The effect of the anionic surfactant sodium dodecyl sulfate (SDS) on Pseudomonas fluorescens biofilms was
investigated using flow cell reactors with stainless steel substrata, under turbulent (Re=5200) and laminar
(Re=2000) flow. Steady-state biofilms were exposed to SDS in single doses (0.5, 1, 3 and 7 mM) and biofilm
respiratory activity and mass measured at 0, 3, 7 and 12 h after the SDS application. The effect of SDS on biofilm
mechanical stability was assessed using a rotating bioreactor. Whilst high concentrations (7 mM) of SDS promoted
significant biofilm inactivation, it did not significantly reduce biofouling. Turbulent and laminar flow-generated
biofilms had comparable susceptibility to SDS application. Following SDS exposure, biofilms rapidly recovered over
the following 12 h, achieving higher respiratory activity values than before treatment. This phenomenon of posttreatment
recovery was more pronounced for turbulent flow-generated biofilms, with an increase in SDS
concentration. The mechanical stability of the biofilms increased with surfactant application, except for SDS
concentrations near the critical micellar concentration, as measured by biofilm removal due to an increase in external
shear stress forces. The data suggest that although SDS exerts antimicrobial action against P. fluorescens biofilms,
even if only partial and reversible, it had only limited antifouling efficacy, increasing biofilm mechanical stability at
low concentrations and allowing significant and rapid recovery of turbulent flow-generated biofilms.Fundação para a Ciência e a Tecnologia (FCT