48 research outputs found

    Estimation of multi-state life table functions and their variability from complex survey data using the SPACE Program

    Get PDF
    The multistate life table (MSLT) model is an important demographic method to document life cycle processes. In this study, we present the SPACE (Stochastic Population Analysis for Complex Events) program to estimate MSLT functions and their sampling variability. It has several advantages over other programs, including the use of microsimulation and the bootstrap method to estimate the sampling variability. Simulation enables researchers to analyze a broader array of statistics than the deterministic approach, and may be especially advantageous in investigating distributions of MSLT functions. The bootstrap method takes sample design into account to correct the potential bias in variance estimates.bootstrap, health expectancy, multi-state life table, population aging

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Dual combination therapy versus long-acting bronchodilators alone for chronic obstructive pulmonary disease (COPD) : A systematic review and network meta-analysis

    Get PDF
    Background: Long-acting bronchodilators such as long-acting β-agonist (LABA), long-acting muscarinic antagonist (LAMA), and LABA/inhaled corticosteroid (ICS) combinations have been used in people with moderate to severe chronic obstructive pulmonary disease (COPD) to control symptoms such as dyspnoea and cough, and prevent exacerbations. A number of LABA/LAMA combinations are now available for clinical use in COPD. However, it is not clear which group of above mentioned inhalers is most effective or if any specific formulation works better than the others within the same group or class. Objectives: To compare the efficacy and safety of available formulations from four different groups of inhalers (i.e. LABA/LAMA combination, LABA/ICS combination, LAMA and LABA) in people with moderate to severe COPD. The review will update previous systematic reviews on dual combination inhalers and long-acting bronchodilators to answer the questions described above using the strength of a network meta-analysis (NMA). Search methods: We identified studies from the Cochrane Airways Specialised Register, which contains several databases. We also conducted a search of ClinicalTrials.gov and manufacturers' websites. The most recent searches were conducted on 6 April 2018. Selection criteria: We included randomised controlled trials (RCTs) that recruited people aged 35 years or older with a diagnosis of COPD and a baseline forced expiratory volume in one second (FEV1) of less than 80% of predicted. We included studies of at least 12 weeks' duration including at least two active comparators from one of the four inhaler groups. Data collection and analysis: We conducted NMAs using a Bayesian Markov chain Monte Carlo method. We considered a study as high risk if recruited participants had at least one COPD exacerbation within the 12 months before study entry and as low risk otherwise. Primary outcomes were COPD exacerbations (moderate to severe and severe), and secondary outcomes included symptom and quality-of-life scores, safety outcomes, and lung function. We collected data only for active comparators and did not consider placebo was not considered. We assumed a class/group effect when a fixed-class model fitted well. Otherwise we used a random-class model to assess intraclass/group differences. We supplemented the NMAs with pairwise meta-analyses. Main results: We included a total of 101,311 participants from 99 studies (26 studies with 32,265 participants in the high-risk population and 73 studies with 69,046 participants in the low-risk population) in our systematic review. The median duration of studies was 52 weeks in the high-risk population and 26 weeks in the low-risk population (range 12 to 156 for both populations). We considered the quality of included studies generally to be good. The NMAs suggested that the LABA/LAMA combination was the highest ranked treatment group to reduce COPD exacerbations followed by LAMA in the both populations. There is evidence that the LABA/LAMA combination decreases moderate to severe exacerbations compared to LABA/ICS combination, LAMA, and LABA in the high-risk population (network hazard ratios (HRs) 0.86 (95% credible interval (CrI) 0.76 to 0.99), 0.87 (95% CrI 0.78 to 0.99), and 0.70 (95% CrI 0.61 to 0.8) respectively), and that LAMA decreases moderate to severe exacerbations compared to LABA in the high- and low-risk populations (network HR 0.80 (95% CrI 0.71 to 0.88) and 0.87 (95% CrI 0.78 to 0.97), respectively). There is evidence that the LABA/LAMA combination reduces severe exacerbations compared to LABA/ICS combination and LABA in the high-risk population (network HR 0.78 (95% CrI 0.64 to 0.93) and 0.64 (95% CrI 0.51 to 0.81), respectively). There was a general trend towards a greater improvement in symptom and quality-of-life scores with the combination therapies compared to monotherapies, and the combination therapies were generally ranked higher than monotherapies. The LABA/ICS combination was the lowest ranked in pneumonia serious adverse events (SAEs) in both populations. There is evidence that the LABA/ICS combination increases the odds of pneumonia compared to LAMA/LABA combination, LAMA and LABA (network ORs: 1.69 (95% CrI 1.20 to 2.44), 1.78 (95% CrI 1.33 to 2.39), and 1.50 (95% CrI 1.17 to 1.92) in the high-risk population and network or pairwise OR: 2.33 (95% CI 1.03 to 5.26), 2.02 (95% CrI 1.16 to 3.72), and 1.93 (95% CrI 1.29 to 3.22) in the low-risk population respectively). There were significant overlaps in the rank statistics in the other safety outcomes including mortality, total, COPD, and cardiac SAEs, and dropouts due to adverse events. None of the differences in lung function met a minimal clinically important difference criterion except for LABA/LAMA combination versus LABA in the high-risk population (network mean difference 0.13 L (95% CrI 0.10 to 0.15). The results of pairwise meta-analyses generally agreed with those of the NMAs. There is no evidence to suggest intraclass/group differences except for lung function at 12 months in the high-risk population. Authors' conclusions: The LABA/LAMA combination was the highest ranked treatment group to reduce COPD exacerbations although there was some uncertainty in the results. LAMA containing inhalers may have an advantage over those without a LAMA for preventing COPD exacerbations based on the rank statistics. Combination therapies appear more effective than monotherapies for improving symptom and quality-of-life scores. ICS-containing inhalers are associated with an increased risk of pneumonia. Our most comprehensive review including intraclass/group comparisons, free combination therapies, 99 studies, and 20 outcomes for each high- and low-risk population summarises the current literature and could help with updating existing COPD guidelines

    The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons

    Get PDF
    To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences

    Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types

    Get PDF
    Protein ubiquitination is a dynamic and reversibleprocess of adding single ubiquitin molecules orvarious ubiquitin chains to target proteins. Here,using multidimensional omic data of 9,125 tumorsamples across 33 cancer types from The CancerGenome Atlas, we perform comprehensive molecu-lar characterization of 929 ubiquitin-related genesand 95 deubiquitinase genes. Among them, we sys-tematically identify top somatic driver candidates,including mutatedFBXW7with cancer-type-specificpatterns and amplifiedMDM2showing a mutuallyexclusive pattern withBRAFmutations. Ubiquitinpathway genes tend to be upregulated in cancermediated by diverse mechanisms. By integratingpan-cancer multiomic data, we identify a group oftumor samples that exhibit worse prognosis. Thesesamples are consistently associated with the upre-gulation of cell-cycle and DNA repair pathways, char-acterized by mutatedTP53,MYC/TERTamplifica-tion, andAPC/PTENdeletion. Our analysishighlights the importance of the ubiquitin pathwayin cancer development and lays a foundation fordeveloping relevant therapeutic strategies

    The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma

    Get PDF
    corecore