23 research outputs found

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Five insights from the Global Burden of Disease Study 2019

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a rules-based synthesis of the available evidence on levels and trends in health outcomes, a diverse set of risk factors, and health system responses. GBD 2019 covered 204 countries and territories, as well as first administrative level disaggregations for 22 countries, from 1990 to 2019. Because GBD is highly standardised and comprehensive, spanning both fatal and non-fatal outcomes, and uses a mutually exclusive and collectively exhaustive list of hierarchical disease and injury causes, the study provides a powerful basis for detailed and broad insights on global health trends and emerging challenges. GBD 2019 incorporates data from 281 586 sources and provides more than 3.5 billion estimates of health outcome and health system measures of interest for global, national, and subnational policy dialogue. All GBD estimates are publicly available and adhere to the Guidelines on Accurate and Transparent Health Estimate Reporting. From this vast amount of information, five key insights that are important for health, social, and economic development strategies have been distilled. These insights are subject to the many limitations outlined in each of the component GBD capstone papers.Peer reviewe

    Discovery of causal mechanisms: Oxidative phosphorylation and the Calvin-Benson cycle

    Get PDF
    We investigate the context of discovery of two significant achievements of 20th century biochemistry: the chemiosmotic mechanism of oxidative phosphorylation (proposed in 1961 by Peter Mitchell) and the dark reaction of photosynthesis (elucidated from 1946 to 1954 by Melvin Calvin and Andrew A. Benson). The pursuit of these problems involved discovery strategies such as the transfer, recombination and reversal of previous causal and mechanistic knowledge in biochemistry. We study the operation and scope of these strategies by careful historical analysis, reaching a number of systematic conclusions: 1) Even basic strategies can illuminate "hard cases" of scientific discovery that go far beyond simple extrapolation or analogy; 2) the causal-mechanical approach to discovery permits a middle course between the extremes of a completely substrate-neutral and a completely domain-specific view of scientific discovery; 3) the existing literature on mechanism discovery underemphasizes the role of combinatorial approaches in defining and exploring search spaces of possible problem solutions; 4) there is a subtle interplay between a fine-grained mechanistic and a more coarse-grained causal level of analysis, and both are needed to make discovery processes intelligible
    corecore