental evidence is still lacking. Hadron acceleration is expected to increase the shock compression ratio, providing higher postshock densities, but X-ray emission from shocked ambient medium has not firmly been detected yet in remnants where particle acceleration is at work. We exploited the deep observations of the XMM-Newton Large Program on SN 1006 to verify this prediction. We performed spatially resolved spectral analysis of a set of regions covering the southeastern rim of SN 1006. We studied the spatial distribution of the thermodynamic properties of the ambient medium and carefully verified the robustness of the result with respect to the analysis method. We detected the contribution of the shocked ambient medium. We also found that the postshock density of the interstellar medium significantly increases in regions where particle acceleration is efficient. Under the assumption of uniform preshock density, we found that the shock compression ratio reaches a value of ~6 in regions near the nonthermal limbs. Our results support the predictions of shock modification theory and indicate that effects of acceleration of cosmic ray hadrons on the postshock plasma can be observed in supernova remnants.Comment: Accepted for publication in A&

    Simulations of stellar/pulsar wind interaction along one full orbit

    Full text link
    The winds from a non-accreting pulsar and a massive star in a binary system collide forming a bow-shaped shock structure. The Coriolis force induced by orbital motion deflects the shocked flows, strongly affecting their dynamics. We study the evolution of the shocked stellar and pulsar winds on scales in which the orbital motion is important. Potential sites of non-thermal activity are investigated. Relativistic hydrodynamical simulations in two dimensions, performed with the code PLUTO and using the adaptive mesh refinement technique, are used to model interacting stellar and pulsar winds on scales ~80 times the distance between the stars. The hydrodynamical results suggest the suitable locations of sites for particle acceleration and non-thermal emission. In addition to the shock formed towards the star, the shocked and unshocked components of the pulsar wind flowing away from the star terminate by means of additional strong shocks produced by the orbital motion. Strong instabilities lead to the development of turbulence and an effective two-wind mixing in both the leading and trailing sides of the interaction structure, which starts to merge with itself after one orbit. The adopted moderate pulsar-wind Lorentz factor already provides a good qualitative description of the phenomena involved in high-mass binaries with pulsars, and can capture important physical effects that would not appear in non-relativistic treatments. Simulations show that shocks, instabilities, and mass-loading yield efficient mass, momentum, and energy exchanges between the pulsar and the stellar winds. This renders a rapid increase in the entropy of the shocked structure, which will likely be disrupted on scales beyond the simulated ones. Several sites of particle acceleration and low- and high-energy emission can be identified. Doppler boosting will have significant and complex effects on radiation.Comment: 8 pages, 11 figures, Astronomy and Astrophysics, in press, minor changes after acceptanc
    corecore