75 research outputs found

    Probing the Surface of Nanodiamonds at Stanford Synchrotron Radiation Lightsource and San Jose State University

    Get PDF
    The nitrogen-vacancy center in diamond is a promising tool in oncology, electric field sensing, and quantum cryptography. High-pressure high-temperature (HPHT) nanodiamonds (NDs) are prime contenders for these fields because they host nitrogen-vacancy centers (NVCs) which are applicable towards cancer detection and electric and magnetic field sensing. However, to apply HPHT NDs to these fields, the surface must first be functionalized—a difficult process because of the inert nature of the surface. The project at hand focuses on surface modification of HPHT NDs with amines to allow for further bioconjugation of small molecules and plasmonic shells. This is done via liquid-phase chemistry and high-temperature gas-phase chemistry. To characterize the surface of aminated NDs, samples are probed using synchrotron radiation at the Stanford Synchrotron Radiation Lightsource (SSRL) alongside the transmission edge spectroscopy (TES) detector. Aminated NDs were characterized using X-ray photoelectric spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) at SSRL. X-ray spectra are suggestive of multiple nitrogen moieties on the surface of the aminated NDs. With verification of a homogeneously amine-terminated surface, the NDs are prepared for further functionalization which can be targeted to enhance the properties of the NVC charge states for applications in enhanced electric field and voltage sensing

    Modulation of nitrogen vacancy charge state and fluorescence in nanodiamonds using electrochemical potential

    Get PDF
    The negatively charged nitrogen vacancy (NV⁻) center in diamond has attracted strong interest for a wide range of sensing and quantum information processing applications. To this end, recent work has focused on controlling the NV charge state, whose stability strongly depends on its electrostatic environment. Here, we demonstrate that the charge state and fluorescence dynamics of single NV centers in nanodiamonds with different surface terminations can be controlled by an externally applied potential difference in an electrochemical cell. The voltage dependence of the NV charge state can be used to stabilize the NV⁻ state for spin-based sensing protocols and provides a method of charge state-dependent fluorescence sensing of electrochemical potentials. We detect clear NV fluorescence modulation for voltage changes down to 100 mV, with a single NV and down to 20 mV with multiple NV centers in a wide-field imaging mode. These results suggest that NV centers in nanodiamonds could enable parallel optical detection of biologically relevant electrochemical potentials.United States. Army Research Office (W911NF-12-1-0594)United States. National Institutes of Health (1R01NS087950)United States. Defense Advanced Research Projects Agency (D14PC00121)United States. Defense Advanced Research Projects Agency (HR0011-14-C-0018)United States. National Institutes of Health (1R43MH102942-01)National Science Foundation (U.S.) (1122374

    The limitations of in vitro experimentation in understanding biofilms and chronic infection

    Get PDF
    We have become increasingly aware that during infection, pathogenic bacteria often grow in multi- cellular biofilms which are often highly resistant to antibacterial strategies. In order to understand how biofilms form and contribute to infection, in vitro biofilm systems such as microtitre plate as- says and flow cells, have been heavily used by many research groups around the world. Whilst these methods have greatly increased our understanding of the biology of biofilms, it is becoming increasingly apparent that many of our in vitro methods do not accurately represent in vivo conditions. Here we present a systematic review of the most widely used in vitro biofilm systems, and we discuss why they are not always representative of the in vivo biofilms found in chronic infections. We present examples of methods that will help us to bridge the gap between in vitro and in vivo biofilm work, so that our bench-side data can ultimately be used to improve bedside treatment

    Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    No full text
    © 2014 American Chemical Society. We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5-50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575°C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core-hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed. (Figure Presented)

    Reactive ion etching: Optimized diamond membrane fabrication for transmission electron microscopy

    No full text
    Commonly used preparation method for thin diamond membranes by focused ion beam (FIB) techniques results in surface damage. Here, the authors introduce an alternative method based on reactive ion etching (RIE). To compare these methods, cross-sectional samples are produced in single crystal diamond, a material that has generated growing interest for a variety of applications. The samples are examined by Raman spectroscopy and high-resolution transmission electron microscopy (TEM). Raman spectra indicate that the crystalline structure of the RIE-processed diamond is preserved, while the FIB-processed diamond membrane has a broad-background sp[superscript 2] feature. Atomic-resolution TEM imaging demonstrates that the RIE-based process produces no detectable damage, while the FIB-processed sample has an amorphous carbon layer of about 11 nm thick. These findings show that the RIE-based process allows the production of diamond TEM samples with reduced near-surface damage and can thus enable direct examination of growth defects and crystallographic damage induced by processes such as ion implantation and bombardment.United States. Air Force Office of Scientific Research. Multidisciplinary University Research Initiative (Quantum Memories)Presidential Early Career Award for Scientists and EngineersUnited States. Air Force Office of Scientific Research. Young Investigator Program (Grant FA9550-11-1-0014

    Quantum Diamonds at the Beach: Chemical insights into silica growth on nanoscale diamond using multimodal characterization and simulation

    No full text
    Surface chemistry of materials that host quantum bits such as diamond are an important avenue of exploration as quantum computation and quantum sensing platforms mature. Interfacing diamond in general, and nanoscale diamond (ND) in particular with silica is a potential route to integrate the quantum bit into a photonic device, fiber optic, cells or tissues with flexible functionalization chemistry. While silica growth on ND cores has been used successfully for quantum sensing and biolabeling, the surface mechanism to initiate growth was unknown. This report describes the surface chemistry responsible for silica bond formation on diamond and uses X-ray absorption spectroscopy (XAS) to probe the diamond surface chemistry and its electronic structure with increasing silica thickness. A modified Stöber (Cigler) method was used to synthesize 2–35 nm thick shells of SiO2 onto carboxylic acid rich ND cores and the diamond features and surface structure were characterized by overlapping techniques including electron microscopy. Importantly, we discovered that SiO2 growth on carboxylated NDs eliminates the presence of carboxylic acids and that basic ethanolic solutions converts the ND surface to an alcohol-rich surface prior to silica growth. The data supports a mechanism that alcohols on the ND surface generate silyl-ether (ND-O-Si-(OH)3) bonds due to rehydroxylation by ammonium hydroxide in ethanol. Additionally, resonant inelastic X-ray scattering (RIXS) maps produced by the transition edge sensor supports the chemical analysis provided by XAS. The suppression of the diamond electronic structure as a function of SiO2 thickness was observed, and the Auger electron escape depth was modeled using the NIST database for the Simulation of Electron Spectra for Surface Analysis (SESSA) to support our experimental results. Researchers using high-pressure high temperature (HPHT) NDs or any alcohol-terminated material (metal oxides, oxidized silicon carbide or cubic-boron nitride) for quantum sensing applications may exploit these results to design new core-shell quantum sensors with base-catalyzed reactions and metal oxide precursors

    Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    No full text
    We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λ<sub>excit</sub> = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed
    • 

    corecore