40 research outputs found

    A narrowly spaced double-seismic zone in the subducting Nazca plate

    Get PDF
    High-precision relocations of intermediate-depth earthquakes (80–130 km) below the Central Andes reveal a fine-scale double-layered Wadati-Benioff zone (WBZ). Upper and lower band of seismicity are separated by about 9 km and occur at the top of the oceanic crust and in the uppermost oceanic mantle, respectively. Analysis of focal mechanisms and waveform similarities indicate that fluid processes are causing the events. Earthquakes in the oceanic crust occur on pre-existing normal faults due to hydraulic embrittlement from metamorphic dehydration, and on subvertical faults that connect the two layers in a narrow depth range. Extensional faulting predominates in both layers, indicating that slab pull forces are the dominant stress source superseding possible unbending forces in this segment of the Nazca plate

    Regional and teleseismic double-difference earthquake relocation using waveform cross-correlation and global bulletin data

    Get PDF
    We have developed a double-difference algorithm to relocate earthquakes recorded at global seismic networks, using differential arrival times for first and later arriving regional and global phases to invert for the vectors connecting the hypocenters. Differential times are formed from global seismic bulletins and are accurately measured on similar seismograms by time domain waveform cross correlation. We evaluate the performance of this spherical, multiphase double-difference algorithm using three-dimensional regional-scale synthetic data and two sets of earthquake data in different tectonic settings. The first includes 3783 intermediate depth earthquakes that occurred between 1964 and 2000 in the subducting Nazca plate beneath northern Chile, where the relocated seismicity confirms a narrowly spaced double seismic zone previously imaged with temporary local seismic data. Residual statistics and comparison with accurately known locations indicate mean relative location errors at the 90% confidence level of 2.4 km laterally and 1.8 km vertically. Later events typically constrained by cross-correlation data have errors of 1.6 km laterally and 1.4 km vertically. The second data set includes 75 crustal earthquakes in the 1999 Izmit and Düzce, Turkey, aftershock sequences, where the double-difference solutions image orientation and dip of individual fault segments that are consistent with focal mechanisms and near-surface information. Fault complexity likely causes a low level of waveform similarity in this aftershock sequence and thus generates fewer correlated events compared to the Chile earthquakes. Differences between the double-difference locations and corresponding locations in global seismicity catalogs (Earthquake Data Report, EDR; International Seismological Centre, ISC; Engdahl-Hilst-Buland, EHB) are typically greater than 10 km. We evaluate the potential of cross-correlation and double-difference methods to improve hypocenter locations on a global scale

    Asperities and barriers on the seismogenic zone in North Chile: state-of-the-art after the 2007 Mw 7.7 Tocopilla earthquake inferred by GPS and InSAR data

    Get PDF
    The Mw 7.7 2007 November 14 earthquake had an epicentre located close to the city of Tocopilla, at the southern end of a known seismic gap in North Chile. Through modelling of Global Positioning System (GPS) and radar interferometry (InSAR) data, we show that this event ruptured the deeper part of the seismogenic interface (30–50 km) and did not reach the surface. The earthquake initiated at the hypocentre and was arrested ~150 km south, beneath the Mejillones Peninsula, an area already identified as an important structural barrier between two segments of the Peru–Chile subduction zone. Our preferred models for the Tocopilla main shock show slip concentrated in two main asperities, consistent with previous inversions of seismological data. Slip appears to have propagated towards relatively shallow depths at its southern extremity, under the Mejillones Peninsula. Our analysis of post-seismic deformation suggests that small but still significant post-seismic slip occurred within the first 10 d after the main shock, and that it was mostly concentrated at the southern end of the rupture. The post-seismic deformation occurring in this period represents ~12–19 per cent of the coseismic deformation, of which ~30–55 per cent has been released aseismically. Post-seismic slip appears to concentrate within regions that exhibit low coseismic slip, suggesting that the afterslip distribution during the first month of the post-seismic interval complements the coseismic slip. The 2007 Tocopilla earthquake released only ~2.5 per cent of the moment deficit accumulated on the interface during the past 130 yr and may be regarded as a possible precursor of a larger subduction earthquake rupturing partially or completely the 500-km-long North Chile seismic gap
    corecore