9 research outputs found

    A Comparative Analysis of Clinical Characteristics and Laboratory Findings of COVID-19 between Intensive Care Unit and Non-Intensive Care Unit Pediatric Patients: A Multicenter, Retrospective, Observational Study from Iranian Network for Research in Viral

    Get PDF
    Introduction: To date, little is known about the clinical features of pediatric COVID-19 patients admitted to intensive care units (ICUs). Objective: Herein, we aimed to describe the differences in demographic characteristics, laboratory findings, clinical presentations, and outcomes of Iranian pediatric COVID-19 patients admitted to ICU versus those in non-ICU settings. Methods: This multicenter investigation involved 15 general and pediatrics hospitals and included cases with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection based on positive real-time reverse transcription polymerase chain reaction (RT-PCR) admitted to these centers between March and May 2020, during the initial peak of the COVID-19 pandemic in Iran. Results: Overall, 166 patients were included, 61 (36.7%) of whom required ICU admission. The highest number of admitted cases to ICU were in the age group of 1–5 years old. Malignancy and heart diseases were the most frequent underlying conditions. Dyspnea was the major symptom for ICU-admitted patients. There were significant decreases in PH, HCO3 and base excess, as well as increases in creatinine, creatine phosphokinase (CPK), lactate dehydrogenase (LDH), and potassium levels between ICU-admitted and non-ICU patients. Acute respiratory distress syndrome (ARDS), shock, and acute cardiac injury were the most common features among ICU-admitted patients. The mortality rate in the ICU-admitted patients was substantially higher than non-ICU cases (45.9% vs. 1.9%, respectively; p<0.001). Conclusions: Underlying diseases were the major risk factors for the increased ICU admissions and mortality rates in pediatric COVID-19 patients. There were few paraclinical parameters that could differentiate between pediatrics in terms of prognosis and serious outcomes of COVID-19. Healthcare providers should consider children as a high-risk group, especially those with underlying medical conditions

    Archaeogenetic analysis of Neolithic sheep from Anatolia suggests a complex demographic history since domestication

    Get PDF
    Yurtman, ozer, Yuncu et al. provide an ancient DNA data set to demonstrate the impact of human activity on the demographic history of domestic sheep. The authors demonstrate that there may have been multiple domestication events with notable changes to the gene pool of European and Anatolian sheep since the Neolithic. Sheep were among the first domesticated animals, but their demographic history is little understood. Here we analyzed nuclear polymorphism and mitochondrial data (mtDNA) from ancient central and west Anatolian sheep dating from Epipaleolithic to late Neolithic, comparatively with modern-day breeds and central Asian Neolithic/Bronze Age sheep (OBI). Analyzing ancient nuclear data, we found that Anatolian Neolithic sheep (ANS) are genetically closest to present-day European breeds relative to Asian breeds, a conclusion supported by mtDNA haplogroup frequencies. In contrast, OBI showed higher genetic affinity to present-day Asian breeds. These results suggest that the east-west genetic structure observed in present-day breeds had already emerged by 6000 BCE, hinting at multiple sheep domestication episodes or early wild introgression in southwest Asia. Furthermore, we found that ANS are genetically distinct from all modern breeds. Our results suggest that European and Anatolian domestic sheep gene pools have been strongly remolded since the Neolithic

    Recent Advances in Cellulose-Based Structures as the Wound-Healing Biomaterials: A Clinically Oriented Review

    No full text
    Application of wound-healing/dressing biomaterials is amongst the most promising approaches for wound repair through protection from pathogen invasion/contamination, maintaining moisture, absorbing exudates, modulating inflammation, and facilitating the healing process. A wide range of materials are used to fabricate wound-healing/dressing biomaterials. Active wound-healing/dressings are next-generation alternatives for passive biomaterials, which provide a physical barrier and induce different biological activities, such as antibacterial, antioxidant, and proliferative effects. Cellulose-based biomaterials are particularly promising due to their tunable physical, chemical, mechanical, and biological properties, accessibility, low cost, and biocompatibility. A thorough description and analysis of wound-healing/dressing structures fabricated from cellulose-based biomaterials is discussed in this review. We emphasize and highlight the fabrication methods, applied bioactive molecules, and discuss the obtained results from in vitro and in vivo models of cellulose-based wound-healing biomaterials. This review paper revealed that cellulose-based biomaterials have promising potential as the wound-dressing/healing materials and can be integrated with various bioactive agents. Overall, cellulose-based biomaterials are shown to be effective and sophisticated structures for delivery applications, safe and multi-customizable dressings, or grafts for wound-healing applications

    Multi-targeting of K-Ras domains and mutations by peptide and small molecule inhibitors.

    No full text
    K-Ras activating mutations are significantly associated with tumor progression and aggressive metastatic behavior in various human cancers including pancreatic cancer. So far, despite a large number of concerted efforts, targeting of mutant-type K-Ras has not been successful. In this regard, we aimed to target this oncogene by a combinational approach consisting of small peptide and small molecule inhibitors. Based on a comprehensive analysis of structural and physicochemical properties of predominantly K-Ras mutants, an anti-cancer peptide library and a small molecule library were screened to simultaneously target oncogenic mutations and functional domains of mutant-type K-Ras located in the P-loop, switch I, and switch II regions. The selected peptide and small molecule showed notable binding affinities to their corresponding binding sites, and hindered the growth of tumor cells carrying K-RasG12D and K-RasG12C mutations. Of note, the expression of K-Ras downstream genes (i.e., CTNNB1, CCND1) was diminished in the treated Kras-positive cells. In conclusion, our combinational platform signifies a new potential for blockade of oncogenic K-Ras and thereby prevention of tumor progression and metastasis. However, further validations are still required regarding the in vitro and in vivo efficacy and safety of this approach

    Archaeogenetic analysis of Neolithic sheep from Anatolia suggests a complex demographic history since domestication

    Get PDF
    Sheep were among the first domesticated animals, but their demographic history is little understood. Here we analyzed nuclear polymorphism and mitochondrial data (mtDNA) from ancient central and west Anatolian sheep dating from Epipaleolithic to late Neolithic, comparatively with modern-day breeds and central Asian Neolithic/Bronze Age sheep (OBI). Analyzing ancient nuclear data, we found that Anatolian Neolithic sheep (ANS) are genetically closest to present-day European breeds relative to Asian breeds, a conclusion supported by mtDNA haplogroup frequencies. In contrast, OBI showed higher genetic affinity to present-day Asian breeds. These results suggest that the east-west genetic structure observed in present-day breeds had already emerged by 6000 BCE, hinting at multiple sheep domestication episodes or early wild introgression in southwest Asia. Furthermore, we found that ANS are genetically distinct from all modern breeds. Our results suggest that European and Anatolian domestic sheep gene pools have been strongly remolded since the Neolithic
    corecore