331 research outputs found
Ghrelin causes hyperphagia and obesity in rats.
Ghrelin, a circulating growth hormone–releasing pep-tide derived from the stomach, stimulates food intake. The lowest systemically effective orexigenic dose of ghrelin was investigated and the resulting plasma ghre-lin concentration was compared with that during fast-ing. The lowest dose of ghrelin that produced a significant stimulation of feeding after intraperitoneal injection was 1 nmol. The plasma ghrelin concentration after intraperitoneal injection of 1 nmol of ghrelin (2.83 0.13 pmol/ml at 60 min postinjection) was not significantly different from that occurring after a 24-h fast (2.79 0.32 pmol/ml). After microinjection into defined hypothalamic sites, ghrelin (30 pmol) stimu-lated food intake most markedly in the arcuate nucleus (Arc) (0–1 h food intake, 427 43 % of control; P <
Six-year changes in body mass index and cardiorespiratory fitness of English schoolchildren from an affluent area
We compared values of body mass index (BMI) and cardiorespiratory fitness (20 m shuttle-run test) of n=157 boys and n=150 girls aged 10-11 measured in 2014 with measures from 2008 and 1998. Boys' fitness was lower (d=0.68) in 2014 than 2008, despite a small (d=0.37) decline in BMI. Girl's BMI changed trivially (d=0.08) but cardiorespiratory fitness was lower (d=0.47) in 2014 than 2008. This study suggests fitness is declining at 0.95% per year, which exceeds the 0.8% rate of decline we reported between 1998 and 2008 and is double the global average of 0.43%. Declines in fitness were independent of changes in BMI suggesting continued reductions in English children's habitual physical activity levels
Inhibition of Y1 receptor signaling improves islet transplant outcome
Failure to secrete sufficient quantities of insulin is a pathological feature of type-1 and type-2 diabetes, and also reduces the success of islet cell transplantation. Here we demonstrate that Y1 receptor signaling inhibits insulin release in β-cells, and show that this can be pharmacologically exploited to boost insulin secretion. Transplanting islets with Y1 receptor deficiency accelerates the normalization of hyperglycemia in chemically induced diabetic recipient mice, which can also be achieved by short-term pharmacological blockade of Y1 receptors in transplanted mouse and human islets. Furthermore, treatment of non-obese diabetic mice with a Y1 receptor antagonist delays the onset of diabetes. Mechanistically, Y1 receptor signaling inhibits the production of cAMP in islets, which via CREB mediated pathways results in the down-regulation of several key enzymes in glycolysis and ATP production. Thus, manipulating Y1 receptor signaling in β-cells offers a unique therapeutic opportunity for correcting insulin deficiency as it occurs in the pathological state of type-1 diabetes as well as during islet transplantation.Islet transplantation is considered one of the potential treatments for T1DM but limited islet survival and their impaired function pose limitations to this approach. Here Loh et al. show that the Y1 receptor is expressed in β- cells and inhibition of its signalling, both genetic and pharmacological, improves mouse and human islet function.info:eu-repo/semantics/publishe
Variations of training load, monotony, and strain and dose-response relationships with maximal aerobic speed, maximal oxygen uptake, and isokinetic strength in professional soccer players
This study aimed to identify variations in weekly training load, training monotony, and training strain across a 10-week period (during both, pre- and in-season phases); and to analyze the dose-response relationships between training markers and maximal aerobic speed (MAS), maximal oxygen uptake, and isokinetic strength. Twenty-seven professional soccer players (24.9±3.5 years old) were monitored across the 10-week period using global positioning system units. Players were also tested for maximal aerobic speed, maximal oxygen uptake, and isokinetic strength before and after 10 weeks of training. Large positive correlations were found between sum of training load and extension peak torque in the right lower limb (r = 0.57, 90%CI[0.15;0.82]) and the ratio agonist/antagonist in the right lower limb (r = 0.51, [0.06;0.78]). It was observed that loading measures fluctuated across the period of the study and that the load was meaningfully associated with changes in the fitness status of players. However, those magnitudes of correlations were small-to-large, suggesting that variations in fitness level cannot be exclusively explained by the accumulated load and loading profile
Sodium bicarbonate and high-intensity-cycling capacity: variability in responses
Purpose: The aim of this study was to determine whether gastrointestinal (GI) distress affects the ergogenicity of sodium bicarbonate and whether the degree of alkalaemia or other metabolic responses are different between individuals who improve exercise capacity and those who do not. Methods: Twenty-one males completed two cycling capacity tests at 110% of maximum power output. Participants were supplemented with 0.3 g∙kg-1BM of either placebo (maltodextrin) or sodium bicarbonate (SB). Blood pH, bicarbonate, base excess and lactate were determined at baseline, pre-exercise, immediately post-exercise and 5 minutes post-exercise. Results: SB supplementation did not significantly increase total work done (TWD) (P = 0.16, 46.8 ± 9.1 vs. 45.6 ± 8.4 kJ, d = 0.14), although magnitude based inferences suggested a 63% likelihood of a positive effect. When data were analysed without four participants who experienced GI discomfort, TWD (P = 0.01) was significantly improved with SB. Immediately post-exercise blood lactate was higher in SB for the individuals who improved but not for those who didn’t. There were also differences in the pre to post-exercise change in blood pH, bicarbonate and base excess between individuals who improved and individuals who did not. Conclusions: SB improved high intensity cycling capacity, but only with the exclusion of participants experiencing GI discomfort. Differences in blood responses suggest that sodium bicarbonate may not be beneficial to all individuals. Magnitude based inferences suggested that the exercise effects are unlikely to be negative; therefore individuals should determine whether they respond well to sodium bicarbonate supplementation prior to competition
Activity profiles of elite wheelchair rugby players during competition
To quantify the activity profiles of elite wheelchair rugby and establish classification-specific arbitrary speed zones. Additionally, indicators of fatigue during full matches were explored. Methods: Seventy-five elite wheelchair rugby players from eleven national teams were monitored using a radio-frequency based, indoor tracking system across two international tournaments. Players who participated in complete quarters (n = 75) and full matches (n = 25) were included and grouped by their International Wheelchair Rugby Federation functional classification: group I (0-0.5), II (1.0-1.5), III (2.0-2.5) and IV (3.0-3.5). Results: During a typical quarter, significant increases in total distance (m), relative distance (m·minˉ¹), and mean speed (m·sˉ¹) were associated with an increase in classification group (P < 0.001), with the exception of group III and IV. However, group IV players achieved significantly higher peak speeds (3.82 ± 0.31 m·sˉ¹) than groups I (2.99 ± 0.28 m·sˉ¹), II (3.44 ± 0.26 m·sˉ¹) and III (3.67 ± 0.32 m·sˉ¹). Groups I and II differed significantly in match intensity during very low/low speed zones and the number of high-intensity activities in comparison with groups III and IV (P < 0.001). Full match analysis revealed that activity profiles did not differ significantly between quarters. Conclusions: Notable differences in the volume of activity were displayed across the functional classification groups. However, the specific on-court requirements of defensive (I and II) and offensive (III and IV) match roles appeared to influence the intensity of match activities and consequently training prescription should be structured accordingly
Effect of β-alanine supplementation on 20 km cycling time trial performance
The effects of β-alanine supplementation on high-intensity cycling performance and capacity have been evaluated, although the effects on longer duration cycling performance are unclear. Nineteen UK category 1 male cyclists completed four 20 km cycling time trials, two before and two after supplementation with either 6.4 g•d -1 β-alanine (n = 10; BA) or a matched placebo (n = 9; P). Performance time for the 20 km time trial and 1 km split times were recorded. There was no significant effect of β-alanine supplementation on 20 km time trial performance (BA-pre 1943 ± 129 s; BA-post 1950 ± 147 s; P-pre 1989 ± 106 s; P-post 1986 ± 115 s) or on the performance of each 1 km split. The effect of β-alanine on 20 km time trial performance was deemed unclear as determined by magnitude based inferences. Supplementation with 6.4 g•d -1 of β-alanine for 4 weeks did not affect 20 km cycling time trial performance in well trained male cyclists
Effect of bilberry juice on indices of muscle damage and inflammation in runners completing a half-marathon: a randomised, placebo-controlled trial.
Background: Emerging evidence indicates that fruits rich in polyphenols may attenuate exercise-induced muscle damage and associated markers of inflammation and soreness. This study was conducted to determine whether bilberry juice (BJ), which is particularly rich in polyphenols, reduces markers of muscle damage in runners completing a half marathon.
Methods: A total of 21 recreationally trained runners (age 30.9 ± 10.4 y; mass 71.6 ± 11.0 kg; M=16; F=5) were recruited to a single blind, randomised, placebo-controlled, parallel study. Participants were block randomised to consume 2 x 200 ml of BJ or energy-matched control drink (PLA) for 5 d before the Sheffield Half Marathon, on race day, and for 2 days post-race. Measurements of delayed onset muscle soreness (DOMS), muscle damage (creatine kinase; CK) and inflammation (c-reactive protein ; CRP) were taken at baseline, pre-race, post-race, 24 h post-race and 48 h post-race. The effect of treatment on outcome measures was analysed using magnitude-based inferences based on data from 19 participants; 2 participants were excluded from the analyses because they did not provide samples for all time points.
Results: The half marathon caused elevations in DOMS, CRP and CK. BJ had a possibly harmful effect on DOMS from pre-race to immediately post-race (11.6%, 90% CI ± 14.7%), a likely harmful effect on CRP from pre-race to 24 h post-race (mean difference ES 0.56, 90% CI ± 0.72) and a possibly harmful effect on CRP from pre-race to 48 h post-race (ES 0.12, 90% CI ± 0.69). At other time points, the differences between the BJ and PLA groups in DOMS and CRP were unclear, possibly trivial or likely trivial. Differences in the changes in CK between BJ and PLA were unclear at every time point other than from baseline to pre-race, where BJ had a possibly harmful effect on reducing muscle damage (ES 0.23, 90% CI ± 0.57).
Conclusion: Despite being a rich source of antioxidant and anti-inflammatory phytochemicals, BJ evoked small to moderate increases in exercise-induced DOMS and CRP. Further larger studies are required to confirm these unexpected preliminary results
The influence of alkalosis on repeated high-intensity exercise performance and acid–base balance recovery in acute moderate hypoxic conditions
Purpose Exacerbated hydrogen cation (H⁺) production is suggested to be a key determinant of fatigue in acute hypoxic conditions. This study, therefore, investigated the effects of NaHCO3 ingestion on repeated 4 km TT cycling performance and post-exercise acid–base balance recovery in acute moderate hypoxic conditions. Methods Ten male trained cyclists completed four repeats of 2 × 4 km cycling time trials (TT1 and TT2) with 40 min passive recovery, each on different days. Each TT series was preceded by supplementation of one of the 0.2 g kg⁻¹ BM NaHCO3 (SBC2), 0.3 g kg⁻¹ BM NaHCO3 (SBC3), or a taste-matched placebo (0.07 g kg⁻¹ BM sodium chloride; PLA), administered in a randomized order. Supplements were administered at a pre-determined individual time to peak capillary blood bicarbonate concentration ([HCO3⁻]). Each TT series was also completed in a normobaric hypoxic chamber set at 14.5% FiO2 (~ 3000 m). Results Performance was improved following SBC3 in both TT1 (400.2 ± 24.1 vs. 405.9 ± 26.0 s; p = 0.03) and TT2 (407.2 ± 29.2 vs. 413.2 ± 30.8 s; p = 0.01) compared to PLA, displaying a very likely benefit in each bout. Compared to SBC2, a likely and possible benefit was also observed following SBC3 in TT1 (402.3 ± 26.5 s; p = 0.15) and TT2 (410.3 ± 30.8 s; p = 0.44), respectively. One participant displayed an ergolytic effect following SBC3, likely because of severe gastrointestinal discomfort, as SBC2 still provided ergogenic effects. Conclusion NaHCO3 ingestion improves repeated exercise performance in acute hypoxic conditions, although the optimal dose is likely to be 0.3 g kg⁻¹ BM
The Development of Functional Overreaching Is Associated with a Faster Heart Rate Recovery in Endurance Athletes
Purpose
The aim of the study was to investigate whether heart rate recovery (HRR) may represent an effective marker of functional overreaching (f-OR) in endurance athletes.
Methods and Results
Thirty-one experienced male triathletes were tested (10 control and 21 overload subjects) before (Pre), and immediately after an overload training period (Mid) and after a 2-week taper (Post). Physiological responses were assessed during an incremental cycling protocol to exhaustion, including heart rate, catecholamine release and blood lactate concentration. Ten participants from the overload group developed signs of f-OR at Mid (i.e. -2.1 ± 0.8% change in performance associated with concomitant high perceived fatigue). Additionally, only the f-OR group demonstrated a 99% chance of increase in HRR during the overload period (+8 ± 5 bpm, large effect size). Concomitantly, this group also revealed a >80% chance of decreasing blood lactate (-11 ± 14%, large), plasma norepinephrine (-12 ± 37%, small) and plasma epinephrine peak concentrations (-51 ± 22%, moderate). These blood measures returned to baseline levels at Post. HRR change was negatively correlated to changes in performance, peak HR and peak blood metabolites concentrations.
Conclusion
These findings suggest that i) a faster HRR is not systematically associated with improved physical performance, ii) changes in HRR should be interpreted in the context of the specific training phase, the athletes perceived level of fatigue and the performance response; and, iii) the faster HRR associated with f-OR may be induced by a decreased central commandand by a lower chemoreflex activity
- …
