2,531 research outputs found

    Efficacy of different antifouling treatments for seawater cooling systems

    Get PDF
    In an industrial seawater cooling system, the effects of three different antifouling treatments, viz. sodium hypochlorite (NaClO), aliphatic amines (Mexel1432) and UV radiation, on the characteristics of the fouling formed were evaluated. For this study a portable pilot plant, as a side-stream monitoring system and seawater cooling system, was employed. The pilot plant simulated a power plant steam condenser, having four titanium tubes under different treatment patterns, where fouling progression could be monitored. The nature of the fouling obtained was chiefly inorganic, showing a clear dependence on the antifouling treatment employed. After 72 days the tubes under treatment showed a reduction in the heat transfer resistance (R) of around 70% for NaClO, 48% for aliphatic amines and 55% for UV, with respect to the untreated tube. The use of a logistic model was very useful for predicting the fouling progression and the maximum asymptotic value of the increment in the heat transfer resistance (DRmax). The apparent thermal conductivity (l) of the fouling layer showed a direct relationship with the percentage of organic matter in the collected fouling. The characteristics and mode of action of the different treatments used led to fouling with diverse physicochemical properties

    Anaerobic biodegradation of oleic and palmitic acids : evidence of mass transfer limitations caused by long chain fatty acid accumulation onto the anaerobic sludge

    Get PDF
    Palmitic acid was the main long chain fatty acids (LCFA) that accumulated onto the anaerobic sludge when oleic acid was fed to an EGSB reactor. The conversion between oleic and palmitic acid was linked to the biological activity. When palmitic acid was fed to an EGSB reactor it represented also the main LCFA that accumulated onto the sludge. The way of palmitic acid accumulation was different in the oleic and in the palmitic acid fed reactors.Whenoleic acid was fed, the biomass-associated LCFA (83% as palmitic acid) were mainly adsorbed and entrapped in the sludge that became ‘‘encapsulated’’ by an LCFA layer. However, when palmitic acid was fed, the biomass-associated LCFA (the totality as palmitic acid) was mainly precipitated in white spots like precipitates in between the sludge, which remained ‘‘non-encapsulated.’’ The two sludges were compared in terms of the specific methanogenic activity (SMA) in the presence of acetate, propionate, butyrate, and H2CO2, before and after the mineralization of similar amounts of biomassassociated LCFA (4.6 and 5.2 g COD-LCFA/g of volatile suspended solids (VSS), for the oleic and palmitic acid fed sludge, respectively). The ‘‘non-encapsulated,’’ sludge exhibited a considerable initial methanogenic activity on all the tested substrates, with the single exception of butyrate. However, with the ‘‘encapsulated’’ sludge only methane production from ethanol andH2/CO2 was detected, after a lag phase of about 50 h. After mineralization of the biomass-associated LCFA, both sludges exhibited activities of similar order of magnitude in the presence of the same individual substrates and significantly higher than before. The results evidenced that LCFA accumulation onto the sludge can create a physical barrier and hinder the transfer of substrates and products, inducing a delay on the initial methane production. Whatever the mechanism, metabolic or physical, that is behind this inhibition, it is reversible, being eliminated after the depletion of the biomass-associated LCFA.Fundação para a Ciência e Tecnologia (FCT) Fundo Social Europeu (FSE

    Phycoremediation of municipal wastewater by microalgae to produce biofuel

    Get PDF
    Municipal wastewater (WW), if not properly remediated, poses a threat to the environment and human health by carrying significant loads of nutrients and pathogens. These contaminants pollute rivers, lakes and natural reservoirs where they cause eutrophication and pathogen-mediated diseases. However, the high nutrient content of WW makes it an ideal environment for remediation with microalgae that require high nutrient concentrations for growth and are not susceptible to toxins and pathogens. Given that an appropriate algal strain is used for remediation, the incurred biomass can be refined for the production of biofuel. Four microalgal species (Chlamydomonas reinhardtii, Chlorella sp., Parachlorella kessleri-I and Nannochloropsis gaditana) were screened for efficient phycoremediation of municipal WW and potential use for biodiesel production. Among the four strains tested, P. kessleri-I showed the highest growth rate and biomass production in 100% WW. It efficiently removed all major nutrients with a removal rate of up to 98% for phosphate after ten days of growth in 100% municipal WW collected from Delhi. The growth of P. kessleri-I in WW resulted in a 50% increase of biomass and a 115% increase of lipid content in comparison to growth in control media. The FAME and fuel properties of lipids isolated from cells grown in WW complied with international standards. The present study provides evidence that the green alga P. kessleri-I effectively remediates municipal WW and can be used to produce biodiesel

    Effect of filter media thickness on the performance of sand drying beds used for faecal sludge management

    Get PDF
    The effect of sand filter media thickness on the performance of faecal sludge (FS) drying beds was determined in terms of: dewatering time, contaminant load removal efficiency, solids generation rate, nutrient content and helminth eggs viability in the dried sludge. A mixture of VIP-latrine sludge and septage in the ratio 1:2 was dewatered using three pilot-scale sludge drying beds with sand media thicknesses of 150 mm, 250 mm and 350 mm. Five dewatering cycles were conducted and monitored for each drying bed. Although 150 mm filter had the shortest average dewatering time of 3.65 days followed by 250 mm and 350 mm filters with 3.83 and 4.02 days, respectively, there was no significant difference ( p > 0.05) attributable to filter media thickness configurations. However, there was a significant difference for the percolate contaminant loads in the removal and recovery efficiency of suspended solids, total solids, total volatile solids, nitrogen species, total phosphorus, COD, DCOD and BOD, with the highest removal efficiency for each parameter achieved by 350 mm filter. There were also significant differences in the nutrient content (NPK) and helminth eggs viability of the solids generated by the tested filters. Filtering media configurations similar to 350 mm have the greatest potential for optimising nutrient recovery from FS

    Sodium dodecyl sulfate allows the persistence and recovery of biofilms of Pseudomonas fluorescens formed under different hydrodynamic conditions

    Get PDF
    The effect of the anionic surfactant sodium dodecyl sulfate (SDS) on Pseudomonas fluorescens biofilms was investigated using flow cell reactors with stainless steel substrata, under turbulent (Re=5200) and laminar (Re=2000) flow. Steady-state biofilms were exposed to SDS in single doses (0.5, 1, 3 and 7 mM) and biofilm respiratory activity and mass measured at 0, 3, 7 and 12 h after the SDS application. The effect of SDS on biofilm mechanical stability was assessed using a rotating bioreactor. Whilst high concentrations (7 mM) of SDS promoted significant biofilm inactivation, it did not significantly reduce biofouling. Turbulent and laminar flow-generated biofilms had comparable susceptibility to SDS application. Following SDS exposure, biofilms rapidly recovered over the following 12 h, achieving higher respiratory activity values than before treatment. This phenomenon of posttreatment recovery was more pronounced for turbulent flow-generated biofilms, with an increase in SDS concentration. The mechanical stability of the biofilms increased with surfactant application, except for SDS concentrations near the critical micellar concentration, as measured by biofilm removal due to an increase in external shear stress forces. The data suggest that although SDS exerts antimicrobial action against P. fluorescens biofilms, even if only partial and reversible, it had only limited antifouling efficacy, increasing biofilm mechanical stability at low concentrations and allowing significant and rapid recovery of turbulent flow-generated biofilms.Fundação para a Ciência e a Tecnologia (FCT

    Chemical simulation of greywater

    Get PDF
    Sustainable water resources management attracts considerable attention in today’s world. Recycling and reuse of both wastewater and greywater are becoming more attractive. The strategy is to protect ecosystem services by balancing the withdrawal of water and the disposal of wastewater. In the present study, a timely and novel synthetic greywater composition has been proposed with respect of the composition of heavy metals, nutrients and organic matter. The change in water quality of the synthetic greywater due to increasing storage time was monitored to evaluate the stability of the proposed chemical formula. The new greywater is prepared artificially using analytical grade chemicals to simulate either low (LC) or high (HC) pollutant concentrations. The characteristics of the synthetic greywater were tested (just before starting the experiment, after two days and a week of storage under real weather conditions) and compared to those reported for real greywater. Test results for both synthetic greywater types showed great similarities with the physiochemical properties of published findings concerning real greywater. Furthermore, the synthetic greywater is relatively stable in terms of its characteristics for different storage periods. However, there was a significant (p<0.05) reduction in 5-day biochemical oxygen demand (BOD5) for both low (LC) and high (HC) concentrations of greywater after two days of storage with reductions of 62% and 55%, respectively. A significant (p<0.05) change was also noted for the reduction (70%) of nitrate‒nitrogen (NO3‒N) concerning HC greywater after seven days of storage

    Long-term acclimation of anaerobic sludges for high-rate methanogenesis from LCFA

    Get PDF
    Inhibition of methanogens by long chain fatty acids (LCFA) and the low numbers of LCFA-degrading bacteria are limitations to exploit biogas production from fat-rich wastewaters. Generally reactors fail due to excessive LCFA accumulation onto the sludge. Here, long-term acclimation and bioaugmentation with a LCFA-degrading coculture were hypothesized as strategies to enhance methanogenic conversion of these compounds. Anaerobic sludges previously exposed to LCFA for more than 100 days converted a specific biomass-associated substrate of (3.2 ± 0.1) kg·kg−1 with very short lag phases (<1 day), whereas non-acclimated sludges showed lag phases of 11–15 days for metabolizing (1.6–1.8) kg·kg−1. Addition of a coculture of Syntrophomonas zehnderi and Methanobacterium formicicum to sludges previously loaded with LCFA and containing different amounts of biomass-associated substrate (from (0.5–3.2) kg·kg−1) did not improve methane production neither lag phases were shortened, indicating that the endogenous microbiota are not a limiting factor. Clearly, we show that long-term sludge acclimation to LCFA is essential for high rate methanogenesis from LCFA.The authors acknowledge the financial support by the European Regional Development Fund - ERDF, through the Operational Program Thematic Factors of Competitiveness - COMPETE, and by Portuguese funds, through the Portuguese Foundation for Science and Technology (FCT), in the frame of the project FCOMP-01-0124-FEDER-014784. FCT Strategic Project PEst-OE/EQB/LA0023/2013 is also acknowledged. A.J. Cavaleiro thanks FCT for the post-doctoral fellowship ref. SFRH/BPD/75247/2010. A.J.M. Stams has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. [323009]
    corecore