248 research outputs found

    Wavelength-scale stationary-wave integrated Fourier-transform spectrometry

    Get PDF
    Spectrometry is a general physical-analysis approach for investigating light-matter interactions. However, the complex designs of existing spectrometers render them resistant to simplification and miniaturization, both of which are vital for applications in micro- and nanotechnology and which are now undergoing intensive research. Stationary-wave integrated Fourier-transform spectrometry (SWIFTS)-an approach based on direct intensity detection of a standing wave resulting from either reflection (as in the principle of colour photography by Gabriel Lippmann) or counterpropagative interference phenomenon-is expected to be able to overcome this drawback. Here, we present a SWIFTS-based spectrometer relying on an original optical near-field detection method in which optical nanoprobes are used to sample directly the evanescent standing wave in the waveguide. Combined with integrated optics, we report a way of reducing the volume of the spectrometer to a few hundreds of cubic wavelengths. This is the first attempt, using SWIFTS, to produce a very small integrated one-dimensional spectrometer suitable for applications where microspectrometers are essential

    Mental health care for irregular migrants in Europe: Barriers and how they are overcome

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Solvothermal Synthesis and Characterization of Chalcopyrite CuInSe2 Nanoparticles

    Get PDF
    The ternary I-III-VI2 semiconductor of CuInSe2 nanoparticles with controllable size was synthesized via a simple solvothermal method by the reaction of elemental selenium powder and CuCl as well as InCl3 directly in the presence of anhydrous ethylenediamine as solvent. X-ray diffraction patterns and scanning electron microscopy characterization confirmed that CuInSe2 nanoparticles with high purity were obtained at different temperatures by varying solvothermal time, and the optimal temperature for preparing CuInSe2 nanoparticles was found to be between 180 and 220 °C. Indium selenide was detected as the intermediate state at the initial stage during the formation of pure ternary compound, and the formation of copper-related binary phase was completely deterred in that the more stable complex [Cu(C2H8N2)2]+ was produced by the strong N-chelation of ethylenediamine with Cu+. These CuInSe2 nanoparticles possess a band gap of 1.05 eV calculated from UV–vis spectrum, and maybe can be applicable to the solar cell devices

    Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging

    Get PDF
    Diffractive imaging, in which image-forming optics are replaced by an inverse computation using scattered intensity data, could, in principle, realize wavelength-scale resolution in a transmission electron microscope. However, to date all implementations of this approach have suffered from various experimental restrictions. Here we demonstrate a form of diffractive imaging that unshackles the image formation process from the constraints of electron optics, improving resolution over that of the lens used by a factor of five and showing for the first time that it is possible to recover the complex exit wave (in modulus and phase) at atomic resolution, over an unlimited field of view, using low-energy (30 keV) electrons. Our method, called electron ptychography, has no fundamental experimental boundaries: further development of this proof-of-principle could revolutionize sub-atomic scale transmission imaging

    Subtle effects of environmental stress observed in the early life stages of the Common frog, Rana temporaria

    Get PDF
    Worldwide amphibian populations are declining due to habitat loss, disease and pollution. Vulnerability to environmental contaminants such as pesticides will be dependent on the species, the sensitivity of the ontogenic life stage and hence the timing of exposure and the exposure pathway. Herein we investigated the biochemical tissue ‘fingerprint’ in spawn and early-stage tadpoles of the Common frog, Rana temporaria, using attenuated total reflection- Fourier-transform infrared (ATR-FTIR) spectroscopy with the objective of observing differences in the biochemical constituents of the respective amphibian tissues due to varying water quality in urban and agricultural ponds. Our results demonstrate that levels of stress (marked by biochemical constituents such as glycogen that are involved in compensatory metabolic mechanisms) can be observed in tadpoles present in the pond most impacted by pollution (nutrients and pesticides), but large annual variability masked any inter-site differences in the frog spawn. ATR-FTIR spectroscopy is capable of detecting differences in tadpoles that are present in selected ponds with different levels of environmental perturbation and thus serves as a rapid and cost effective tool in assessing stress-related effects of pollution in a vulnerable class of organism

    Recombinant prion protein induces a new transmissible prion disease in wild-type animals

    Get PDF
    Prion disease is a neurodegenerative malady, which is believed to be transmitted via a prion protein in its abnormal conformation (PrPSc). Previous studies have failed to demonstrate that prion disease could be induced in wild-type animals using recombinant prion protein (rPrP) produced in Escherichia coli. Here, we report that prion infectivity was generated in Syrian hamsters after inoculating full-length rPrP that had been converted into the cross-β-sheet amyloid form and subjected to annealing. Serial transmission gave rise to a disease phenotype with highly unique clinical and neuropathological features. Among them were the deposition of large PrPSc plaques in subpial and subependymal areas in brain and spinal cord, very minor lesioning of the hippocampus and cerebellum, and a very slow progression of disease after onset of clinical signs despite the accumulation of large amounts of PrPSc in the brain. The length of the clinical duration is more typical of human and large animal prion diseases, than those of rodents. Our studies establish that transmissible prion disease can be induced in wild-type animals by inoculation of rPrP and introduce a valuable new model of prion diseases

    Analysis of Virion Structural Components Reveals Vestiges of the Ancestral Ichnovirus Genome

    Get PDF
    Many thousands of endoparasitic wasp species are known to inject polydnavirus (PDV) particles into their caterpillar host during oviposition, causing immune and developmental dysfunctions that benefit the wasp larva. PDVs associated with braconid and ichneumonid wasps, bracoviruses and ichnoviruses respectively, both deliver multiple circular dsDNA molecules to the caterpillar. These molecules contain virulence genes but lack core genes typically involved in particle production. This is not completely unexpected given that no PDV replication takes place in the caterpillar. Particle production is confined to the wasp ovary where viral DNAs are generated from proviral copies maintained within the wasp genome. We recently showed that the genes involved in bracovirus particle production reside within the wasp genome and are related to nudiviruses. In the present work we characterized genes involved in ichnovirus particle production by analyzing the components of purified Hyposoter didymator Ichnovirus particles by LC-MS/MS and studying their organization in the wasp genome. Their products are conserved among ichnovirus-associated wasps and constitute a specific set of proteins in the virosphere. Strikingly, these genes are clustered in specialized regions of the wasp genome which are amplified along with proviral DNA during virus particle replication, but are not packaged in the particles. Clearly our results show that ichnoviruses and bracoviruses particles originated from different viral entities, thus providing an example of convergent evolution where two groups of wasps have independently domesticated viruses to deliver genes into their hosts

    Antipsychotic prescribing for vulnerable populations: a clinical audit at an acute Australian mental health unit at two-time points

    Get PDF
    Background: Antipsychotics are recognised as a critical intervention for schizophrenia and bipolar disorder. Guidelines globally endorse the routine practice of antipsychotic monotherapy, at the minimum effective dose. Even in treatmentresistant schizophrenia, clozapine use is endorsed before combining antipsychotics. This aim of this study was to review antipsychotic polytherapy alone, high-dose therapy alone, polytherapy and highdose prescribing patterns in adults discharged from an inpatient mental health unit at two time-points, and the alignment of this prescribing with clinical guideline recommendations. Additionally, associations with polytherapy and high-dose antipsychotic prescribing, including patient and clinical characteristics, were explored. Methods: A retrospective clinical audit of 400 adults (200 patients at two different time-points) discharged with at least one antipsychotic. Preliminary findings and education sessions were provided to physicians between Cohorts. Outcomes (polytherapy alone, high-dose therapy alone, polytherapy and high-dose therapy) were compared between study Cohorts using chi-squared and rank-sum tests. Associations between outcomes and covariates were assessed using multivariable logistic regression. Results: Most patients (62.5%) were discharged on a single antipsychotic within the recommended dose range. There was a clear preference for prescribing second generation antipsychotics, and in this respect, prescribing is aligned with current evidence-based guidelines. However, sub-optimal prescribing practices were identified for both Cohorts in relation to polytherapy and high-dose antipsychotic rates. Involuntary treatment, frequent hospitalisations and previous clozapine use significantly increased the risk of all three prescribing outcomes at discharge. Conclusions: In a significant minority, antipsychotic prescribing did not align with clinical guidelines despite increased training, indicating that the education program alone was ineffective at positively influencing antipsychotic prescribing practices. Further consideration should be given when prescribing antipsychotics for involuntary patients, people with frequent hospitalisations, and those who have previously trialled clozapine

    Spontaneous Abortion and Preterm Labor and Delivery in Nonhuman Primates: Evidence from a Captive Colony of Chimpanzees (Pan troglodytes)

    Get PDF
    Preterm birth is a leading cause of perinatal mortality, yet the evolutionary history of this obstetrical syndrome is largely unknown in nonhuman primate species.We examined the length of gestation during pregnancies that occurred in a captive chimpanzee colony by inspecting veterinary and behavioral records spanning a total of thirty years. Upon examination of these records we were able to confidently estimate gestation length for 93 of the 97 (96%) pregnancies recorded at the colony. In total, 78 singleton gestations resulted in live birth, and from these pregnancies we estimated the mean gestation length of normal chimpanzee pregnancies to be 228 days, a finding consistent with other published reports. We also calculated that the range of gestation in normal chimpanzee pregnancies is approximately forty days. Of the remaining fifteen pregnancies, only one of the offspring survived, suggesting viability for chimpanzees requires a gestation of approximately 200 days. These fifteen pregnancies constitute spontaneous abortions and preterm deliveries, for which the upper gestational age limit was defined as 2 SD from the mean length of gestation (208 days).The present study documents that preterm birth occurred within our study population of captive chimpanzees. As in humans, pregnancy loss is not uncommon in chimpanzees, In addition, our findings indicate that both humans and chimpanzees show a similar range of normal variation in gestation length, suggesting this was the case at the time of their last common ancestor (LCA). Nevertheless, our data suggest that whereas chimpanzees' normal gestation length is ∼20-30 days after reaching viability, humans' normal gestation length is approximately 50 days beyond the estimated date of viability without medical intervention. Future research using a comparative evolutionary framework should help to clarify the extent to which mechanisms at work in normal and preterm parturition are shared in these species
    corecore