25 research outputs found

    Laparoscopic Inguinal Hernia Repair; Comparison between the Major Techniques: TEP and TAPP

    Get PDF
    Introduction: Laparoscopic inguinal hernia repair made an important revolutionary stage in hernia management and with the accumulative knowledge and experience it is becoming the gold standard way of inguinal hernia repair. The choice of approach to the laparoscopic repair of inguinal hernia is controversial. There is a scarcity of data comparing the laparoscopic transabdominal preperitoneal (TAPP) approach with the laparoscopic totally extraperitoneal (TEP) approach and questions remain about their relative merits and risks

    Molecular diagnosis of three outbreaks during three successive years (2018, 2019, and 2020) of Lumpy skin disease virus in cattle in Sharkia Governorate, Egypt

    Get PDF
    Background: Lumpy skin disease (LSD) is endemic in Egypt despite the Egyptian authorities’ annual mass vaccination of cattle with sheeppox vaccine (Veterinary Serum and Vaccine Research Institute, Egypt), and the LSD virus (LSDV) continues to thrive practically every summer. The disease has a huge economic impact on the trade of the animal and its by-product.Aim: This paper study the molecular characterization of LSDV strains that have been circulating in Sharkia Governorate, Egypt, for three successive years (2018, 2019, and 2020).Methods: A total of 61 specimens (26 skin nodules and 35 oculonasal swabs) were collected from a clinic in the hospital of veterinary medicine, Zagazig University, during the summer months (July, August, and September) of three outbreaks in 2018, 2019, and 2020. These were examined by polymerase chain reaction (PCR) based on the open reading frame 103 (ORF103) gene to confirm the suspected cases and determine the degree of homology between the three different outbreaks during three successive years between each other and between the derived sequences of GenBank.Results: Cattle is thought to be infected with LSDV due to the presence of scattered local or diffuse circumscribed skin nodules along with fever and lymph node enlargement and sometimes leg edema. The PCR approach proved rapid, sensitive, and specific for the detection of LSDV and confirmative diagnosis of the disease. Forty-six were detected to be positive by PCR (75.4%). The seven sequenced samples were translated to amino acid and registered in GenBank under accession number MW357655-MW357661. A single nucleotide mutation and amino acid variation were observed at positions 161 C (2020)/T (2018&2019) and consequently, a change in the amino acid at position 54 P (2020)/L (2018&2019) between the outbreak in 2020 and those in 2018 and 2019, respectively. The field LSDV isolates from Egypt cattle were more closely related to other LSDV sequences from Africa (Kenya), Asia, Europe, and the United States.These findings highlight the necessity of ongoing surveillance and characterization of circulating strains and the need to improve procedures for distinguishing vaccine strains from field viruses

    The effect of caffeine on some indicators of bone metabolism in rats

    Get PDF
    The propose of this article is to evaluate the effect of caffeine on some indicators of bone metabolism in rats by biochemical measurement of minerals, bone densitometry and histometry. Forty eight Wistar albino male rats, age 6-8 weeks and weighing 100±0.11 g were randomly divided into four groups (12 rats each). Each group of animals received balanced diet; the second, third and fourth groups received pure caffeine dissolved in distilled water with different oral doses (0.35, 0.43 and 50 mg/day) for 12 constitutive weeks. Blood samples were withdrawn at 3, 6, 9 and 12 weeks. Serum and urinary calcium, phosphorus, magnesium and caffeine were estimated. Bone density and bone length were measured. Bone minerals were also estimated. The data revealed that the bone density was significantly decreased (p ≤ 0.05) in the fourth set (1.05±0.10 g/cm3) for right femur rats. The length of right femur increased with more doses of caffeine and it was highly significant in the fourth group (3.40±0.12cm). The proportion of each calcium, phosphors and magnesium in bone ash was significantly lower (p ≤ 0.05). Serum levels of calcium, phosphors and magnesium were decreased with increasing the dose over time. The levels of urinary calcium and magnesium were increased significantly (p ≤ 0.05) in group 4, but phosphors was raised (p ≤ 0.05) in all groups. In conclusion, intakes of caffeine in amounts >300 mg/dl significantly affected the quantitative composition of the bone and this finding lead to be at a greater risk for bone loss. These results suggested that appropriate lifestyle changes to conserve bone mineral density (BMD) by reducing the consumption of caffeine and need further studies to elucidate the mechanism that caffeine effects on bone metabolism

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Molecular diagnosis of three outbreaks during three successive years (2018, 2019, and 2020) of Lumpy skin disease virus in cattle in Sharkia Governorate, Egypt

    Get PDF
    Background: Lumpy skin disease (LSD) is endemic in Egypt despite the Egyptian authorities’ annual mass vaccination of cattle with sheeppox vaccine (Veterinary Serum and Vaccine Research Institute, Egypt), and the LSD virus (LSDV) continues to thrive practically every summer. The disease has a huge economic impact on the trade of the animal and its by-product. Aim: This paper study the molecular characterization of LSDV strains that have been circulating in Sharkia Governorate, Egypt, during 3 successive years (2018, 2019, and 2020). Methods: A total of 61 specimens (26 skin nodules and 35 oculonasal swabs) were collected from a clinic in the hospital of veterinary medicine, Zagazig University, during the summer months (July, August, and September) of three outbreaks in 2018, 2019, and 2020. These were examined by polymerase chain reaction (PCR) based on open reading frame 103 (ORF103) gene to confirm the suspected cases and determine the degree of homology between the three different outbreaks during 3 successive years between each other and between the derived sequences of GenBank. Results: Cattle is thought to be infected with LSDV due to the presence of scattered local or diffuse circumscribed skin nodules along with fever and lymph node enlargement and sometimes leg edema. The PCR approach proved rapid, sensitive, and specific for the detection of the LSDV and confirmative diagnosis of disease. Forty-six were detected to be positive by PCR (75.4%). The seven sequenced samples were translated to amino acid and registered in GenBank under accession number MW357655-MW357661. A single nucleotide mutation and amino acid variation were observed at positions 161 C (2020)/T (2018&2019) and consequently, change in amino acid at position 54 P (2020) /L (2018&2019) between the outbreak in 2020 and those in 2018 and 2019, respectively. The field LSDV isolates from Egypt cattle were more closely related to other LSDV sequences from Africa (Kenya), Asia, Europe, and the United States. Conclusion: These findings highlight the necessity of ongoing surveillance and characterization of circulating strains and the need to improve procedures for distinguishing vaccine strains from field viruses

    The Impact of Co Doping and Annealing Temperature on the Electrochemical Performance and Structural Characteristics of SnO2 Nanoparticulate Photoanodes

    No full text
    Obtaining H2 energy from H2O using the most abundant solar radiation is an outstanding approach to zero pollution. This work focuses on studying the effect of Co doping and calcination on the structure, morphology, and optical properties of spin-coated SnO2 films as well as their photoelectrochemical (PEC) efficiency. The structures and morphologies of the films were investigated by XRD, AFM, and Raman spectra. The results confirmed the preparation of SnO2 of the rutile phase, with crystallite sizes in the range of 18.4–29.2 nm. AFM showed the granular structure and smooth surfaces having limited roughness. UV-Vis spectroscopy showed that the absorption spectra depend on the calcination temperature and the Co content, and the films have optical bandgap (Eg) in the range of 3.67–3.93 eV. The prepared samples were applied for the PEC hydrogen generation after optimizing the sample doping ratio, using electrolyte (HCl, Na2SO4, NaOH), electrode reusability, applied temperature, and monochromatic illumination. Additionally, the electrode stability, thermodynamic parameters, conversion efficiency, number of hydrogen moles, and PEC impedance were evaluated and discussed, while the SnO2 films were used as working electrodes and platinum sheet as an auxiliary or counter electrode (2-electrode system) and both were dipped in the electrolyte. The highest photocurrent (21.25 mA/cm2), number of hydrogen moles (20.4 mmol/h.cm2), incident photon-to-current change efficiency (6.892%@307 nm and +1 V), and the absorbed photon-to-current conversion efficiency (4.61% at ~500 nm and +1 V) were recorded for the 2.5% Co-doped SnO2 photoanode that annealed at 673 K

    The Influence of Electrode Thickness on the Structure and Water Splitting Performance of Iridium Oxide Nanostructured Films

    No full text
    For a safe environment, humanity should be oriented towards renewable energy technology. Water splitting (WS), utilizing a photoelectrode with suitable thickness, morphology, and conductivity, is essential for efficient hydrogen production. In this report, iridium oxide (IrOx) films of high conductivity were spin-cast on glass substrates. FE-SEM showed that the films are of nanorod morphology and different thicknesses. UV-Vis spectra indicated that the absorption and reflectance of the films depend on their thickness. The optical band gap (Eg) was increased from 2.925 eV to 3.07 eV by varying the spin speed (SS) of the substrates in a range of 1.5 × 103–4.5 × 103 rpm. It was clear from the micro-Raman spectra that the films were amorphous. The Eg vibrational mode of Ir–O stretching was red-shifted from 563 cm−1 (for the rutile IrO2 single crystal) to 553 cm−1. The IrOx films were used to develop photoelectrochemical (PEC) hydrogen production catalysts in 0.5M of sodium sulfite heptahydrate Na2SO3·7H2O (2-electrode system), which exhibits higher hydrogen evaluation (HE) reaction activity, which is proportional to the thickness and absorbance of the used IrOx photocathode, as it showed an incident photon-to-current efficiency (IPCE%) of 7.069% at 390 nm and −1 V. Photocurrent density (Jph = 2.38 mA/cm2 at −1 V vs. platinum) and PEC hydrogen generation rate (83.68 mmol/ h cm2 at 1 V) are the best characteristics of the best electrode (the thickest and most absorbent IrOx photocathode). At −1 V and 500 nm, the absorbed photon-to-current conversion efficiency (APCE%) was 7.84%. Electrode stability, thermodynamic factors, solar-to-hydrogen conversion efficiency (STH), and electrochemical impedance spectroscopies (EISs) were also studied

    Design and Characterization of Zeolite/Serpentine Nanocomposite Photocatalyst for Solar Hydrogen Generation

    No full text
    In this work, a low-cost, high-yield hydrothermal treatment was used to produce nanozeolite (Zeo), nanoserpentine (Serp), and Zeo/Serp nanocomposites with weight ratios of 1:1 and 2:1. At 250 °C for six hours, the hydrothermal treatment was conducted. Various methods are used to explore the morphologies, structures, compositions, and optical characteristics of the generated nanostructures. The morphological study revealed structures made of nanofibers, nanorods, and hybrid nanofibril/nanorods. The structural study showed clinoptilolite monoclinic zeolite and antigorite monoclinic serpentine with traces of talcum mineral and carbonates. As a novel photoelectrochemical catalyst, the performance of the Zeo/Serp (2:1) composite was evaluated for solar hydrogen generation from water splitting relative to its constituents. At −1 V, the Zeo/Serp (2:1) composite produced a maximum current density of 8.44 mA/g versus 7.01, 6.74, and 6.6 mA/g for hydrothermally treated Zeo/Serp (1:1), Zeo, and Serp, respectively. The Zeo/Serp (2:1) photocatalysts had a solar-to-hydrogen conversion efficiency (STH) of 6.5% and an estimated hydrogen output rate of 14.43 mmole/h.g. Consequently, the current research paved the way for low-cost photoelectrochemical catalytic material for efficient solar hydrogen production by water splitting

    Chemical Review of Gorgostane-Type Steroids Isolated from Marine Organisms and Their <sup>13</sup>C-NMR Spectroscopic Data Characteristics

    No full text
    Gorgostane steroids are isolated from marine organisms and consist of 30 carbon atoms with a characteristic cyclopropane moiety. From the pioneering results to the end of 2021, isolation, biosynthesis, and structural elucidation using 13C-NMR will be used. Overall, 75 compounds are categorized into five major groups: gorgost-5-ene, 5,6-epoxygorgostane, 5,6-dihydroxygorgostane, 9,11-secogorgostane, and 23-demethylgorgostane, in addition to miscellaneous gorgostane. The structural diversity, selectivity for marine organisms, and biological effects of gorgostane steroids have generated considerable interest in the field of drug discovery research
    corecore