43 research outputs found

    A comparative analysis of the Libyan national essential medicines list and the WHO model list of essential medicines

    Get PDF
    Aim and Objectives: To examine the concordance of the Libyan Pharmaceutical List of Essential Medicines (LPLEM) with the World Health Organization Model List of Essential Medicines 2009 (WMLEM 2009). Methods: The concordance between generic medicines listed in the WMLEM 2009 (standard reference list) and the LPLEM 2006 (comparator list) was evaluated. Results: The total number of Basic Essential Medicines (BEMs) listed on the WMLEM 2009 was 347. The total number of generic medicines listed on the LPLEM was 584. Although the LPLEM has more listed medicines, only 270 (77.6%) of BEMs from the WMLEM were listed as available. However, 25 of the 77 missing medicines were deemed to have appropriate alternatives. A total of 52 medicines from the WMLEM 2009 were therefore missing from the LPLEM. Discrepancies compared to the WMLEM 2009 were identified in 15 out of 29 therapeutic sections. The highest discrepancy rate from the WMLEM 2009 was in the anti-infective section (35 missing medicines). Missing BEMs were noted in many subclassifications of the anti-infective medicines section, but omissions were particularly prevalent in the antibacterial medicines subsection (11 missing medicines). Antituberculosis medications had the highest discrepancy rate for antibacterial BEMs with one-third of the single medicines recommended by the WHO in the WMLEM 2009 not listed on the LPLEM. Of the 314 additional medicines on the LPLEM, 18 were deemed to be irrational non-essential medicines. Conclusion: The LPLEM does not include several essential medicines recommended by the WHO in the WMLEM 2009. These discrepancies may have serious public health implications for management of some infectious diseases, particularly, tuberculosis and HIV

    Anticancer Effects of 15d-Prostaglandin-J2 in Wild-Type and Doxorubicin-Resistant Ovarian Cancer Cells: Novel Actions on SIRT1 and HDAC

    Get PDF
    15-deoxy-delta-12,14-prostaglandin-J2 (15d-PGJ2), an arachidonic metabolite and a natural PPARγ agonist, is known to induce apoptosis in tumor cells. In this study, we investigated new therapeutic potentials of 15d-PGJ2 by determining its anticancer effects in wild-type and doxorubicin-resistant ovarian carcinoma cells. Despite high expression of resistance-inducing genes like MDR1, Bcl2 and Bcl-xl, 15d-PGJ2 strongly induced apoptosis in doxorubicin-resistant (A2780/AD) cells similar to the wild-type (A2780). This was found to be related to caspase-3/7- and NF-κB pathways but not to its PPARγ agonistic activity. 15d-PGJ2 also was able to reduce the doxorubicin resistance of A2780/AD cells at low doses as confirmed by the inhibition of gene expression of MDR1 (p-glycoprotein) and SIRT1 (a drug senescence gene). We also investigated effects of 15d-PGJ2 on cell migration and transformation using a wound-healing assay and morphological analyses, respectively. We found that 15d-PGJ2 inhibited migration most likely due to NF-κB inhibition and induced transformation of the round-shape A2780/AD cells into elongated epithelial cells due to HDAC1 inhibition. Using a 15d-PGJ2 analog, we found the mechanism of action of these new activities of 15d-PGJ2 on SIRT1 and HDAC1 gene expressions and enzyme activities. In conclusion, the present study demonstrates that 15d-PGJ2 has a high therapeutic potential to kill drug-resistant tumor cells and, the newly described inhibitory effects of this cyclo-oxygenase product on SIRT1 and HDAC will provide new opportunities for cancer therapeutics

    Cancer risk in patients with Noonan syndrome carrying a PTPN11 mutation

    Get PDF
    Noonan syndrome (NS) is characterized by short stature, facial dysmorphisms and congenital heart defects. PTPN11 mutations are the most common cause of NS. Patients with NS have a predisposition for leukemia and certain solid tumors. Data on the incidence of malignancies in NS are lacking. Our objective was to estimate the cancer risk and spectrum in patients with NS carrying a PTPN11 mutation. In addition, we have investigated whether specific PTPN11 mutations result in an increased malignancy risk. We have performed a cohort study among 297 Dutch NS patients with a PTPN11 mutation (mean age 18 years). The cancer histories were collected from the referral forms for DNA diagnostics, and by consulting the Dutch national registry of pathology and the Netherlands Cancer Registry. The reported frequencies of cancer among NS patients were compared with the expected frequencies using population-based incidence rates. In total, 12 patients with NS developed a malignancy, providing a cumulative risk for developing cancer of 23% (95% confidence interval (CI), 8–38%) up to age 55 years, which represents a 3.5-fold (95% CI, 2.0–5.9) increased risk compared with that in the general population. Hematological malignancies occurred most frequently. Two malignancies, not previously observed in NS, were found: a malignant mastocytosis and malignant epithelioid angiosarcoma. No correlation was found between specific PTPN11 mutations and cancer occurrence. In conclusion, this study provides first evidence of an increased risk of cancer in patients with NS and a PTPN11 mutation, compared with that in the general population. Our data do not warrant specific cancer surveillance

    Regulation of polarized morphogenesis by protein kinase C iota in oncogenic epithelial spheroids.

    Get PDF
    Protein kinase C iota (PKCι), a serine/threonine kinase required for cell polarity, proliferation and migration, is commonly up- or downregulated in cancer. PKCι is a human oncogene but whether this is related to its role in cell polarity and what repertoire of oncogenes acts in concert with PKCι is not known. We developed a panel of candidate oncogene expressing Madin-Darby canine kidney (MDCK) cells and demonstrated that H-Ras, ErbB2 and phosphatidylinositol 3-kinase transformation led to non-polar spheroid morphogenesis (dysplasia), whereas MDCK spheroids expressing c-Raf or v-Src were largely polarized. We show that small interfering RNA (siRNA)-targeting PKCι decreased the size of all spheroids tested and partially reversed the aberrant polarity phenotype in H-Ras and ErbB2 spheroids only. This indicates distinct requirements for PKCι and moreover that different thresholds of PKCι activity are required for these phenotypes. By manipulating PKCι function using mutant constructs, siRNA depletion or chemical inhibition, we have demonstrated that PKCι is required for polarization of parental MDCK epithelial cysts in a 3D matrix and that there is a threshold of PKCι activity above and below which, disorganized epithelial morphogenesis results. Furthermore, treatment with a novel PKCι inhibitor, CRT0066854, was able to restore polarized morphogenesis in the dysplastic H-Ras spheroids. These results show that tightly regulated PKCι is required for normal-polarized morphogenesis in mammalian cells and that H-Ras and ErbB2 cooperate with PKCι for loss of polarization and dysplasia. The identification of a PKCι inhibitor that can restore polarized morphogenesis has implications for the treatment of Ras and ErbB2 driven malignancies.Cancer Research UK; Royal Marsden/Institute of Cancer Research National Institute for Health Research Biomedical Research Centre (M.L.)

    Models of care for musculoskeletal health: A cross-sectional qualitative study of Australian stakeholders' perspectives on relevance and standardised evaluation

    Get PDF
    Background: The prevalence and impact of musculoskeletal conditions are predicted to rapidly escalate in the coming decades. Effective strategies are required to minimise 'evidence-practice', 'burden-policy' and 'burden-service' gaps and optimise health system responsiveness for sustainable, best-practice healthcare. One mechanism by which evidence can be translated into practice and policy is through Models of Care (MoCs), which provide a blueprint for health services planning and delivery. While evidence supports the effectiveness of musculoskeletal MoCs for improving health outcomes and system efficiencies, no standardised national approach to evaluation in terms of their 'readiness' for implementation and 'success' after implementation, is yet available. Further, the value assigned to MoCs by end users is uncertain. This qualitative study aimed to explore end users' views on the relevance of musculoskeletal MoCs to their work and value of a standardised evaluation approach. Methods: A cross-sectional qualitative study was undertaken. Subject matter experts (SMEs) with health, policy and administration and consumer backgrounds were drawn from three Australian states. A semi-structured interview schedule was developed and piloted to explore perceptions about musculoskeletal MoCs including: i) aspects important to their work (or life, for consumers) ii) usefulness of standardised evaluation frameworks to judge 'readiness' and 'success' and iii) challenges associated with standardised evaluation. Verbatim transcripts were analysed by two researchers using a grounded theory approach to derive key themes. Results: Twenty-seven SMEs (n = 19; 70.4 % female) including five (18.5 %) consumers participated in the study. MoCs were perceived as critical for influencing and initiating changes to best-practice healthcare planning and delivery and providing practical guidance on how to implement and evaluate services. A 'readiness' evaluation framework assessing whether critical components across the health system had been considered prior to implementation was strongly supported, while 'success' was perceived as an already familiar evaluation concept. Perceived challenges associated with standardised evaluation included identifying, defining and measuring key 'readiness' and 'success' indicators; impacts of systems and context changes; cost; meaningful stakeholder consultation and developing a widely applicable framework. Conclusions: A standardised evaluation framework that includes a strong focus on 'readiness' is important to ensure successful and sustainable implementation of musculoskeletal MoCs

    Patient-derived xenograft (PDX) models in basic and translational breast cancer research

    Get PDF
    Patient-derived xenograft (PDX) models of a growing spectrum of cancers are rapidly supplanting long-established traditional cell lines as preferred models for conducting basic and translational preclinical research. In breast cancer, to complement the now curated collection of approximately 45 long-established human breast cancer cell lines, a newly formed consortium of academic laboratories, currently from Europe, Australia, and North America, herein summarizes data on over 500 stably transplantable PDX models representing all three clinical subtypes of breast cancer (ER+, HER2+, and "Triple-negative" (TNBC)). Many of these models are well-characterized with respect to genomic, transcriptomic, and proteomic features, metastatic behavior, and treatment response to a variety of standard-of-care and experimental therapeutics. These stably transplantable PDX lines are generally available for dissemination to laboratories conducting translational research, and contact information for each collection is provided. This review summarizes current experiences related to PDX generation across participating groups, efforts to develop data standards for annotation and dissemination of patient clinical information that does not compromise patient privacy, efforts to develop complementary data standards for annotation of PDX characteristics and biology, and progress toward "credentialing" of PDX models as surrogates to represent individual patients for use in preclinical and co-clinical translational research. In addition, this review highlights important unresolved questions, as well as current limitations, that have hampered more efficient generation of PDX lines and more rapid adoption of PDX use in translational breast cancer research

    Regions of Homozygosity in the Porcine Genome: Consequence of Demography and the Recombination Landscape

    Get PDF
    Inbreeding has long been recognized as a primary cause of fitness reduction in both wild and domesticated populations. Consanguineous matings cause inheritance of haplotypes that are identical by descent (IBD) and result in homozygous stretches along the genome of the offspring. Size and position of regions of homozygosity (ROHs) are expected to correlate with genomic features such as GC content and recombination rate, but also direction of selection. Thus, ROHs should be non-randomly distributed across the genome. Therefore, demographic history may not fully predict the effects of inbreeding. The porcine genome has a relatively heterogeneous distribution of recombination rate, making Sus scrofa an excellent model to study the influence of both recombination landscape and demography on genomic variation. This study utilizes next-generation sequencing data for the analysis of genomic ROH patterns, using a comparative sliding window approach. We present an in-depth study of genomic variation based on three different parameters: nucleotide diversity outside ROHs, the number of ROHs in the genome, and the average ROH size. We identified an abundance of ROHs in all genomes of multiple pigs from commercial breeds and wild populations from Eurasia. Size and number of ROHs are in agreement with known demography of the populations, with population bottlenecks highly increasing ROH occurrence. Nucleotide diversity outside ROHs is high in populations derived from a large ancient population, regardless of current population size. In addition, we show an unequal genomic ROH distribution, with strong correlations of ROH size and abundance with recombination rate and GC content. Global gene content does not correlate with ROH frequency, but some ROH hotspots do contain positive selected genes in commercial lines and wild populations. This study highlights the importance of the influence of demography and recombination on homozygosity in the genome to understand the effects of inbreeding

    Fine mapping the CETP region reveals a common intronic insertion associated to HDL-C

    Get PDF
    Background: Individuals with exceptional longevity and their offspring have significantly larger high-density lipoprotein concentrations (HDL-C) particle sizes due to the increased homozygosity for the I405V variant in the cholesteryl ester transfer protein (CETP) gene. In this study, we investigate the association of CETP and HDL-C further to identify novel, independent CETP variants associated with HDL-C in humans. Methods: We performed a meta-analysis of HDL-C within the CETP region using 59,432 individuals imputed with 1000 Genomes data. We performed replication in an independent sample of 47,866 individuals and validation was done by Sanger sequencing. Results: The meta-analysis of HDL-C within the CETP region identified five independent variants, including an exonic variant and a common intronic insertion. We replicated these 5 variants significantly in an independent sample of 47,866 individuals. Sanger sequencing of the insertion within a single family confirmed segregation of this variant. The strongest reported association between HDL-C and CETP variants, was rs3764261; however, after conditioning on the five novel variants we identified the support for rs3764261 was highly reduced (βunadjusted=3.179 mg/dl (P value=5.25×10−509), βadjusted=0.859 mg/dl (P value=9.51×10−25)), and this finding suggests that these five novel variants may partly explain the association of CETP with HDL-C. Indeed, three of the five novel variants (rs34065661, rs5817082, rs7499892) are independent of rs3764261. Conclusions: The causal variants in CETP that account for the association with HDL-C remain unknown. We used studies imputed to the 1000 Genomes reference panel for fine mapping of the CETP region. We identified and validated five variants within this region that may partly account for the association of the known variant (rs3764261), as well as other sources of genetic contribution to HDL-C

    Potentially Harmful Elements and Human Health.

    Get PDF
    corecore