566 research outputs found

    Innovative Metallic Microfluidic Device for Intensified Biodiesel Production

    Get PDF
    We present a strategy for intensified biodiesel production in a novel metallic microdevice. Additive manufacturing using Selective Laser Melting (SLM) was employed to build the metallic device consisting of multiple micro reactors monolithically integrated with multiple micro heat exchangers. This device allows high conversion rate of biodiesel production with concomitant use of the rejected heat from external source to enhance the reaction temperature and, thereby, its output. The biodiesel production was carried out using soybean oil, ethanol and NaOH as the catalyst. The influences of the reaction temperature and the residence time in the biodiesel production was examined. Biodiesel yield increased with the reaction temperature and a rate of conversion of 99.6% was achieved with a reactor residence time of less than 35 seconds. The work opens up a pathway to exploit waste heat to intensify biodiesel production and contribute significantly to global sustainability

    Collagen Type IV-Related Nephropathies in Portugal: Pathogenic COL4A5 Mutations and Clinical Characterization of 22 Families

    Get PDF
    Alport syndrome (AS) is caused by pathogenic mutations in the genes encoding α3, α4 or α5 chains of collagen IV (COL4A3/COL4A4/COL4A5), resulting in hematuria, chronic renal failure (CRF), sensorineural hearing loss (SNHL) and ocular abnormalities. Mutations in the X-linked COL4A5 gene have been identified in 85% of the families (XLAS). In this study, 22 of 60 probands (37%) of unrelated Portuguese families, with clinical diagnosis of AS and no evidence of autosomal inheritance, had pathogenic COL4A5 mutations detected by Sanger sequencing and/or multiplex-ligation probe amplification, of which 12 (57%) are novel. Males had more severe and earlier renal and extrarenal complications, but microscopic hematuria was a constant finding irrespective of gender. Nonsense and splice site mutations, as well as small and large deletions, were associated with younger age of onset of SNHL in males, and with higher risk of CRF and SNHL in females. Pathogenic COL4A3 or COL4A4 mutations were subsequently identified in more than half of the families without a pathogenic mutation in COL4A5. The lower than expected prevalence of XLAS in Portuguese families warrants the use of next-generation sequencing for simultaneous COL4A3/COL4A4/COL4A5 analysis, as first-tier approach to the genetic diagnosis of collagen type IV-related nephropathies.info:eu-repo/semantics/publishedVersio

    Quantitative image analysis for the characterization of microbial aggregates in biological wastewater treatment : a review

    Get PDF
    Quantitative image analysis techniques have gained an undeniable role in several fields of research during the last decade. In the field of biological wastewater treatment (WWT) processes, several computer applications have been developed for monitoring microbial entities, either as individual cells or in different types of aggregates. New descriptors have been defined that are more reliable, objective, and useful than the subjective and time-consuming parameters classically used to monitor biological WWT processes. Examples of this application include the objective prediction of filamentous bulking, known to be one of the most problematic phenomena occurring in activated sludge technology. It also demonstrated its usefulness in classifying protozoa and metazoa populations. In high-rate anaerobic processes, based on granular sludge, aggregation times and fragmentation phenomena could be detected during critical events, e.g., toxic and organic overloads. Currently, the major efforts and needs are in the development of quantitative image analysis techniques focusing on its application coupled with stained samples, either by classical or fluorescent-based techniques. The use of quantitative morphological parameters in process control and online applications is also being investigated. This work reviews the major advances of quantitative image analysis applied to biological WWT processes.The authors acknowledge the financial support to the project PTDC/EBB-EBI/103147/2008 and the grant SFRH/BPD/48962/2008 provided by Fundacao para a Ciencia e Tecnologia (Portugal)

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns
    corecore