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Abstract Potentially harmful elements, or more generally trace elements, are now
considered to be among the most effective environmental contaminants,
and their release into the environment is increasing since the last decades.
Metals released by different sources, both natural and anthropic, can be
dispersed in the environment and accumulated in plants and, ultimately,
in human body, causing serious health problems as intoxication,
neurological disturbances and also cancer. Widespread interest in trace
elements has risen as major scientific topic only over the last 50 years,
when it was realized that some elements were essential to human health
(e.g. Fe, Cu, Zn), whereas some others were toxic (e.g. As, Hg, Pb),
and likely responsible for serious human diseases, with frequent lethal
consequences.
Since that time, great progresses in knowledge of links between
environmental geochemistry and human health have been achieved, in
combination with epidemiology.
The effects of most trace metals on human health are not yet fully
understood, partly because of the interactions between them, and partly
because of the complex metabolic reactions in the human body. Despite
the copious research addressed to this topic, there is still a paucity of
quantitative information on the relations between elements in soils and
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human health. Much is known about the functions of most elements in
human body, but there is increasing evidence that the interactions among
them are more complex than originally thought. Uncertainty is still
prevailing, particularly with non essential elements that are “suspected”
to be harmful to humans.
The nonessential elements As, Cd, Hg, Pb have attracted most attention
worldwide, due to their toxicity towards living organisms. Other
elements (Al, B, Be, Bi, Co, Cr, Mn, Mo, Ni, Sb, Sn, Tl, V, W, Zn)
are likely harmful, but may play some beneficial functions not yet well
known, and should be more investigated.
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5Abstract Potentially harmful elements, or more generally trace elements, are now

6considered to be among the most effective environmental contaminants, and their

7release into the environment is increasing since the last decades. Metals released by

8different sources, both natural and anthropic, can be dispersed in the environment

9and accumulated in plants and, ultimately, in human body, causing serious health

10problems as intoxication, neurological disturbances and also cancer. Widespread

11interest in trace elements has risen as major scientific topic only over the last

1250 years, when it was realized that some elements were essential to human health

13(e.g. Fe, Cu, Zn), whereas some others were toxic (e.g. As, Hg, Pb), and likely

14responsible for serious human diseases, with frequent lethal consequences.

15Since that time, great progresses in knowledge of links between environmental

16geochemistry and human health have been achieved, in combination with

17epidemiology.

18The effects of most trace metals on human health are not yet fully understood,

19partly because of the interactions between them, and partly because of the complex

20metabolic reactions in the human body. Despite the copious research addressed to

21this topic, there is still a paucity of quantitative information on the relations

22between elements in soils and human health. Much is known about the functions

23of most elements in human body, but there is increasing evidence that the interac-

24tions among them are more complex than originally thought. Uncertainty is still

25prevailing, particularly with non essential elements that are “suspected” to be

26harmful to humans.
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27 The nonessential elements As, Cd, Hg, Pb have attracted most attention world-

28 wide, due to their toxicity towards living organisms. Other elements (Al, B, Be, Bi,

29 Co, Cr, Mn, Mo, Ni, Sb, Sn, Tl, V, W, Zn) are likely harmful, but may play some

30 beneficial functions not yet well known, and should be more investigated.

31 Keywords PHEs • Geomedicine • Human health • Toxicology • Carcinogenic

32 elements

33 1 Introduction

34 Chemical elements of both geogenic and anthropogenic origin are usually present

35 in large amounts in soils, sediments and waste materials which often contain

36 elevated concentrations of potentially harmful elements (PHEs) such as As, Cd,

37 Cr, Cu, Ni, Pb, Zn and others (Helios-Rybicka 1996; Lee et al. 2001; Navarro

38 et al. 2008). Heavy metals, in particular, are considered to be among the most

39 effective environmental contaminants, and their release into the environment is

40 increasing since the last decades. Metals released in the environment may result

41 from many different activities and sources and may enter into the environment by a

42 wide range of processes and pathways (Hassanien and El Shahawy 2011). They can

43 be transported, dispersed in the environment and accumulated in plants (Davies

44 1987; Alloway 1995, 2013), and then may pass, through the food chain, to human

45 people as the final consumer, causing serious health problems as intoxication,

46 neurological disturbances and also cancer (Bernard 1995, 2008; Steinnes 2009).

47 The metal-enriched areas, therefore, represent an ideal natural laboratory where

48 to study the processes in order to provide descriptive models of the interactions

49 between PHEs, the pedosphere, the biosphere and the hydrosphere. Environmental

50 threats arise when a certain amount of potentially harmful elements (PHEs) is

51 released in the surrounding areas and to waterways. Indeed, it is well known that

52 PHEs may have toxic effects on living organisms (microbes, plants and animals,

53 including humans). Depending on the nature of rocks and soils, a wide dispersion of

54 these PHEs both in solution and in particulate form is possible (Sivri et al. 2010).

55 Atmospheric emissions are probably the most harmful to the environment, and

56 consequently, to human health due to either the great quantity involved, or their

57 widespread dispersion which may originate many different exposure pathways. In

58 particular, three heavy metals (Hg, Pb and Cd) are of great concern to human health

59 and to the environment, mostly due to their ability to travel long distances in the

60 atmosphere before deposition (Hassanien and El Shahawy 2011).

61 It is generally recognized that environmental contamination with PHEs has

62 increased dramatically since the dawn of the Industrial Revolution (Nriagu 1979),

63 and the main receptor of contamination is soil. Soil is a complex system with

64 several functions, not only ecological, but also social and economic, and funda-

65 mental to living organisms, including human population ( AU2Moreno-Jimenez

66 et al. 2011). Yet, it is the primary source of several elements and substances that
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67humans intake with daily diet, and 98 % of food derives directly or indirectly from

68the soil (Coccioni 2011). Soil health, therefore, is of fundamental importance for

69human health, that is largely determined by mineral nutrition supplied by plants

70growing on soil: if a soil is contaminated, it is likely that also food crops are

71contaminated, posing potential concern to consumers.

72The main soil and land contamination sources are both natural (rock weathering

73and soil genesis) and anthropic (industrial) processes, mining activities, agricultural

74practices, vehicular traffic, atmospheric fallout; all these are responsible for the

75disposal on land of potentially toxic substances such as sewage sludge, fertilisers

76and pesticides, persistent organic pollutants (POPs), polycyclic aromatic hydrocar-

77bons (PAHs), polychlorobiphenils (PCBs) as well as heavy metals and other

78harmful chemicals.

79Besides local pollution episodes, the most significant world soil pollution events

80in the recent history date back to the last century. A relevant amount of methyl

81mercury was released by a chemical factory in Japan over a long period (1932–

821968), and entered the food chain determining acute poisoning by mercury to the

83local population, provoking severe neurological disturbance (Minamata disease). In

84the same years (1950), Cd-enriched wastewater from a mining plant was discharged

85on rice fields in Japan, determining chronic poisoning (itai-itai disease) with severe

86consequences in kidney functioning and bone deformation. A significant long-term

87contamination, lasting 15 years (1952–1966), occurred in the town of Hinkley

88(California, USA), where groundwater contaminated with Cr (VI)-rich wastewater

89from a chemical plant determined several cases of cancer to resident population.

90More recently (1976), an accident to the ICMESA chemical plant in Italy deter-

91mined the release of dioxin in the atmosphere, and successive fallout to soils of a

92large area in Lombardy, with ca 250 persons affected by chlorine dermatitis.

93Moreover, dioxin is a known highly teratogenic substance responsible for severe

94foetal malformation, with still relevant effects after more than 30 years (Coccioni

952011). At Bhopal (India), in 1984, 40 tons of methyl isocyanate were discharged

96from a chemical plant producing pesticides, provoking 10,000 victims, and the

97mortality is still higher in that area than in other parts of India.

98Besides possible lethal consequences to residential population, severe environ-

99mental accidents have occurred all over the world due to the discharge of chemicals

100on the land, in surface water or in the sea. Chromium-sludge discharged by leather

101tannery plants in the industrial district of Vicenza (Italy) has been shown to have

102contaminated hundred ha of agricultural land up to 10,000 mg kg�1 Cr (Bini

103et al. 2008). Petrol-chemical plants active at Porto Marghera (Venice, Italy) since

104the 1950s have been considered to be responsible for the contamination of the

105lagoon of Venice with several PHEs and organic chemicals (Bini 2008). The whole

106area has been classified as contaminated site of national interest, and a restoration

107project is ongoing. Heavy metals (As, Cd, Cr, Cu, Hg, Mn, Pb, Sb, Se, Zn) and

108organic compounds (PAH, PCB, Dioxin) have been identified as the main contam-

109inants, owing to agrochemicals and industrial wastes discharged on soils and

110convoyed to the lagoon, provoking water and sediment contamination, decreasing

111biodiversity and shellfish disappearance (Bini 2008 and references therein).
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112 In 1986, in the village of Schweizerhalle (Switzerland), 20 tons of herbicides and

113 pesticides were discharged in the Rhine river, contaminating dramatically the

114 whole area. In Italian territorial waters (Ionian sea), in 1974, the Yugoslavian

115 cargo Cavtat carrying 900 drums containing more than 250 tonnes of

116 Pb-tetramethyl and Pb-tetraethyl collided, and more than 20 tonnes were lost at a

117 depth of 100 m below the sea surface (Tiravanti et al. 1980). Minor environmental

118 effects were recorded 1 year afterwards.

119 Mining areas too are potential sources of severe environmental contamination

120 (Bini 2012; this volume, Chap. 5), and resident population in the vicinity of mine

121 sites is at high risk of suffering from serious diseases, with an elevated rate of

122 enteric tumours (Zhao et al. 2012). Mine spoils are often disposed (or have been in

123 the past), during active working periods, in the proximity of mine sites and

124 conterminous land, provoking frequent accidents. In 1998, in Spain, 5 M cubic

125 meters of highly contaminated sludge from a mining basin were convoyed to the

126 Guadalquivir river to save the local natural reserve. In 2000, in Rumania, a fracture

127 in a gold-mine dam determined outcome of more than 100,000 tons of mud

128 containing cyanide. Fortunately, in both cases no victims were recorded. More

129 recently, in 2010, the flotation basin of an aluminium plant ceased suddenly,

130 provoking the outcome of 1 M cubic meters of highly alkaline red mud containing

131 iron oxide and heavy metals in the Danube basin: it is estimated that this accident

132 has been one of the biggest environmental disaster in the world, that will have

133 important repercussions on human health for next decades (Coccioni 2011).

134 Perhaps the most known and impressive environmental disasters are those

135 provoked by nuclear accidents like Chernobyl and Fukushima. In 1986, April, a

136 reactor at the Chernobyl Nuclear power Plant in the former URSS (now Ukraine)

137 exploded. The Chernobyl accident determined the emission in the atmosphere of

138 about 85 PBq of radioactive materials, and the consequent fall-out of radioactive

139 particles to vegetation and soils of several European countries. Radionuclides, in

140 particular 137Cs, were released at low altitude (<1,500 m), and their spatial

141 distribution was strongly influenced by rainfall intensity and local topography. In

142 NE Italy (nearly 2,000 km from Ukraine), because of radioactive particulate, forage

143 for cattle was inhibited for some years, as well as fungi collection and cheese

144 production in the contaminated areas (Giovani et al. 1991). The consequences of the

145 accident on human health, particularly in Ukraine and Russia, were (and still are)

146 very impressive: although the official report indicates only 65 persons dead, and

147 possibly 4,000 affected by cancer and leukaemia, an estimate of presumable deaths

148 related to the accident indicates tens thousands to millions of victims (Coccioni

149 2011).

150 At Fukushima, Japan, in 2011, March, a strong earthquake followed by a very

151 anomalous ocean wave (tsunami) determined the breakdown of the Nuclear Power

152 Plant, and the release of radiation in the atmosphere at a rate of 900PBq, with

153 radiation levels exceeding the annual limits over a distance of 60 km. As of June,

154 2013, the exact chain of events was not known. The total amount of radiation

155 released is also not known, and the likely number of deaths cannot be determined

156 with the information available. Authorities spoke of two persons of the plant
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157personnel who died; however, one might expect around 1,000 extra cancer deaths

158related to the disaster.

159Other nuclear fatalities occurred elsewhere in the world, and it was reported by

160newspapers that globally more than 300 patients receiving treatment for different

161cancer forms suffered radiation injuries, and at least eight died for over-exposition

162by 60Co.

1631.1 Soils and Human Health

164The connection between soils and human health is still little recognized by general

165population. Also the medical profession, as pointed out so far by Voisin (1959), has

166largely ignored soils in their efforts to improve human health, but soil science

167should be the foundation of preventive medicine, as stated by Brevik (2013).

168The idea that soils influence human health is not new, it has existed for thousands

169of years (Bible, Numbers, 13: 18–20), and received considerable attention in the

170twentieth Century (Brevik 2013). The scientific community started to pay attention

171to this concern since the 1960s (Webb 1964), and flourished in subsequent years, in

172combination with increasing epidemiological studies. Geochemical applications

173to epidemiology brought to develop the landscape geochemistry, i.e. the study

174of complex interactions within the system lithosphere-pedosphere-hydrosphere-

175biosphere, that is concerned with the mobility and distribution of elements in the

176environment. The relationships between environmental geochemistry and human

177health, including the incidence of disease patterns, have been investigated since the

1781970s, particularly by Russian scientists (Kovalsky 1970). Afterwards, relevant

179contributions were given by several authors from different countries (Fortescue

1801980; Lag 1980, 1984, 1987; Thornton 1993; Alloway 1995; Oliver 1997; Kabata-

181Pendias and Pendias 2001; Adriano 2001; Abrahams 2002; Deckers and Steinnes

1822004; Van Oostdam et al. 2005; Kabata-Pendias and Mukherjee 2007), and ulti-

183mately by Alloway (2013), Brevik (2013) and Censi et al. (2013).

184The early Russian approach (Perel’man 1966; Kovalsky 1970) included regional

185geochemical maps showing biogeochemical zones which reported the incidence of

186diseases as a result of geoepidemiological surveys at regional scale, and the first

187attempts to relate trace elements with diseases. Approximately in the same period,

188Thornton and Webb (1979) described the relationships between the level of Co in

189stream sediments and the incidence of pains in cattle and sheep. Parallel studies by

190Lag (1980, 1984) introduced the new concept of geomedicine as a multidisciplinary

191approach including geology, soil science, botany, zoology, microbiology, agricul-

192ture, animal husbandry, epidemiology and public health (Thornton 1993).

193Born from the above (and others) contributions, the new scientific branch of the

194medical geology (termed Geomedicine by Prof. Lag), is based on the utilizing

195innovative approaches related to the most recent epidemiological, sanitary and

196geochemical knowledge. Medical geology is an emerging discipline, but since the

197Antiquity people discovered links between geology (in particular soil as the natural
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198 substrate for food crops; Brevik 2013) and health, as reported by the early physician

199 Paracelsus (1493–1541), who stated that all substances are potential poisons, and
200 the correct dose makes the difference between poison and medicine.
201 A further evolution at worldwide level, initially referred to as medical geology,

202 is now termed health geography, that is “the application of geographical informa-
203 tion, perspectives, and methods to the study of health, diseases, and health care of
204 human population groups”. It is grounded on the study of the relationships between
205 environmental risk factors and adverse health effects, taking into consideration the

206 worldwide distribution of illnesses, and the regional characteristics of pathological

207 processes that generate geographically significant phenomena, thus allowing iden-

208 tification of areas where health hazard is higher.

209 Medical geology is now recognized as one of the exciting new areas of geolog-

210 ical and pedological research, although at present this is not a formally established

211 subfield of soil science. Nevertheless, as stated by Brevik (2013), increasing

212 research in soils and human health is essential to protect the environment and to

213 enhance general population health.

214 1.2 PHEs and Human Health

215 There is not a general agreement on the number and functions of chemical elements

216 in the human body. According to Brevik (2013), there are 14 elements that are

217 essential for plant growth, that come from the soil, and many of them are essential

218 also for human health. Additional elements are needed by organisms. Eleven

219 elements comprise 99.9 % of the atoms found in the human body: H, O, C, N,

220 Na, K, Ca, Mg, P, S, Cl. Eighteen additional elements are considered essential in

221 small amounts in the human diet: Li, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, W, Mo, Si,

222 Se, F, I, As, Br, Sn, and most of them are supplied by plants.

223 Conversely, 22 chemical elements are considered by Coccioni (2011) essential

224 to human health, owing to their physiological functions (Table 11.1). Only a part of

225 them, however, are readily ingested with diet, absorbed and metabolized by the

226 human body.

227 Some heavy metals, as copper (Cu), zinc (Zn) and iron (Fe), serve as

228 micronutrients at low concentrations but they are toxic when in excess, while

229 other heavy metals and metalloids, as lead (Pb), cadmium (Cd), mercury (Hg),

230 inorganic arsenic (As), aluminum (Al) and nickel (Ni), are toxic even at very low

231 concentrations, hence they are of particular health concern (Hassanien and El

232 Shahawy 2011). Heavy metals have the ability to bioaccumulate in food chain,

233 and children can be chronically exposed to them from different sources as air, water

234 and food, leading to their accumulation in body tissues of children and causing

235 various diseases, since they act as systemic toxins with specific neurotoxic, neph-

236 rotoxic, foetotoxic and teratogenic effects and can directly influence behaviour and

237 impair mental and neurological functions via influencing neurotransmitter produc-

238 tion and utilization (Obiria et al. 2010).

C. Bini and M. Wahsha



239The primary sources of PHEs in the environment are geogenic and anthropo-

240genic, the latter being the major cause of concern. Human health concern related to

241geological materials and processes, therefore, is more common than it was thought

242years ago: over three billions people have health problems connected to geological

243materials. Currently, there are few areas in the world not affected by metal

244pollution, as suggested by long-distance transported Pb in snow profiles in Green-

245land, which is approximately tenfolds that of Antarctic ice (Barbante et al. 2013).

246Human health is vulnerable not only to individual sources, but also to the

247combined effects of various contamination sources. As stated by Nriagu and Pacyna

248(1988), nearly every industry discharges at least one metal into water or soil, with

249annual inputs of 82 t As, 22 t Cd, 954 t Cu, 25 t Ni, 796 t Pb and 1,372 t Zn, which

250are released to the environment from industry and other sources. However, it is

251important to remind that all the potentially toxic elements of concern to humans are

252present as natural background in small amounts in soil, water, food and air, as a

253consequence of rock weathering. Yet, it is well known the case of Cr and Ni in

254serpentine soils, and that of Cd and Mo in marine black shales. Thornton (1993)

255reports that excess Mo in soils from black shales causes Cu deficiency diseases such

256as ataxia in sheep and hypocuprosis in cattle. Conversely, a pedogeochemical

257survey in the Lake Nakuru national Park (Kenia), revealed low concentrations of

258Cu, Co, Se and P in volcanic soils, indicating Cu deficiency and the need of

259supplement for wildlife species in the Park (Thornton and Webb 1979).

260Besides these natural geochemical anomalies, geochemical survey may also

261focus attention on anthropogenic anomalies (hot spots) related to chemicals

t:1Table 11.1 Biological functions of selected essential elements

Essential macroelements (�70 kg body

weight) Biological function t:2

Ca 1,000 g Bone structure, neurotransduction t:3

Mg 30 g Bone structure, electrochemical regulation, enzymatic

catalysis t:4

Na 1.5 g Electrochemical regulation, acid-base equilibrium,

osmosis control t:5

K 150 g Electrochemical regulation, acid-base equilibrium,

osmosis control t:6

Cl Electrochemical regulation, acid-base equilibrium,

osmosis control t:7

P 700 g Bone structure, membrane structure, metabolic

regulator t:8

Essential microelements Biological role t:9

Fe Oxygen and electron transport t:10

Cu Enzyme catalysis t:11

Zn Enzyme catalysis, protein structure t:12

I Metabolism regulator t:13

Se Enzyme catalysis, redox regulator, antioxidant, t:14

Ni Enzyme catalysis, redox regulator, antioxidant, t:15

t:16Adapted from Coccioni (2011)
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262 discharged on land by mining activities (Bini 2012; see this volume, Chap. 5),

263 industry and urban sources (Bini et al. 2008; see this volume, Chap. 6). A famous

264 example of a large environmental health investigation is that of an hotspot area with

265 up to 500 ppm Cd around the village of Shipham (U.K.), one of the biggest Zn mine

266 in EU (Thornton 1993).

267 A noteworthy concern is the finding of elevated Pb concentrations in the home

268 environment, that may have significant implications on the health and mental

269 development of children that habit the site, and are exposed to Pb-contaminated

270 dust (Thornton 1993). The same apply to multi-element contaminated home gar-

271 dens where vegetable is grown for kitchen: both gardeners and children playing in

272 the garden are exposed to contaminated soils, and all the family may be affected by

273 metal-contaminated vegetable consumption.

274 As a matter of fact, few causal relations have been shown until now between

275 potentially harmful elements and human diseases. An exception to this statement

276 includes the well known relationship between F content in water, human fluorosis

277 and dental caries. Other exceptions are I concentration in food and endemic goitre,

278 low Se intake, Keshan disease and Kaschin-Beck disease in China (Thornton 1993).

279 All these aspects will be discussed in the next Sect. 2.

280 1.3 PHEs and Toxicology

281 The main effects of land contamination on human health are due to the contact with

282 contaminated soils. Direct effects are brought about by ingestion, inhalation, and

283 dermal absorption of soil components. Indirect links are through the atmosphere,

284 hydrosphere and biosphere (see Abrahams 2002 for details).

285 From the toxicological point of view, ingestion of contaminated water, intake of

286 toxicants by the food and inhalation of gaseous compounds are particularly

287 relevant.

288 Toxic effects of PHEs to humans (Table 11.2) may occur with acute, subacute,

289 subchronic and chronic symptoms. Chronic exposure to Cd may have effects such

290 as lung cancer, prostatic proliferative lesions, bone fractures, kidney dysfunction

291 and hypertension (Zhao et al. 2012). Chronic oral and inhalation exposure to As can

292 lead to skin lesions and lung cancer, respectively. Exposure to Pb may cause

293 plumbism, anaemia, gastrointestinal colic and central nervous system disturbance

294 (Zukowska and Biziuk 2008). Hexavalent Cr is considered a human carcinogenic

295 by both USEPA and IARC. Nickel can cause lung cancer, chronic bronchitis,

296 emphysema and asthma.

297 One of the major concern to deepen is the essential element deficiency/excess;

298 the imbalance may cause problems to crop production for human consumption,

299 animal nutrition and ultimately to human health, as reported by Thornton (1993).

300 Indeed, in some cases, toxic effects may occur in consequence of deficiency instead

301 of excess of a given metal (Table 11.3). Several adverse health effects can arise

302 from nutrient deficiencies; for example, the World Health Organisation (WHO
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3032007) estimates about two billion people to be anaemic due to iron deficiency.

304Another soil-related form of malnutrition is iodine deficiency which leads to goitre,

305severe cognitive and neuromotor deficiencies and other neuropsycological

306disorders.

307Selenium is now considered an essential microelement to animals, including

308humans. A low level of Se in diet can cause Keshan disease, a heart disease that

309likely has a viral component, and Kashin-Beck disease which results in chronic

310degenerative osteoarthrosis. Insufficient Se levels may also be associated with

311cancer, stunting of growth, immune system and reproductive problems, and multi-

312ple sclerosis (Schalin 1980; Roman et al 2014). Zinc-deficient soils are widespread

313and include about half the world’s soils. Zinc deficiency may cause stunted growth,

314anorexia, skin lesions, diarrhoea, and impaired immune and cognitive functions.

315Several elements normally required for human health may become toxic when

316present in high amounts (e.g. Co, Cr, Cu, Fe, Se, Zn, and others) (Abrahams 2002).

317Their effects on human health will be discussed in the next section.

318Elements tend to have synergistic or antagonistic effects in the human body, so it

319is inadequate to discuss only single-element studies (e.g. Cd-Zn-Fe). Soil pH also

320influences nutrient and toxic element availability, with I and Se less available at

321acidic pH (Oliver 1997), and Fe, Al, Mn, Pb, Cd, Ni more available. Examples of

322antagonism include As against P and Sr against Ca, Zn against Ca, Fe, Cu, Ni

323(Oliver 1997).

324Soils can also provide elements such as Pb, Cd, As, as well as radioactive

325elements (U, Cs, Ra, Rn), at levels that are detrimental to human health. Airborne

326dust can carry additional materials such as pathogens, harmful gases, organic

327chemicals, heavy metals, and radioactive materials that can cause other health

328problems. Airborne dust containing such toxins may carry these materials into the

329lungs, where they can enter the bloodstream.

t:1Table 11.2 Effect of PHEs on human health

Element Toxic effect t:2

Arsenic Liver cirrhosis, skin, liver and lungs cancer, Embryo theratogenesis t:3

Beryllium Lung cancer t:4

Cadmium Chronic kidney failure, bones deformation, loss of breathing capacity, high blood

pressure, lung and prostate cancer, embryo theratogenic t:5

Mercury Neurological damage (mercurialism) asthenic-vegetative syndrome or Minamata

disease. kidney damage, toxicity to the foetus and embryo theratogenic t:6

Lead Gastrointestinal damage, damage to both the neuro-muscular system and nervous

system (plumbism), decreased fertility and sperm damage t:7

Antimony Respiratory system damage t:8

Silver Gastrointestinal, respiratory and liver damage, t:9

Barium Gastroentheritis, muscle paralysis, ventricular fibrillation and extrasystoles t:10

Thallium Neuronal damage, kidney and liver disease, foetus toxicity t:11

Titanium Irritation t:12

Uranium General biosystems and renal damage t:13

Vanadium Damage to the respiratory tract, skin and eyes, tremors, depression, kidney damage t:14

t:15Adapted from Coccioni (2011)
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330 Heavy metals originate naturally from the weathering of rocks, but have also

331 been introduced to soils through human activities. They may occur as a by-product

332 of mining ores and are therefore present in mine spoils and in the immediate

333 surroundings of metal-processing plants. Electronic appliances such as computers

334 and mobile phones are also becoming a increasing source of heavy metals such as

335 Pb, Sb, Hg, Cd, Ni. Urban soils are particularly susceptible to significant accumu-

336 lations of potentially harmful elements. Fertilizers and agrochemicals are another

337 source of PHEs additions to soils and chicken feed (As) and swine feed (Cu, Zn).

338 The same PHEs, however, are likely found in sewage sludge, thus contributing

339 significantly to environmental pollution.

340 There are several elements, both essential and non-essential, that cause concern

341 from a human health perspective; these include, among others, Cu, Fe, Zn, Cr, Cd,

342 Hg, Pb. Human exposure to these metals can occur through different routes, such as

343 inhalation of dust. Metal transport occurs mainly through the atmosphere (see this

t:1 Table 11.3 Toxic effects on human health due to PHEs deficiency and excess

Element Deficiency effects Excess effectst:2

Cobalt Anaemia; weight loss; retarded growth

rate

Possible inhibition of vitamin B12; goi-

ter aggravation; cardiomyopathy;

respiratory system irritationt:3

Chromium Alteration of glucose metabolism, with

possible effects on the growth and

metabolism of lipids and proteins

Kidney damage; respiratory system

damage; chronic ulcers, perforation

of the nasal septumt:4

Iron Anaemia Vomiting; liver cirrhosis; defects in

blood clotting; diabetes; arthritis;

sexual malfunction; lung cancert:5

Magnesium Kidney disorders; alcoholism; myocar-

dial ischemia; conjunctivitis;

Decrease in blood pressure; respiratory

paralysis; heavy fume fevert:6

Manganese Bone diseases, goiter aggravation Epithelial cell necrosis and proliferation

of mononuclear cells; neuropsychi-

atric disorders; liver cirrhosis;

decrease in fertilityt:7

Molybdenum Tachycardia, shortness of breath, head-

ache, blindness, nausea, vomiting

Gout disease, toxicosist:8

Nickel Cancer of the respiratory tract; dermati-

tis; headache; nausea, vomiting,

cyanosis; gastrointestinal distur-

bances; weakness; edema; deatht:9

Copper Anaemia, bone deformities Abnormality of the nervous system,

liver and kidneys; deatht:10

Selenium Heart failure and various degrees of

cardiomegaly osteoarthropathy

Weakness on hair and nails, skin lesions

on sole, hands and neck; foetal

toxicityt:11

Zinc Delay in growth and sexual maturation;

dermatitis; susceptibility to infection

and neuropsychological abnormali-

ties in infants

Reductions in immune function and

HDL cholesterol, fevert:12

t:13 Adapted from Fortescue (1980) and Coccioni (2011)
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344volume, Chap. 1), and influxes of African dust have been considered responsible for

345elevated levels of elements such as Hg, Se, Pb in European soils.

346Other common pathways of exposure are consumption of contaminated crops

347and incidental or purposeful consumption of contaminated soil (geophagy)

348(Abrahams 2002).

349Geophagy is the deliberate ingestion of soil, and offers several potential benefits

350to those who practice it, but there is the potential for serious health problems as

351well. The most frequently cited benefit is using the soil as a source of mineral

352nutrients. Medical uses of ingested soil material include the treatment of some types

353of poisoning and of gastrointestinal disorders (stomach aches, acid indigestion,

354nausea, diarrhoea (Abrahams 2002). Nevertheless, despite the potential advantages

355of geophagy, there are a number of negative effects due to soil ingestion: heavy

356metal toxicity, iodine deficiency disorders, soil parasitic infection.

357Heavy metals are known to be bound to enzymes; metal bonding with enzymes

358may affect human health since enzymes cannot function normally. Damage to the

359central nervous system is common, leading to problems such as coordination,

360eyesight, the sense of touch, lowering intelligence quotient (IQ), bone deterioration,

361hypertension, increased cancer rates. Lead is the most problematic heavy metal due

362to the extensive variety of its sources.

363Important radioactive elements sources are both natural (Rn from decay of

364uranium found in rocks) and anthropogenic (nuclear weapons manufactory and

365testing, accidental release from nuclear facilities such as Chernobyl (1986) and

366Fukushima (2011), burning of coal, smelting of non-ferrous metals, mining activ-

367ities and medical waste). The most common health risks include various forms of

368cancer and genetic mutations. The level of risk and health problems are highly

369dependent on both the dose received and the amount of exposure time (see this

370volume, Chap. 10).

3711.4 PHEs and Cancer

372Some elements, such as mercury (Hg), cadmium (Cd), arsenic (As) and chromium

373(Cr), are toxic or carcinogenic even at low concentrations. Poisoning by exposure to

374PHEs is well known to affect central nervous system functions, damage blood

375composition, lungs, kidneys, liver and other vital organs. Long-term exposure can

376cause slower progressing physical, muscular, and neurological degenerative pro-

377cesses. Allergies may also occur and repeated long-term contact with some metals,

378or their compounds, may become carcinogenic.

379Carcinogenic elements present common exposure pathways; the main way is

380inhalation, and the main target organs are those of the respiratory system (bronchus

381and lung), although other organs such as skin, stomach, prostate, kidney, urinary

382bladder, are reported as possible target organs (Apostoli and Catalani 2008).

383Among the mechanisms which make plausible the carcinogenic action of metals,

384is reported their ability to generate reactive oxygen species (ROS) and other
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385 intermedia able to induce direct damage to DNA by interacting with several

386 enzymes and with cellular proliferation regulators. ROS act on cells with a direct

387 effect on proteins, altering the activity and the conformation, or acting on redox-

388 sensible proteins. The formation of metal-protein complexes, moreover, may inter-

389 fere on cellular homeostasis, and determine conditions for an increase of cellular

390 clones with mutagenic phenotypes.

391 Metals generally interact little and weakly with DNA; when it happens, inter-

392 action occurs mainly through two binding strategies: phosphate group of skeleton,

393 and a variety of base electron-donors. Binding of metal with bases enhances spatial

394 modifications which influence the interaction of specific enzymes with DNA

395 (Franco et al. 2009).

396 Carcinogenic metals, therefore, are only a little mutagenic. As, Cd, and Ni

397 inhibit DNA repair mechanisms, contributing to augment tumour inizialization

398 induced by other agents, playing an important role in cellular proliferation, and

399 favouring neoplasm development. Some metals, moreover, may induce codifying

400 genes for cell-protective proteins such as metallothionein, and stress proteins

401 (Apostoli and Catalani 2008).

402 The interaction of development factors on receptors through mutations or aug-

403 mented expressions is among the mechanisms responsible for invasivity and met-

404 astatic characteristics of tumours. Other mechanisms responsible may be the

405 communication block cell-to-cell, lipid peroxidation stimulation, flaming processes

406 induction, endogenous DNA damage with possible chronic mutagenesis augmen-

407 tation, increased intracellular radicals, interaction with detoxification mechanisms,

408 redox reaction catalysis, DNA alchylation, cellular homeostasis alteration (Leonard

409 and Bernard 1993).

410 It is generally accepted that the metal species (or the metal complex) influences

411 in a determinant way the biological and toxicological activity of that metal. The

412 effect induced by that element depends on its ability to enter the cell and to interact

413 with target sites such as DNA. Crucial, therefore, are the chemical species, the

414 oxidative state, charge, solubility, binding properties, stereochemistry, possibility

415 to interact with other xenobiotics (Apostoli et al. 2006).

416 Since many elements present a more prominent oxidation state for carcinogenic

417 activity (e.g. 2+ for Co and Ni; 3+ for Sb and As), it has been hypothesized that such

418 metals utilize specific mechanisms that mediate their bioavailability as protein-

419 carrier, transmembrane channels and formation of specific ligands. For example,

420 bivalent metals may substitute for (or simulate) essential elements in many biolog-

421 ical systems, enzymes and co-enzymes.

422 Oxyanions with V, Cr, As are chemical forms with high oxidation state, stable

423 and able to cross cell membrane utilizing normal transport systems (phosphate or

424 sulphate) and, once inside the cell, may act on specific enzymes. Besides common

425 characteristics, however, every element is characterized by its own mechanisms,

426 and by species and compounds more involved in carcinogenesis with respect to

427 others.

428 The identification and classification of metal carcinogenicity by several associ-

429 ations and scientific societies results in different positions, particularly concerning
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430the chemical species and compounds, as reported by Apostoli and Catalani (2008)

431(Table 11.4).

432The International Agency for Research on Cancer (IARC 2006) attributed

433certain carcinogenicity with sufficient evidence for carcinogenicity for humans to

434compounds of Ni, As, Cr (VI), Cd, Be. Suspected carcinogenicity was attributed to

435metal Ni and alloys; instead, no carcinogenic effects were attributed to Cr (III),

436although a Cr (III) chronic phytotoxic effect was reported by Maleci et al. (2001).

437Inorganic Pb compounds are classified by IARC as probable carcinogenic for

438humans (class 2A), and soluble Co (II) salts, V and Sb compounds are suspected

439to have carcinogenic effects (class 2B).

440Producing activities where exposure to PHEs is likely to occur are smelters (iron

441and steel founding with potential exposure to Ni, Cr, and several organic com-

442pounds such as PAH, phenols, amines), glass factories (exposure to As, Cd, Cr, Cu,

443Pb, Sb, Se, Zn,) (class 2A), steel welding and Ni-Cr alloys (class 2B); moreover,

444possible co-exposure to silica, asbestos, etc. are likely.

445The Industrial Hygienists Association of the USA (ACGIH 2007) attribute to

446group A1 (substances known as carcinogenic to humans) inorganic insoluble

447compounds of Ni, As, Cr(VI), Be; furthermore, Pb-chromate, Ca-chromate,

448Sr-chromate, Cd compounds and Sb trioxide are included in group A2 (suspected

449carcinogenicity); Pb, Co, their inorganic compounds, and V oxide are included in

450group A3 (known carcinogenic for animals but with unknown relevance for

451humans). Inorganic soluble compounds of Ni and Cr(III) are included in group

452A4 (not carcinogenic for humans), elemental Ni in group A5 (unsuspected

453carcinogenic).

454The German Association (DFG 2006) has included Ni and As, as well as their

455inorganic compounds, Pb-chromate and metals such as Cd and Be in group 1 (sub-

456stances which cause cancer to humans, demonstrated by epidemiological studies

457and by evidence that the substance induces cancer through action mechanisms

458relevant to humans). Group 2 includes Cr(VI) inhalable compounds, Pb, V, Co,

Table 11.4 International

classification of selected

carcinogenic elements

Elements IARCa ACGIHb DFGc EUd t:1

Antimony 2B A2 2 – t:2

Arsenic 1 A1 1 R45 t:3

Beryllium 1 A1 1 R49 t:4

Cadmium 1 A2 1 R49, R45 t:5

Cobalt 2B A3 2 R49 t:6

Chromium (VI) 1 A1, A2 2, 3B R49 t:7

Nickel 2B A1 1 R40, R49 t:8

Lead 2A A3 2 R40 t:9

Vanadium 2B A3 2 R68 t:10

t:11Adapted from Apostoli and Catalani (2008)
aInternational Agency for Research on Cancer
bAmerican Conference of Governmental Industrial Hygienists
cDeutsche Forschungsgemeinschaft
dEuropean Union
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459 as carcinogenic as results from long-time studies on animals (Apostoli and Catalani

460 2008). The same organization (DFG 2006) suggests exposure equivalents for

461 carcinogenic substances for insoluble Ni compounds, and for Co, As and V

462 compounds.

463 The European Union includes metals and related species in the list of carcino-

464 genic and/or mutagenic substances according to the EC Directive 67/548/2006, and

465 attributes cancer risk classes R49 (substances which can induce cancer by inhala-

466 tion), R45 (substances which can induce cancer) and R40 (possibility to induce

467 carcinogenic effects – insufficient proofs). In particular, Ni, Cr (VI), Cd, Be, Co and

468 their compounds are assigned the R49, while As oxides, arsenates, Zn-chromate,

469 Sr-chromate, Cd-chloride, Cd-fluoride are assigned the R45.

470 It is noteworthy to point out, however, that consistently with current legislation,

471 carcinogenic substances are exclusively those chemical species and compounds

472 that are assigned the cancer risk classes R45 and R49 proposed by EU

473 (EC Directive 67/548/2006), and specifically substances, preparations, processes

474 and works that expose workers to dust, fumes produced during metal refining at

475 high temperature, or when the concentration of one (or more) substance

476 (s) overcome the admitted limits for the classification of a chemical in carcinogenic

477 categories 1 or 2 (IARC 2006).

478 The above recorded differences in the regulations are reflected also in environ-

479 mental and biological indicators to be selected, and on the meaning of reference

480 values, or biological limits, assigned to chemicals, as indicated in Table 11.5. For

481 example, the environmental limit for a specific chemical species is frequently

482 reported in comparison to the concentration value of the element such as it is, as

483 well as a biological indicator of soluble compounds is utilized for monitoring

484 exposure to the element such as it is.

485 The American Conference of Industrial Hygienists (ACGIH 2007) has set up

486 biological limits for six elements (As, Co, Cr, Cd, Pb, V), and moreover established

487 environmental threshold values for all the elements and related compounds. The

488 German organization (DFG 2006) too has set up threshold values for the carcino-

489 genic metals, with the exception of Be and Sb.

490 The Italian Society for Reference Values (SIVR 2005) has set up reference

491 values for all the elements considered, specifying the different matrices by indica-

492 tion of the element as such, with the exception of As.

493 The Scientific Committee for Occupational Exposure Limits of the European

494 Commission (SCOEL-EC 2008) has suggested occupational exposure levels

495 (OELs) for the time weighted average (TWA), for short-term exposure limits

496 (STELs), and biological limit values (BLVs). In particular, for those carcinogenic

497 elements at exposure levels below which no carcinogenic effect is recorded, the

498 OEL is not defined, but it is suggested that the lower is exposure, the less will be

499 cancer development. Time weighted average(s) (TWAs) are expressed for Pb, Cr

500 and their inorganic compounds.

501 The major problem, both theoretical and applicative, is posed by the speciation

502 of the element of concern, which may influence environmental and biological

503 measurements of exposure, risk assessment and sanitary/epidemiological
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504surveillance (Apostoli et al. 2006). Yet, fractionation of chemicals by selective

505extractions may enhance identification of the various compartments in which the

506element of concern is present, but chemical transformations and/or potential con-

507tamination may occur during analysis. Moreover, possible interferences among

508metals and other substances should be considered.

5091.5 Concluding Remarks of Sect. 1

510Differences in metal absorption, distribution, imbalance between toxicant effects

511and metal excretion can be explained, besides time exposure and prevention

512measures, from the physico-chemical characteristics of metals, as species, solubil-

513ity, chemical reactivity. These could be utilized to interpret the different response of

514human organs towards carcinogenic metals, in terms of morbidity and/or mortality,

515as well as the high variability of epidemiological investigations on occupationally

516exposed workers, including clear evidence in some cases (e.g. roasting of

517Ni-bearing rocks), and little or no evidence in other cases, where the element of

518concern is determined at concentration levels even higher than background popu-

519lation values (e.g. Ni in serpentine soils and plants).

520The need of information concerning chemical species and compounds actually

521classified as carcinogenic (or suspected) is recorded also in official documentation

522related to:

523– registration of the total amounts of carcinogenic or mutagenic substances pro-

524duced and utilized, or present as impurities or by-products in other substances;

525– workers exposure (intensity and duration) measures;

526– sanitary surveillance of workers showing somewhat health risk.

527More accurate epidemiological investigations, combined with environmental

528and biological data which actually may qualify population exposure, and in

t:1Table 11.5 Reference concentration values for selected elements

Elements ACGIH μg/l urine DFG μg/l urine
EU – SIVRa μg/l
urine t:2

Antimony – – 0.01–0.15 t:3

Arsenic 35 50–130 0.1–15 t:4

Beryllium – – 0.001–0.006 t:5

Cadmium 5.0 15 0.1–1.5 t:6

Cobalt 15 6–300 – t:7

Chromium (VI) 10–25 12–40 0.05-0.30 t:8

Nickel – 15–70 0.1–2.0 t:9

Lead 300 400 <0.5–3.5 t:10

Vanadium 50 35–140 0.1–1.0 t:11

t:12The range is related to different metal compounds (Adapted from Apostoli and Catalani (2008))
aEuropean Union and Società Italiana Valori di Riferimento
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529 collaboration with other disciplines as metallurgy, industrial hygiene, analytical

530 chemistry etc. could enhance comprehension of the effective risk posed by PHEs to

531 human health.

532 2 Widely Recognized and Emerging Harmful Elements

533 and Human Health

534 Potentially harmful elements (PHEs) in the environment may result from many

535 different activities and sources and may enter into the environment by a wide range

536 of processes and pathways. Generic sources of harmful elements include mining

537 and industrial production such as foundries, smelters, oil refineries, petrochemical

538 plants and chemical industry, untreated sewage sludge, dispersed sources such as

539 metal piping, traffic and combustion by-production from coal burning power plants

540 (Hassanien and El Shahawy 2011). Atmospheric emissions are probably the most

541 harmful to the environment, and consequently, to human health due to either the

542 great quantity involved, or their widespread dispersion which may originate many

543 different exposure pathways.

544 Recent studies have focused on identifying the amount and distribution of some

545 of the most common PHEs in the environment, and investigating the factors that

546 cause contaminant exposure of human population. Some of these contaminants

547 (e.g. Cd, Pb, Hg, As) are widely recognized as poisonous to human health

548 (Filippelli et al. 2012); cadmium is known for kidney damage and bone pains

549 which may lead to cancer; mercury for neurological disturbances; lead is known

550 for its severe cognitive and behavioural disturbances; atmospheric dust may cause a

551 variety of pulmonary diseases (Iskandar et al. 2012). Arsenic is a lethal poison, as

552 represented also by the register Frank Capra in the famous fiction “Arsenic and old

553 lace” (1944), and may provoke skin lesions and tumours, although at clinically

554 achievable concentrations is used to induce apoptosis in malignant cells (Franco

555 et al. 2009, and references therein). Conversely, elements known to be essential for

556 health are the first row transition elements: Fe, Mn, Ni, Zn, Cu, V, Co and Cr,

557 together with Mo, Sn, Se, I and F (Oliver 1997). Each has its specific role in the

558 metabolism, and it cannot be wholly or partly replaced by any other element. Most

559 of them act primarily as catalysts in enzyme systems (Oliver 1997 and references

560 therein). Their roles range from weak ionic effects to highly specific associations

561 with metalloenzymes; for example Cr acts as cofactor for insulin, and I makes the

562 hormone thyroxine active. Chromium and selenium are essential to humans; their

563 deficiency may induce illness, while excessive intake may induce cancer; Cr has

564 been recognized as highly carcinogenic since the late nineteenth century (Adriano

565 2001), and Se proved lethal at intake up to 20 mg kg�1.

566 There is no general agreement on the potential harm of certain elements, while

567 some others are historically recognized as PHEs. In the next Sect. (2.1) most of the

568 widely recognized PHEs (Cd, Pb, Hg, As, Cr, Se) will be discussed. Other
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569contaminants such as Al, B, Be, Bi, Co, Cu, F, I, Mn, Mo, Ni, Sb, Sn, Tl, V, W etc.

570are likely to affect negatively human health, but they are poorly studied at typical

571environmental concentrations, and little is known about their health effect at

572chronic exposure levels (Filippelli et al. 2012). Some of these “new” PHEs are

573referred to in Sect. 2.2 as Emerging Harmful Elements.

5742.1 Widely Recognized Harmful Elements

5752.1.1 Cadmium

576Cadmium is typically a metal of twentieth century, even though large amounts of

577Cd have been emitted by non ferrous smelters during the nineteenth century

578(Bernard 2008). The trend in its end uses in the last two decades showed a steep

579increase (from 55 to 73 % of the total western world consumption) for batteries and

580a decrease in other applications. In the immediate future, it has been previewed by

581the World Health Organization (WHO 2003) that Ni-Cd battery market will grow

582continuously (e.g. power tools and telecommunication devices).

583Cadmium does not have any physiological function within the human body

584(Godt et al. 2006), and is considered one of the most dangerous PTEs to human

585health, causing acute and chronic intoxications, even at very low exposure levels,

586on health and environment. It is not degradable in nature and once released to the

587environment, remains in circulation, being relatively water soluble, and tends to

588bioaccumulate (WHO 2003). It can persist in soils for decades; from soil, it is

589translocated to plants and the food chain, and ultimately accumulates in the body of

590people eating contaminated food. Cadmium is also present in tobacco smoke,

591further contributing to human exposure. By far, the most salient toxicological

592property of Cd is its exceptionally long half-life (estimate is 20 year) in the

593human body, particularly in kidneys and other vital organs such as liver and

594lungs (Bernard 2008).

595The International Agency for Research on Cancer (IARC 2006) classifies Cd in

596Class 1 “the agent is carcinogenic to humans”, and it has been identified as a

597priority hazardous substance under the EC Water Framework Directive (2006).

598Cadmium has been ranked at the sixth in the Top 20 list of toxic substances for

599significant human health hazard by US Poison and Disease Registry (Akynloye

600et al. 2006), and has been a focus of study on environmental pollution in the UN

601Environmental Programs (UNEP) and the International Commission on Occupa-

602tional Health Organization (Han et al. 2009).

603The acute toxicity, as first described by Friedrich Stromeyer (1817, cited in Godt

6042006), can lead to kidney, bone, and pulmonary damages, while chronic effects

605have been recognized much later (1930–1940). Chronic exposure to Cd can have

606severe effects such as lung cancer, prostatic proliferative lesions, bone fractures,

607kidney dysfunction and hypertension (Zhao et al. 2012). Other effects are distur-

608bance of Ca metabolism, hypercalciuria and formation of stones in the kidney.
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609 Cadmium is a source of concern for industrial workers since the first investiga-

610 tions (1930–1940) on pulmonary, renal and bone lesions, and for population living

611 in polluted areas (Bernard 2008). A survey on Polish workers of a lead-acid

612 batteries plant, and exposed to Cd, showed significantly higher Cd levels in blood

613 in comparison to general population (Wasowicz et al. 2001). Cadmium is absorbed

614 by the body by inhalation (through the lungs) and by ingestion (through the

615 digestive tract). This route of absorption plays an important role in case of bad

616 hygienic habits such as not cleaned hands, ingestion of contaminated food, and

617 smoking during occupational exposure.

618 An epidemic occurrence of bone pains, with patients showing a wide range of

619 symptoms such as low grade of bone mineralization, high rate of fractures,

620 increased rate of osteoporosis, developed in Japan since 1940s. The disease with

621 the above symptoms (called itai-itai), was associated with Cd poisoning, and was

622 related to consumption of rice grown on fields irrigated with highly Cd-polluted

623 water (Godt et al. 2006). Further evidence was found by Honda et al. (2003).

624 Similar findings were recorded in a study on 1,000 people from southern Sweden,

625 with significant negative correlation between urinary Cd and low bone mineral

626 density, particularly on persons aged more than 60s. Individuals included in this

627 study were either battery plant workers, or inhabitants close to the battery plant. The

628 exact mechanism of interference between Cd and bone mineralization remains to be

629 discovered; it may be an indirect influence of renal dysfunction (Berglund

630 et al. 2000).

631 After that early reports, a number of epidemiological studies were carried out

632 worldwide in order to characterize Cd toxicity and assess exposure levels which

633 could threaten human health. As a result, from the 1990s it has been suggested that

634 Cd can generate adverse effects even from much lower exposure levels than was

635 believed before, Kidney results the critical organ for which dose-response relation-

636 ships are best documented (Bernard 2008).

637 The major pathway of exposure to Cd is both by ingestion and inhalation. Food

638 ingestion is the primary exposure source for general population; the amount of Cd

639 ingested daily with food in most countries ranges between 10 and 40 μg per day

640 (WHO 2003; Bernard 2008). Cereals account for about 50 % of Cd intake. The

641 WHO has established a provisional tolerable intake of 7 μg/kg body weight,

642 i.e. 70 μg Cd for averaging 70 kg man, and 60 μg Cd for 60 kg woman, while the

643 recommended intake for children is 2–25 pg day�1 (WHO 1996). However, even

644 small concentrations in foods can have a significant effect in the long term because

645 Cd accumulates in the body (Oliver 1997). The maximum permissible Cd value in

646 blood for workers in Germany is 15, compared with the average blood Cd concen-

647 tration in non smokers that is 0.5 μm/l (Godt et al. (2006).

648 Tobacco smoking is an important additional source of exposure for smokers.

649 Since one cigarette contains approximately 1–2 μg Cd, smoking one pack per day

650 results in a daily uptake of Cd that approximates that derived from food. As

651 reported by Bernard (2008), absorption by the oral route varies around 5 % but

652 can be raised to 15 % in subjects with low iron store. When exposure is by

653 inhalation, between 10 and 50 % of Cd is absorbed, depending on the particle
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654size. With tobacco, an average of 10 % of Cd is absorbed. The absorption via lung is

655higher than gastrointestinal absorption (via the stomach): up to 50 % of the inhaled

656Cd may be absorbed. A major part of Cd in the human diet comes from agricultural

657products, the most important source being atmospheric deposition, followed by

658application of sewage sludge and waste products. Absorption through the skin,

659instead, is negligible.

660The highest concentrations of Cd (10–100 mg kg�1) are found in internal organs

661of mammals, mainly in the kidneys and liver, as well as in some species of fish,

662mussels and oysters. Accumulation in kidneys and liver is due to the ability of these

663tissues to synthesize metallothionein, a Cd-inducible protein that protects the cell

664by tightly binding the toxic Cd2+ion (Bernard 2008). The protective effect of Zinc,

665an essential metal in human metabolism, towards Cd toxicity, determines the

666selective accumulation of Cd in the proximal tubular cells and thus in the renal

667cortex, where it increases during the person’s life span. A possible perturbance of

668phosphorus and calcium metabolism may occur, with formation of kidney

669Ca-stones (Godt et al. 2006).

670The major health hazard of Cd occurs when its concentration exceeds 200 pg Cd

671kg�1 BW, and the effects on health are greater in ageing people. Proteinuria (loss

672of low molecular weight proteins from the kidneys), glucosuria (loss of sugar) and

673aminoaciduria (loss of amino acids), and the excretion of Cd are early signs of Cd

674intoxication of the kidney (Oliver 1997). Diseases of the bone, (osteomalacia and

675osteoporosis) have been observed only in Japan where the effects of Cd toxicity

676were exacerbated by dietary deficiencies of Ca, vitamin D and protein. It seems that

677Cd affects Ca and vitamin D metabolism resulting in the decalcification of bones

678(WHO 1996).

679Cadmium chronic poisoning causes two different kinds of health effects: damage

680of target organs, and non-specific changes for population as weakness, ease to

681suffering from illness, rise of morbidity and mortality (Han et al. 2009). Target

682organs are kidney, bones, prostate (urogenital system). Kidney damage is the main

683problem for patients chronically exposed to Cd; it is the first organ to display signs

684of toxicity, which probably represents the critical health effect both in general

685population and in occupational exposed workers. Cd nephropathy has been

686described in industrial workers exposed mainly by inhalation and in general

687population exposed via contaminated foods, with a total Cd concentration at 150–

688200 mg kg�1 in renal cortex (Bernard 2008).

689Early indices of kidney damage are Cd concentrations in blood and urine; the

690earliest manifestation of Cd-induced renal damage consists in an increased urinary

691excretion. Indeed, Cd is mainly eliminated via the urine, but daily excretion is very

692low (0.005–0.01 % of the total body burden, which corresponds to a biological half-

693life of more than 20 year). As a severe secondary effect, the development of

694Cd-induced proteinuria is predictive of an increased mortality by heart failure,

695cerebral infarction, nephritis and nephrosis (Bernard 2008).

696The disturbances of Ca and phosphate metabolism accompanying Cd nephrop-

697athy can cause bone demineralization through direct bone damage or indirectly as a

698result of renal dysfunction (Uchida et al. 2007; Agneta et al. 2006), formation of
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699 kidney stones and bone fractures. Usually, bone damage has been considered a

700 delayed sign of severe chronic Cd poisoning. Based on reports concerning the

701 epidemic occurrence of Itai-Itai disease in China and Japan (1940–1950s, see

702 above), a population-based study showed an association between skeletal damage

703 and low-level environmental Cd exposure (Han et al. 2009). Conversely, higher Cd

704 exposure by food (rice) ingestion determined consequent health effects such as

705 renal injury, higher mortality, shorter survival time, and more unfavourable prog-

706 nosis. Mortality of people by Itai-Itai caused by higher environmental Cd exposure

707 has been reported to achieve 76 %, against 50 % of the control group (Han 2009).

708 Early indices for bone injury are bone mineral density, urine calcium, urine

709 phosphorus; instead, association between urinary Cd and bone mass density has not

710 yet proven. Skeletal damage (osteoporosis) too, accompanied with pain in the back,

711 difficulties in walking, multiple bone fractures and renal dysfunction may be a

712 critical effect of Cd exposure, but it is still unclear.

713 Other effects of Cd exposure are reported in literature, that concern various

714 biological systems. Godt et al. (2006) report that the main pathway of Cd absorption

715 is by inhalation, and Cd absorption through the human gastrointestinal tract is only

716 5 % of the ingested Cd amount (e.g. by food). Several factors can increase this

717 amount, such as low intake of vitamin D, and Cd-counteracting nutrients such as

718 calcium and trace elements as Zn and Cu. The respiratory system is affected

719 severely by inhalation of Cd-contaminated air; Bernard (2008) points to the impair-

720 ment of the pulmonary function suggestive of mild obstructive syndrome in

721 workers exposed to relatively high concentrations of Cd by inhalation. Respiratory

722 insufficiency and increased mortality rate from obstructive lung disease has been

723 seen in workers with high exposure in the past (WHO 1992). One of the pathways of

724 Cd absorption by a relevant portion of general population is inhalation of cigarette

725 smoke. The human lung resorbes 40–60 % of Cd in tobacco smoke, in the form of

726 Cd-cysteine complexes (Godt et al. 2006). Non-smokers show an average Cd blood

727 concentration of 0.5 μg/l, while smokers generally have Cd blood levels 4–5 times

728 those of non-smokers.

729 Adverse effects on the reproductive system biology due to Cd exposure are

730 reported by several authors. Low dosage of Cd proved to stimulate ovarian proges-

731 terone biosynthesis, while high dosage inhibit it (Godt et al. 2006). Pregnant women

732 exposed to environmental Cd might have an adverse effect in prenatal period

733 (e.g. foetal growth retardation, premature birth, low birth weight, birth deformities,

734 and an increase of spontaneous abortion) and a possible cause of male infertility

735 (Falcon et al. 2002; Han et al. 2009). However, Cd does not cross easily the

736 placental or the hemato-encephalic barriers, thus explaining its very low toxicity

737 to the foetus and the central nervous system as compared with other heavy metals

738 (e.g. Pb, Hg).

739 Further adverse effects are reported to be caused by Cd intoxication: intake of

740 Cd-contaminated food causes acute gastrointestinal effects, such as vomiting and

741 diarrhoea (Nordberg 2004). Mortality for heart failure, cerebral infarction and

742 pancreatic dysfunctions too are reported as effects of Cd exposure among inhabi-

743 tants living in a Cd-polluted area in Japan (Nishijo et al. 2006; Lei et al. 2007),
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744while Cd levels in blood, but not in urine, were associated in USA with a modest

745elevation in blood pressure levels (Bernard 2008).

746Sarkar et al. (2013) report that Cd is toxic, nonessential and classified as a human

747carcinogen. Generally, it forces the expression of the stress proteins and depending

748on factors such as amount of exposure, time of exposure, the cell line and presence

749of other chemical species, the outcome could be apoptosis, growth inhibition,

750proliferation or carcinogenicity in animal cells. The mechanisms leading to cad-

751mium carcinogenesis are primarily those involving oxidative attack by ROS,

752inhibition of DNA repair mechanisms and augmenting or diminishing the tendency

753to apoptosis (Sarkar et al. 2013).

754There is proved evidence that Cd can cause several tumours. A prolonged

755exposure has proven to be carcinogenic to liver, kidney, lung, prostate, hematopoi-

756etic and other systems. Occupational exposure is linked to lung cancer and prostate

757cancer and severe testicular necrosis followed by high incidence of testicular

758tumours (Godt 2006), while links between Cd and cancer in liver, kidney and

759stomach are considered equivocal (Waalkes 2000). Cadmium plays a recognized

760role in the aetiology of prostate cancer in battery plant workers. Vinceti et al. (2007)

761observed a dose-response relationship between Cd exposure and prostate cancer

762risk. The association between Cd exposure and risk was also confirmed by a

763multivariate analysis including body mass index, smoking, family history of pros-

764tate cancer, protein and lipid consumption. The biological plausibility of a

765Cd-prostate cancer relation in humans is also supported by the results of several

766experimental studies, which suggested the possible existence of a threshold above

767which Cd exposure becomes of concern (Vinceti et al. 2007).

768Early investigations (Kolonel 1976) suggested an association of Cd and renal

769cancer in humans, recently confirmed (Il’yasova 2005). Consequently, the IARC

770decided to classify Cd as a human carcinogen group I, mainly due to Cd assumption
771by respiratory system pathway. Depending on factors such as amount of exposure,

772time of exposure, the cell line and presence of other chemical species, the outcome

773of Cd exposure could be growth inhibition, proliferation or carcinogenicity in

774animal cells, and apoptosis (Franco et al. 2009; Sarkar et al. 2013).

775The mechanisms leading to cadmium carcinogenesis are primarily those involv-

776ing oxidative stress, inhibition of DNA repair mechanisms and augmenting or

777diminishing the tendency to apoptosis. The majority of Cd is transported in the

778circulatory system bound to proteins such as albumin and metallothionein. The first

779organ reached after uptake into the gastro-intestinal-blood is the liver. Here Cd

780induces the production of metallothionein. After consecutive hepatocyte necrosis

781and apoptosis, Cd-metallothionein complexes are washed into sinusoidal blood;

782part of absorbed Cd enters the entero-hepatical cycle via secretion into the biliary

783tract (Godt et al. 2006). However, the mechanism of Cd carcinogenesis remains

784largely unknown (Bernard 2008).

785Diagnosis of chronic Cd poisoning basically relies on the screening of proximal

786tubular renal dysfunction and the assessment of the cumulative exposure to Cd

787using environmental or biological indicators. Biomarkers offer the possibility not

788only of evaluating the human exposure to environmental pollutants, but also to
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789 study the potentially harmful effects for the health associated with such exposure.

790 For example, Begona Zubero et al. (2010) found increased levels of urine Cd in

791 population living close to an incinerator plant, with levels similar to those carried

792 out in Europe and USA. Studies on industrial workers in the 1980s have derived a

793 threshold of urinary Cd of 10 μg/g creatinine for the development of tubular

794 proteinuria. This threshold serves now the basis for occupational exposure limit

795 of 5 μg/g creatinine currently in application in most industrialized countries

796 (Bernard 2008). However, studies in Belgium and Sweden have concluded that

797 tubular dysfunction is likely to occur in the general population from thresholds of

798 urinary Cd in the range of 1–2 μg/g creatinine.

799 There are no efficient treatments for chronic Cd poisoning. Even after cessation

800 of exposure, renal dysfunction and pulmonary impairment may progress. The only

801 possible intervention is removal from exposure, and primary prevention is needed

802 in order to maintain low levels of Cd in the environment or in the food chain.

803 2.1.2 Lead

804 Lead has been probably one of the first pollutants to receive widespread attention as

805 a causative agent for health-related effects (Apostoli et al. 2002; Bierkens

806 et al. 2011). It has been used for centuries since the Roman age, and has been

807 known as toxic since the second century BC in ancient Greece (Oliver 1997).

808 Over decades, lead has been used in many different applications: building

809 materials, pigments for glazing ceramics, batteries and pipes for transporting

810 water (Hassanien and El Shahawy 2011); in the last century, in particular, it was

811 largely used as additive in fuel for engine, posing important health concerns. Yet,

812 lead poisoning is currently one of the most prevalent public health problems in

813 many parts of the world (Nriagu 1988), especially considering the intake of

814 concentrations regarded as nontoxic over long periods (Davies and Wixson 1987).

815 Numerous cases of lead poisoning have been reported since the 1980s. On

816 February, 21, 1988, local newspapers in U.S.A. reported that it was a miracle that

817 Mr and Mrs Wallace survived to lead intoxication induced by kitchen artistic

818 pottery. This case poses the problem of the release of toxic elements, often

819 necessary for manufacturing of fine articles (pottery, food containers, etc.). Refined

820 Pb-glasses (“crystal glasses”) are effective metal-retaining objects, and information

821 on metal release is not current. Conversely, ceramic pots with high Pb content are

822 well known for releasing fluorine if not oven-dried at the correct temperature.

823 As a consequence of large utilization, lead is a widespread contaminant of the

824 soil, generally arising from pollution from mineral exploitation and industrial

825 wastes, and from atmospheric deposition (Oliver 1997). The high occupational

826 exposure-related hazard occurs in the processes of lead ore smelting, welding and

827 cutting of metal constructions, lead-containing paints, casting of non-ferrous

828 metals, production of batteries etc. The main pathways for Pb exposure, that may

829 affect both general population and exposed workers, are via inhalation of atmo-

830 spheric particles, and ingestion of contaminated food. Actual levels of lead found in
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831air, food, water and soil/dust vary widely throughout the world and depend upon the

832degree of industrial development, urbanization and lifestyle factors (WHO 1985).

833In general, lead-contaminated house dust and soil is the major source for blood lead

834levels in children (Lanphear et al. 2002). Lead levels in dust depend on factors such

835as the age and condition of housing, the use of lead-based paints, lead in petrol and

836urban density (Bierkens et al. 2011).

837Lead is currently classified as number 2 in ATSDR’s (Agency for Toxic Sub-

838stances and Disease Registry) Top 20 list (ATSDR 2007).

839The WHO (1996) reported that dietary intakes of Pb range on average between

84020 and 282 pg day�1 for adults, and between 9 and 278 pg day�1 for children, who

841can take up more if there is too little Fe in their diet (WHO 1996; Oliver 1997). A

842large intake is regarded as 2,500 pg day�1. A concentration of 250–550 pg Pb L�1

843in the blood of children indicates poisoning (WHO 1996).

844Because of the established link between exposure to lead and cognitive devel-

845opment, children are considered an important and vulnerable target population

846(Bierkens et al. 2011). Indeed, the nervous system of small children is especially

847sensitive to Pb, because of the incomplete development of the barrier between

848blood and brain, and the children can become retarded (Oliver 1997).

849Pocock et al. (1994) related Pb blood concentrations of 100–200 pgL�1 with

850intelligence (IQ) in children over 5 years of age. The results of the study showed an

851inverse association between IQ and Pb concentration. Lead also causes metabolic

852disorders and neurophysical deficits in children, and affects the haematopoietic and

853renal systems (Hutton 1987). Lead interferes with the incorporation of iron into the

854protoporphyrin leading to anaemia, and causes renal damage (WHO 1996). Lead

855has been also the first metal to be linked with failures in reproduction (Peereboom-

856Stegeman 1987): it can cross the placenta easily. Moreover, Pb is transferred from

857the mother to the foetus, and young children show a higher exposure pattern per unit

858body weight due to their higher contact with soil and dust, and higher intake rates. It

859also affects the brain, causing hyperactivity and deficiency in the fine motor

860functions Oliver 1997).

861Occupational Pb exposure may result in chronic poisoning. It mostly affects the

862hematopoietic and nervous systems, and may cause plumbism, anaemia, nephrop-

863athy, gastrointestinal colic, and above all damage of the central nervous system

864(Zukowska and Biziuk 2008; Zhao et al. 2012; Hassanien and El Shahawy 2011).

865The neurotoxicity of Pb is more critical for the developing foetus and the

866growing children. Pruvot et al. (2006) report that infantile lead poisoning in the

867vicinity of the main European smelter showed 10–15 % of children from 2 to

8683 years having a Pb-blood level higher than 100 μm PbL�1 of blood, owing to

869strong lead contamination by indoor and outdoor dust of the schools and houses of

870these children. The ingestion of vegetables produced in kitchen gardens in the

871contaminated area, and the ingestion or inhalation of contaminated soil particles,

872proved the main key routes of exposure to lead, in particular via hand-to-mouth

873transfer. In addition, many studies (e.g. Dudka et al. 1996; Douay et al. 2005) have

874described the metal transfer to crops grown on soils contaminated by atmospheric

875deposits, and values recorded in the produce often exceed the European reference
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876 values (EU Directive March, 8, 2001) thought to cause a medical risk (Hough

877 et al. 2004). The highest metal concentrations were measured in wheat and barley

878 grains (range 0.02–14.42 mgPbkg�1) and to a lesser extent in maize (Pruvot

879 et al. 2006). Previous epidemiological studies carried out in the investigated area

880 (Leroyer et al. 2000) showed that metals present in the various compartments of the

881 environment contributed in a substantial way to the exposure of local population. In

882 particular, lead accumulates mainly in bones (95 %) and teeth in the form of

883 chelates, as reported by Martinez-Garcia et al. (2005), who examined bones of

884 inhabitants in territories where mining activity took place so far, and are in contact

885 with processed metals.

886 Another human health effect due to lead exposure is reported by Giaccio

887 et al. (2012). A comparison of data on heavy metal pollution with data related to

888 the semen quality in the town of Neaples (Italy), the core of the Vesuvian volcanic

889 district, showed a consistent evidence for an association between Pb (and also Sb)

890 concentration in soils and reduced semen quality. The density distribution of sub-

891 jects with male infertility problems is higher in areas where the concentration of Pb

892 and Sb (traffic related elements) is greater. People living in unpolluted areas are

893 exposed at lower infertility risk while those who live in polluted metropolitan areas

894 are exposed to higher infertility risk.

895 Lead (Pb) is probably the most intensively biomonitored chemical with contin-

896 ued concern about its potential health impact (Smolders and Schoeters 2007). Pb is

897 an ubiquitous environmental pollutant with a long history in human biomonitoring

898 (HBM) programs (Bierkens et al. 2011).

899 Although lead has been monitored extensively in the European population, a

900 consistent biomonitoring dataset is not yet available. Data diverge with regard to

901 regional scale, gender, age groups and sample size. Especially for women of child-

902 bearing age and young children more data are required as they are the most

903 susceptible to the impact of Pb on the developing brain.

904 There are only few reports concerning human antioxidant barriers under occu-

905 pational exposure to lead. Wasowicz et al. (2001) report that occupational Pb

906 exposure may result in chronic Pb poisoning (up to 500 μg Pb L�1), with cell

907 damage. An increase in lipid peroxidation (measured as thiobarbituric acid reactive

908 substances-TBARS) has been recorded in blood of exposed workers, together with

909 a decrease in essential Zn concentration, compared with the reference group.

910 It is also important to recall that knowledge acquired from experienced cases of

911 workers affected by diseases related to inappropriate protection to metal exposition

912 needs decades to perform adequate legislation acts aimed at improving the quality

913 of life. Yet, it is unlike that old professional diseases as plumbism, but also

914 asbestosis, silicosis, fluorosis, mercurialism nowadays could be ascribed to new

915 agents. The demonstration of effects of lead, (e.g. reduced learning capacity

916 particularly on children, damage to reproductive apparatus), besides the brain

917 damage (Chem. Eng: News, 1982, August, 9), was largely far from determining a

918 reduction/disappearance of the Pb-tetraethyl from fuel for engine, as it was

919 achieved years after. Indeed, during the last century, the lead content in fuels was

920 a main source of pollution to the environment and, particularly, the lead released to
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921the atmosphere was especially hazardous to children. Today most of the 25 millions

922of tons of lead produced every year is used in batteries. Exposure assessment to

923emissions of lead implies to identify and quantify the sources, how it can be

924dispersed in the environment and which adverse effects it might cause on human

925health and on the ecosystem.

9262.1.3 Mercury

927Mercury, as well as lead, is considered non-carcinogenic; instead, it is a known

928neurotoxic. Industrial utilization of mercury (chemicals, electronics, pharmaceuti-

929cals, agro-zootechnicals) is of particular environmental concern. Although it is

930present in the industrial emissions in the elemental form Hg, it forms easily organic

931and inorganic compounds. Dimethyl-Hg is highly volatile, and may disseminate

932contamination in areas not immediately proximal to the pollution source. Methil-

933Hg, instead, is stable in aquatic environment, and passes easily to the food chain

934following the sequence phytoplankton – zooplankton – predator fish – humans,

935having the ability to concentrate up to 10,000 times.

936Mercury in the metallic state is less toxic than organic and inorganic compounds,

937being scarcely reactive with living substances. Hg-vapours, instead, are highly

938harmful, being promptly absorbed by the respiratory apparatus, generating systemic

939toxicity. Their maximum tolerable concentration is 0.050 mgm�3air. The ordinary

940pathways of Hg-compounds exposure are oral and inhalation; organic compounds

941are more toxic than inorganic ones (e.g. the toxic dose of methyl-Hg for cattle is

94213 mg kg�1, while that of HgCl is 10 g), and are known to have provoked severe

943poisoning episodes in Iraq in 1972. The historically most known poisoning episode

944by methylmercury was that occurred at Minamata, Japan, in 1953. A local chemical

945plant, that utilized inorganic mercury as a catalyst, discharged waste material in the

946marine bay in front of this small village. Aquatic microorganisms transformed

947inorganic Hg into methylmercury, that was absorbed promptly by algae and phy-

948toplankton, and afterwards concentrated in fish that feed plankton. Local inhabi-

949tants, who fundamentally eat local contaminated fish, were the first to present

950poisoning symptoms. The final balance was actually dramatic: 121 toxicant people

951(46 with lethal consequences), and a series of severe effects on infants of pregnant

952women at the moment of the accident.

953Mercury compounds are protoplasma general poisons that bock the enzymatic

954activity, provoking protein precipitation and acting as direct corrosives.

955Endocellular metabolic ways are interrupted by enzyme inactivation operated by

956mercury. Mercury entered in the circulatory system is promptly oxidized to Hg2+;

957this may bind the plasma and tissue proteins. A portion of Hg crosses the blood-

958brain barrier, enters the brain and there undergoes oxidation and reacts with

959functional groups-SH of proteins, accumulating in the brain tissue. The highest

960Hg concentration is generally found in kidney; the metal is excreted by the urinary

961system or by the faecal material.
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962 Prolonged inhalation of Hg vapours may provoke respiratory system irritation

963 and pulmonary inflammation, and acute edema, with insufficient respiratory activ-

964 ity and lethal evolution within 24 h. Acute poisoning by inorganic-Hg is charac-

965 terized by stomatitis, oral cave and stomach pains, vomit, diarrhoea, anuria, shock

966 conditions and finally death. Chronic intoxication evolves generally in a more

967 sneaky way, with symptoms such as tremors, frequent diarrhoea, reduction of visual

968 capacity. Gastro-enteric disturbances, acute nephrites, bronchitis, pulmonary

969 edema, haemorrhagic episodes, liver necrosis, tubular renal necrosis also are likely

970 to occur.

971 Toxicological effects of mercury compounds on both plant and animal life have

972 long been recognised, but it was not until the above quoted disaster at Minimata

973 Bay that the subject received worldwide attention (Rahman et al. 2000).

974 Exposure of mercury to the general population is mainly through the diet and

975 dental amalgam. In foodstuffs, mercury is usually in the inorganic forms and of

976 very low concentration. The exceptions are fish and fish products, which are the

977 main sources of methylmercury in the diet.

978 The mercury content in hair is a useful indicator of exposure to methylmercury

979 via fish intake in non-occupationally exposed people. When evaluating exposure to

980 low concentrations of inorganic mercury, interference from methylmercury expo-

981 sure can dominate blood analysis; therefore, an alternative biological matrix such as

982 hair or urine is preferred.

983 2.1.4 Arsenic

984 Arsenic is present in nature as sulphides (As2S2 and As2S3, FeAs2S), and as

985 impurity in carbon, and is recovered as As2O3 from the fusion of mixed sulphide

986 (Cu, Pb, Zn) minerals. Agrochemicals containing As have been widely used in the

987 past, leaving diffused environmental contamination.

988 Arsenic is a toxic metal, especially in the state of AsIII. High contents of As

989 naturally occurring in groundwater have caused severe problems in some regions.

990 The most well known case is in the Bengal delta (Bangladesh and part of India),

991 where over 40 M people were estimated to be at risk from As in drinking water

992 (Steinnes 2009). Besides its toxicity, arsenic is well known also as a carcinogenic

993 element that is widespread in the environment. Arsenic pollution has been reported

994 worldwide, and some areas in South-East Asia and South America are particularly

995 polluted (Liu et al. 2011).

996 Toxic effects of As compounds (e.g. oxide, arsenite, arsenate) are known since

997 long time. Their toxicity is inversely proportional to the elimination velocity from

998 the body, and increases in the following order: organic compounds < arsenate <
999 arsenite < arsine. Given the variable species-specific sensitivity and the multiple

1000 factors that influence its toxicity, it is difficult to assess the As toxic dose in animals;

1001 in many species, the lethal dose is in the range 1–25 mg kg�1 arsenite, while As2O3

1002 is tenfold tolerated (Beretta 1984).
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1003The As penetration pathways in the organism are oral, pulmonary and skin

1004absorption. Ingestion is the main pathway of exposure to As, and arsenite is the

1005best absorbed, while arsenate is slowly absorbed in the gastro-intestinal tract and is

1006mostly eliminated by faeces. A prolonged ingestion proved a significant incidence

1007of skin tumours as well as other cancer forms to lung and liver. Foetal

1008malformations, moreover, have been recorded in pregnant subjects having assumed

1009As (Shu 1973).

1010Acute poisoning by inorganic-As is responsible for elevated, and rapid, mortal-

1011ity. Death is preceded by colic pains, tremors, vomit, diarrhoea, prostration, col-

1012lapse within 1–2 days.

1013Chronic poisoning is less frequent, and symptoms are skin lesions, damage to

1014renal and gastro-intestinal apparatus, diarrhoea, intestinal mucous inflammation.

1015Human exposure to inorganic arsenic occurs via inhalation of industrial dust and

1016ingestion of contaminated drinking water and food. Estimates of dietary intake

1017range from 7 to 330 mg day�1. Approximately 80–100 % of the inhaled and

1018ingested arsenic is absorbed through the gastrointestinal tract and lungs but up to

101950–70 % of the absorbed arsenic is eliminated mainly through urine and to a lesser

1020extent through hair, nails and faeces.

1021In high doses arsenic is toxic, with the toxicity depending on the oxidation state.

1022Toxicity decreases in the following order: arsine, inorganic As(III), organic As(III),

1023inorganic As(V), organic As(V), arsonium compounds and elemental arsenic

1024(Rahman et al. 2000).

1025Arsenic toxicity occurs if 3 mg day�1 are consumed for 2–3 weeks (Oliver

10261997). Phillip et al. (1983) found evidence of a clustering of malignant melanomas

1027where As concentration exceeds 30 g As kg�1soil. They also reported that children,

1028of 3 months to 36 months of age, are vulnerable to the effects of As. Thornton

1029(1996) suggested that As in South-west England might account for the high

1030incidence of malignant melanoma there.

1031There are elevated concentrations of As in drinking water in several countries in

1032South-East Asia, and these are thought to cause skin disorders, hyperkeratosis
1033(increased thickness of the upper layer of skin) of the palms of the hands and the

1034soles of the feet together with hyperpigmentation (increased melanin), vascular

1035disorders (e.g. Blackfoot disease, a form of gangrene), rashes (Tseng 1977; Thorn-

1036ton 1996), and cancer of the internal organs (Chen et al. 1992). When As is inhaled

1037it increases the incidence of lung cancer, but when ingested it causes skin, lung,

1038bladder, kidney and liver cancers. Steinnes (2009) reports that children exposed had

1039a significantly lower body mass index, more underweight, more stunted.

1040Normal hair contains small quantities of As, ranging from 50 to 400 mg g�1, but

1041the level is greatly increased during excessive intake of arsenic. According to

1042Rahman et al. (2000), the profound accumulation of arsenic in hair during exposure

1043is of value in the diagnosis of arsenic poisoning.

1044Some authors have claimed that arsenic levels in human hair from healthy

1045individuals should be <1 μg/g (Liu et al. 2011). However, others have suggested

1046that the background concentration for human hair arsenic is <3 μg/g. Consistently,
1047the mean arsenic concentration reported by Liu et al. (2011) in hair samples from
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1048 children living in Pian de’ Gangani (Montalto di Castro, Latium, Italy) was

1049 0.159 μg/g and the median was 0.152 μg/g. Man et al. (2002, in LIU et al 2011)

1050 reported an arsenic concentration of 0.17 � 0.14 μg/g in hair samples from children

1051 aged 6–15 years. The arsenic concentration in hair from blackfoot disease patients

1052 (0.56 � 0.41 μg/g) in Taiwan, China was significantly higher than that in hair from
1053 healthy people (0.56 � 0.41 μg/g) (Liu et al. 2011). The arsenic content in human

1054 hair samples from individuals in arsenic-affected areas of West Bengal, India

1055 ranged 0.17–14.39 μg/g, with a mean of 3.43 μg/g and median of 2.29 μg/g. The
1056 mean hair arsenic concentration for a patient group drinking contaminated water in

1057 Bangladesh was 14.1 μg/g, while in a group drinking uncontaminated water it was

1058 below 3.0 μg/g.
1059 Human hair arsenic concentrations in children are typically higher than in other

1060 age groups. This may be caused by different rates of arsenic metabolism resulting in

1061 differing accumulation of arsenic. However, the levels of arsenic in human hair are

1062 likely variable because individuals live in areas with different background arsenic

1063 concentrations. For example, in Italy, in the Venice region, As concentration in

1064 soils exceeds the regulatory guidelines up to 50 mg As kg�1 soil, as reported by

1065 Ungaro et al. (2008), in comparison to conterminous regions that exhibit As levels

1066 below the guidelines.

1067 Arsenic accumulation in the human body is related to the strength of the

1068 metabolism. Younger adults accumulate less arsenic than other age groups due to

1069 their robust metabolism. Children and the elderly have relatively weak metabo-

1070 lisms, and they may accumulate more arsenic than other age groups when exposed

1071 to the same levels.

1072 Other illness and disturbances due to As exposure are reported in current

1073 literature. Arsenic poisoning is known to produce polyneuritis in children who

1074 burned coal with a high As content. Arsenic (and Mn) have also been suggested

1075 as ototoxins affecting hearing (Chuang et al. 2007).

1076 2.1.5 Selenium

1077 Few chemical elements have risen research interest in the last decades as Se, that is

1078 known since long time for its toxicity to mammals (Gennaro Soffietti and Nebbia

1079 1984); only since some decades, instead, its role as microelement in physiological

1080 and pharmacological processes has been focused, and recent research allowed to

1081 identify numerous pathologic forms derived from its deficiency (Roman

1082 et al. 2014). Indeed, selenium is now recognized as an essential nutrient for animals:

1083 Se-containing enzymes and proteins are essential for normal growth, development

1084 and metabolism in animals. Se concentrations in soils, pastures and animal blood

1085 correlate closely with each other, and with areas where Se-responsive disorders

1086 have been found.

1087 Se is also known to be an antagonist to other heavy metals such as Cd, Hg, Pb,

1088 and also to have an antioxidative effect on lead-induced oxidative stress, and on

1089 oxidative damage in human sperm cell DNA (Chuang et al. 2007).
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1090The geographic distribution of Se is not uniform. Some areas in the world

1091(e.g. part of USA, Colombia, Great Britain) are characterized by large amounts of

1092Se (up to 1,000 mg kg�1) in soils, and vegetation may uptake Se amounts that may

1093pose toxicity problems to living organisms, humans included. Other countries

1094(e.g. Oceania, part of USA and most European countries, including Italy), instead,

1095are characterized by low levels (less than the optimal concentration to avoid

1096deficiency effects: 0.1 mg kg�1) of Se in soils and vegetation (Cottenie 1979). It

1097has been recognized as an essential trace element for humans and animals based on

1098its presence in antioxidant systems and in hormone balance. The major use of Se is

1099in the electronic industry (semiconductors, photovoltaic, solar cells, medical imag-

1100ing equipments, glass industry). Natural food sources high in Se are cereals (corn,

1101wheat, and rice), nuts, legumes, animal products (beef, chicken, eggs, cheese)

1102(Gbadebo et al 2010). Anthropogenic Se pollution, derived by industrial activities

1103(electronics, photovoltaic, glass, ceramics, paints, rubber, steel, plastics), is limited

1104to the most important urban agglomerates, and does not pose serious environmental

1105problems.

1106Selenium has a nearly paradoxical behaviour, since a concentration of

11070.1 mg kg�1Se in diet is considered essential for mammals, while a concentration

1108of 0.4 mg kg�1 presents a noteworthy toxicity. Generally speaking, Se toxicity

1109varies depending on the chemical species, with the organic ones that are more toxic

1110than the inorganic. Moreover, Se toxicity is influenced by interrelations and coun-

1111teracts with other chemicals (e.g. As, Cu, Hg, Cd), by formation of Hg-Se and

1112Cd-Se complexes that are relatively harmless.

1113Low Se concentration in soils may lead to low Se uptake, low Se in the food

1114chain, and low Se intake, provoking increasing risk of cardiovascular disease,

1115coronary heart disease and cancer in humans.

1116The relation between the effects of Se deficiency and toxicity in the soil and

1117health are most clear in some areas in China, where the Se concentration in crops is

1118variable. The first disease associated with Se deficiency was Kashin- Beck disease,

1119an endemic osteoarthropathy (Oliver 1997). It results in chronicle arthritis and

1120deformity of the affected joints in children and teenagers. Muscular weakness is

1121also a characteristic (Steinnes 2009).

1122Another typical disease associated with Se deficiency in China is Keshan

1123disease, a cardiomyopathy found in young women and children. The symptoms

1124are myocardial necroses, and weakness of the heart muscle (Oliver 1997). Low

1125selenium levels have also been found in many disease states, including various

1126forms of cancer, acute myocardial infarction, severe rheumatoid arthritis, cirrhosis

1127of the liver and conditions exhibiting a compromised health status (Rahman

1128et al. 2000). In addition, deficiency of Se is implicated in the weakening of the

1129immune system, with muscular degeneration, impeded growth, anaemia, liver

1130disease, and with endemic neuropathy and urinary tract tumours (Oliver 1997).

1131Other symptoms of Se deficiency include muscle pain, weakness, and loss of

1132pigments in hair and skin, and whitening of nails beds (Gbadebo et al. 2010).

1133The disease is likely associated with vitamin E deficiency (WHO 1996): Se

1134deficiency impairs the antioxidant defences of the body, but Se combined with
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1135 vitamin E act synergistically as antioxidants to restrict tissue damage from oxida-

1136 tive reactions, and in part explain the role of Se deficiency in the pathogenesis of

1137 atherosclerosis and multiple sclerosis (MS).

1138 Schalin (1980) observed a clear correlation with the geographical latitude of

1139 developed areas, Se deficiency and high prevalence of multiple sclerosis, and

1140 suggested the operation of an infective agent. However, it remains unlikely that

1141 MS is a disease of predominantly genetic origin since the world distribution

1142 suggests the opposite. Another strong argument supporting the hypothetical role

1143 of Se in MS is the fact that the only disease with a similar worldwide distribution is

1144 cancer of the colon, a disease convincingly related to lack of Se.

1145 The selenium intake is generally through dietary sources, and is frequently

1146 below the safe range of 50–200 μg/day recommended daily intake of Se by the

1147 US national research Council. Health benefits of Se are partly explained by its

1148 antioxidant effect. It may delay or prevent the onset of cancer and also have anti-

1149 aging effect. If consumed in overdose, it may have toxic effects (Gbadebo

1150 et al. 2010).

1151 Selenium toxicity in humans and animals is a much rarer problem than Se

1152 deficiency, but it occurs at sites where high soil Se concentration is combined

1153 with high uptake by plants (Alloway 2013).

1154 Symptoms of Se toxicity are fatigue, hair loss, white blotchy nails. Se was found

1155 to be an environmental toxin responsible for health problems in livestock grazing

1156 on soils with high Se content. Dietary supplementation of 200 μg Se per day

1157 significantly reduced lung, prostate and colorectal cancer in humans. Chronic Se

1158 toxicity is caused by intakes of 2–4 mg/day or prolonged intakes of 1 mg/day.

1159 Chronic symptoms of excessive Se include morphological changes in fingernails,

1160 nail brittleness and loss of hair as well as nausea, vomiting and skin lesions.

1161 Selenium is rapidly absorbed by the gastro-intestinal tract, and binds to plas-

1162 matic proteins, with albumins and globulins as carriers (Mc Murray and Davidson

1163 1979). Administration of toxic amounts leads to Se accumulation in various organs,

1164 with the following order: kidney > liver > lung > heart > muscles > brain.

1165 Current knowledge on the metabolic reactions within living organisms is rather

1166 fragmentary and not reliable to an organic framework. Many Se compounds follow

1167 the same metabolic ways than S compounds, the two elements being isomorphic;

1168 for example, a possible metabolic scheme for selenite is the following: Selenite

1169 (Se03
�) reacts with glutathione (GSH) forming derivates such as selenodiglu-

1170 tathione (GS-Se-SG); this is metabolized to form selenidric acid (H2Se), which is

1171 methylated and volatizes, contributing to decreasing Se concentration in organisms

1172 (Venugopal and Luckey 1978). A minor pathway of Se elimination is via urinary

1173 and faecal systems.

1174 The toxic effects of Se can, at least in part, be explained by formation of Se

1175 derivatives of glutathione that function as redox-cycling agents generating reactive

1176 oxygen species (ROS). The net effect of Se at excessive levels is therefore not as an

1177 antioxidant, but as a strong pro-oxidant (Alloway 2013).

1178 Selenium-Glutathione Peroxidase (GSH-PO), together with vitamin E, plays an

1179 important role of protection of biological membranes against damages provoked by
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1180Lipid Peroxidation (LPO), reducing peroxides to alcohols (Dini et al. 1981). Toxic

1181amounts of Se, moreover, provoke a noteworthy reduction of GSH, which is an

1182active protector of haemoglobin. Elevated Se doses, furthermore, may interfere

1183with embryo development, since Se is capable to cross the placental filter, reducing

1184oxygen and energy availability.

1185Selenium carcinogenesis is a very debated problem. Prolonged assumption of

1186small quantities of Se induced hepatic carcinomas and adenomas (Volgarev and

1187Tscherkers 1967); however, recent advances assign to Se a major role in prevention

1188of human neoplasms. Selenium supplementation has been reported to protect

1189against various forms of cancer (prostate, colorectal, lung and liver) in prospective

1190clinical trials from the United States and China (Alloway 2013). These data are

1191consistent with earlier epidemiological studies, especially geographical ones from

1192the United States, showing that mortality from several, but not all forms of cancer,

1193and also from cardiovascular diseases (especially coronary heart disease and

1194hypertension) was negatively correlated to the intake of Se (Alloway 2013).

1195Selenium poisoning may occur in both acute and chronic forms. Acute forms

1196occur when huge amounts of Se compounds are taken in; symptoms are rapid and

1197weak pulse, shortness of breath, bloating, intense colic pains, diarrhoea, poliuria,

1198respiratory paralysis followed by death. Chronic forms (formerly “alkali disease”

1199originating by excessive consumption of alkaline water) are due to ingestion of

1200Se-contaminated food; symptoms are weight loss, anaemia, joint injury. Selenosis

1201diagnosis is based on blood-Se up to 25 mg kg�1 in acute forms, and 2–5 mg kg�1 in

1202chronic ones. Arsenic administration in diet is considered effective for chronic

1203selenosis, while no intervention is effective for acute toxicity.

1204Selenium is known also for its counteracting effect on other metals: high plasma

1205Se concentrations have been shown to decrease lead toxicity (Chuang et al. 2007).

1206Selenium binds with toxic metals, reducing or eliminating their effect (Xie

1207et al. 1998). Animal experiments have shown that Se at high intake levels has a

1208strong protective effect against the toxicity of several calcophilous toxic metals,

1209such as Hg, Cd and Ag (Alloway 2013). Its antioxidant effect may also be an

1210important factor that reduces lead toxicity. Age is a well-established risk for

1211impaired hearing ability, as well as Pb and Se were significantly associated.

1212However, Se concentration was inversely associated with hearing thresholds: it

1213might have a protective function for hearing. No synergistic effect was found

1214(Chuang et al. 2007).

1215Recent studies and epidemiological observations on HIV progression confirm

1216that Se and GSH directly affect the rate of HIV viral replication in patients.

1217Enhanced oxidative stress (e.g. because of other infections) or impairment of the

1218cellular capacity for antioxidant defence will therefore be a direct cause of pro-

1219gression from AIDS to HIV and mortality (Alloway 2013).

1220HIV-1 infection most likely occurs in subjects with poor diets; thus, maintaining

1221an optimal Se status in HIV-1 patients may help to increase the enzymatic defence

1222and reduce their risk of hospitalization (Roman et al. 2014). With increasing

1223recognition of the role of antioxidants in disease prevention, the need for accurate

1224determination of selenium status has become more important. Very few papers have
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1225 been published on the determination of selenium in hair, which allows long-term

1226 exposure to be monitored.

1227 2.1.6 Chromium

1228 Among heavy metals, up to now chromium has received little attention in compar-

1229 ison to, for instance, Cd, Pb, As and even Se. The reasons for this lack of interest are

1230 diverse. One is that Cr was considered a “local source” contaminant, thus not

1231 constituting a widespread environmental problem; nevertheless, because of lax

1232 regulatory guidelines, disposal of Cr-containing wastes over large areas has led to

1233 the present extensive contamination of soils in many parts of the world. A second

1234 reason is that the dominant naturally occurring form of Cr in the trivalent oxide

1235 chromite, which has a very stable crystal structure. Consequently, it is very slow to

1236 react and is considered essentially immobile in the environment. In contrast, Cr VI is

1237 highly mobile and is considered acutely toxic, although its occurrence is rare in

1238 nature (Bini et al. 2000). Chromium has been recognized as an essential microel-

1239 ement for animals and humans, potentiating the action of insulin and therefore

1240 being effective in carbohydrate and lipid metabolism (Steinnes 2009). On the other

1241 hand, recent works point to the severe toxicity of CrVI, a form utilized in several

1242 industrial activities (electroplating, chemicals, varnish, leather tanning), with

1243 respect to human health. Indeed, it is known to be a skin irritant and to induce

1244 allergic contact dermatitis. In addition, Cr VI has been recently determined to be a

1245 potent human carcinogen for which there is adequate evidence of carcinogenic risk

1246 (Wang et al 2011). Conversely, the reduced form, CrIII, is considered to have low

1247 acute and chronic toxicity, mostly because of the demonstrated low capacity to

1248 penetrate animal cell.

1249 The chromium concentration in soils is largely determined by the parent mate-

1250 rial; the average world Cr concentration in soils is 40 mg kg�1; the highest Cr level

1251 (up to 1,800 mg kg�1) is found in serpentine soils, the lowest (<10 mg kg�1)

1252 occurring in calcareous soils (Adriano 2001).

1253 Chromium is considered to be a not essential element in plant metabolism, and

1254 moreover it is slightly available to plants. The form most available to plants is CrVI,

1255 which is the very unstable form under normal soil conditions (Kabata-Pendias and

1256 Mukherjee 2007), and is acutely phytotoxic (Bini et al. 1999). However, it is not

1257 easily translocated within plants (Fontana et al. 2011); there is evidence that it is

1258 concentrated mainly in roots, that act as a barrier (Bini et al. 2008). Also CrIII seems

1259 to be available to plants, accumulating in roots and leaves, where it causes chronic

1260 damage to cell structure (Maleci et al. 2014). Visual symptoms of Cr phytotoxicity

1261 are stunted growth, poorly developed root system, discoloured leaves (Kabata-

1262 Pendias and Mukherjee 2007). However, under normal field conditions phytotox-

1263 icity is unlikely to occur.

1264 In contrast to plants, chromium is essential for normal energy metabolism of

1265 humans and animals, but above certain concentration levels it is toxic and carcin-

1266 ogen. It is reported to control the metabolism of glucose and lipids, and affects some
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1267of the enzymes that regulate cholesterol synthesis with beneficial impact of Cr on

1268cholesterol fractions (Kabata-Pendias and Mukherjee 2007). Inhalation is the main

1269pathway Cr enters the human body: the respiratory tract is the major target organ for

1270both acute and chronic exposures, which produce nasal ulceration, perforation of

1271septum, bronchitis and other respiratory effects, and ultimately nasal and lung

1272cancer. Oral Cr intake (food ingestion) is another way of exposure, that affects

1273the gastro-intestinal tract; CrVI is more easily absorbed by the intestinal mucosa

1274than CrIII; however, in the case of CrVI ingestion, it is almost completely reduced to

1275CrIII by acid gastric juice in the stomach, thus reducing drastically the toxic effects

1276likely provoked by CrVI (Adriano 2001).

1277The average daily intake for general population is estimated to be approximately

127860–75 μg Cr, depending on age, gender, life style. Excessive doses of Cr intake

1279have been associated with renal dysfunctions (Steinnes 2009), and may result in

1280liver and kidney failure, anemia, muscle breakdown and abnormalities in blood

1281clotting. When an excess of Cr compounds are inhaled, lung, nasal and possible

1282stomach cancer may develop (Kabata-Pendias and Mukherjee 2007). Association

1283between Cr inhalation and mortality due to lung cancer has been found in epide-

1284miological studies; mortality from lung cancer is apparently influenced by cumu-

1285lative exposure (Steinnes 2009). Chromium dermal absorption also is frequent; Cr

1286is generally considered to be the second most common skin allergen after Ni, and

1287produces increased sensitivity, skin ulceration and allergic contact dermatitis.

1288Instead, increased cholesterol levels, high blood sugar levels, coronary dysfunction,

1289arteriosclerosis and abnormalities of nerve stimulation may occur with Cr defi-

1290ciency (Steinnes 2009).

1291In conclusion, as previously stated, CrIII is an essential element to humans and

1292animals, while CrVI is not, and act as a potent carcinogenic, especially in occupa-

1293tional setting. Thus, CrIII and CrVI have contrasting relevance in biological systems:

1294the former is an essential nutrient, while the latter is a toxin (Adriano 2001).

12952.2 Emerging Harmful Elements

12962.2.1 Aluminium

1297Aluminium is the third abundant element in the earth’s crust, being a fundamental

1298component of silicate rocks, where it may attain 8 %. Al-oxide (bauxite) is the most

1299important aluminium ore, widely diffused especially in tropical areas. Aluminium

1300is also an abundant element in soils, where its contents vary commonly between

13011 and 4 % (Kabata-Pendias and Mukherjee 2007). Due to its versatile properties,

1302application is current in different industrial sectors, including metallurgical, elec-

1303trical and chemical, packaging, paper manufacturing, wood preservation and many

1304others.

1305The total Al content of soils is mostly inherited from parent rocks and from new

1306mineral species formed during pedogenetic processes; its distribution in soil
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1307 profiles is highly governed by chemical-physical conditions, organic matter, pH,

1308 and other soil properties. Only easily mobile and exchangeable fractions of Al play

1309 an important role in soil fertility. The mobile Al in acid soils can be taken up by

1310 plants and it creates a problem of chemical stress in plants. The most important

1311 problem is associated with Al toxicity, as one of the major factors which limits the

1312 growth and yield of plants cropped on acid (pH < 5) soils. Al toxicity in soils is

1313 particularly harmful because it causes shallow rooting, drought susceptibility, and

1314 deficient nutrients input (Kabata-Pendias and Mukherjee 2007). Conversely, there

1315 is some evidence that low levels of Al may have a beneficial effect on plant growth.

1316 Once considered as a not toxic element for human population, in early 1970s the

1317 scientific literature started to consider some toxicity evidences induced by Al as

1318 collateral effects of renal dysfunction treatment (dialysis), with intestinal Al

1319 absorption up to 500 mg. More recent research indicates Al as one of the factors

1320 directly related to neurotoxic disturbances (haedache, epilexy). No definite conclu-

1321 sions have been given on chronic Al exposure; however, aluminium is known to be

1322 neurotoxic at high exposure levels, (Steinnes 2009). Indeed, he long-term uptake of

1323 aluminium is implicated in the aetiology of neurological disorders such as

1324 Alzheimer syndrome (Polizzi et al. 2002) and arteriosclerosis (Nriagu 1988). The

1325 World Health Organization (WHO 1996) indicates that an excess A1 also seems to

1326 cause softening of bone.

1327 Although there is much debate on Al effects on humans, so far no positive

1328 conclusions have been made, and the relation between A1 and Alzheimer’s disease

1329 is still controversial (Kabata-Pendias and Mukherjee 2007).

1330 Water is the main pathway by which A1 enters the human diet. TheWHO (1993)

1331 guideline for A1 concentration in drinking water is 0.2 mgL�1. A statistically

1332 significant association of Al in drinking water with the incidence of dementia was

1333 found (Steinnes 2009), although Al usually contributes a very small proportion (15–

1334 20 mg/day) of daily human intake, at the limit value of 1 mg Al kg–1 BW (WHO

1335 1993). Yet, the major part of a typical daily intake comes from food (e.g. eggs 0.5–

1336 1 mg kg�1; lettuce 5 mg kg�1; meat 1–10 mg kg�1), beverage (beer, tea) and food

1337 additives, with possible increase (up to 50 mg/day) due to the use of pans and other

1338 kitchen utensils made with aluminium. Considering a daily intake of Al, no risk is

1339 expected from eating food cooked in Al-pots and/or Al-foil. A minimal risk level

1340 for oral exposure of 2 mg Al kg�1 BW per day has been set up in the USA (Kabata-

1341 Pendias and Mukherjee 2007).

1342 2.2.2 Antimony

1343 In contrast to arsenic, which belongs to the same periodic group and have the same

1344 oxidation states, there is limited understanding of the behaviour, ecotoxicology, and

1345 the extent of environmental dispersion of antimony (Liu et al. 2011). Antimony is

1346 non-essential for human life, and is completely absent in living organisms; it is

1347 found in biological specimens from persons who have been exposed to industrial

1348 sources of antimony. Indeed, it is emitted into the environment through human
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1349activities such as mining, smelting, alloys, emails, and the combustion of fossil

1350fuels, and its concentration in the environment has increased by 50 % since the early

1351nineteenth century. Although many investigators have highlighted the importance

1352of the environmental chemistry of antimony (and bismuth) (Liu et al. 2011 and

1353references therein), little information is available on how antimony contamination

1354affects exposed populations. Pentavalent antimony is less toxic than trivalent

1355antimony. In humans trivalent antimony is taken up by the red blood cells, whereas

1356pentavalent antimony remains in the plasma and is more easily excreted than the

1357trivalent form (Rahman et al. 2000).

1358Antimony has been classed as a priority pollutant by the United States Environ-

1359mental Protection Agency (US EPA). The most likely route in the body from

1360industrial exposure is from inhalation, or from ingestion of drugs containing the

1361element, whose main medicinal use is in the treatment of parasitic diseases

1362(Rahman et al. 2000). A study of industrial occupational exposure in the vicinity

1363of the largest Sb mine in the world, in China reported mean antimony values of

13640.05, 0.57 and 0.36 μg/g in hair from locomotive shed workers, industrial welders,

1365and students and office workers, respectively. High antimony concentrations

1366(�3 μg/g) were found in 80.0 % of children (5–9 years) and 69.6 % of adults

1367aged 41–51 years (Liu et al. 2011).

1368In France, Sb intake was determined by consumption of goose liver ( foie gras),
1369achieved administrating to gooses 60 mg kg�1 day�1antimony sulphide (today

1370prohibited), which induced liver steatosis, and a Sb concentration up to

1371100 mg kg�1.

1372Long-term intake of small amounts of Sb may induce chronic antimony poison-

1373ing. Sb exposure has been shown to induce DNA damage and oxidative stress, and

1374generates reactive oxygen species (ROS), causing apoptosis; since Sb geochemical

1375behaviour is similar to As, it is likely that the DNA damage induced by Sb follows

1376similar pathways as those for As (Franco et al. 2009).

1377Limited information is available as to what level of antimony in hair can be used

1378to estimate whether individuals are suffering from Sb chronic poisoning. Some

1379studies have found that hair As levels are <3 μg/g. Consistently, 3 μg/g have been

1380proposed by Liu et al. (2011) as the normal hair antimony level. Lethal Sb dose for

1381humans (70 kg body burden) is estimated within 100 and 500 mg.

13822.2.3 Beryllium

1383Beryllium is a very rare element (2–10 mg kg�1 in the earth crust). It is increasingly

1384used in aircraft and spatial vehicles industry, as a hardening component in Al-Cu

1385alloys, and as neutron source in nuclear reactors. However, the primary environ-

1386mental source of Be is coal combustion, producing around 180 tonnes year�1

1387(Adriano 2001). Beryllium is recognized as phytotoxic, but its availability in low

1388amounts may have beneficial effects on plants, stimulating growth. It accumulates

1389primarily in roots, and afterwards may translocate to aerial parts and accumulate in

1390leaves. Deleterious effects are antagonism of nutrients such as Ca and Mg, and
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1391 inhibition of certain enzymes. It may enter the food chain through crop produce

1392 contaminated by industrial particulate matter. A second pathway of Be assumption

1393 is via drinking water; in three of 96 examined mineral waters a Be concentration

1394 above 3.0 μg L�1 have been determined (Cerutti AU3, personal communication).

1395 Be, as well as Ag, As, Cd, Hg, Pb, are good examples of PHEs that have no

1396 proven essential functions in humans, and are known to have adverse physiological

1397 effects at relatively low concentrations (Abrahams 2002). Indeed, beryllium is

1398 highly toxic to living organisms, and affects exposed workers; the target organs

1399 are bones, liver, kidney, and lung. Pulmonary diseases that affect Be-workers are

1400 particularly serious, and may appear after long time from exposure. Be may induce

1401 also rickety, due to the high insolubility of Be-phosphate. Be-induced apoptosis has

1402 also been ascribed to ROS generation, but may be prevented by superoxide

1403 dismutase (SOD) mimics; Be also induces activation of protein kinase C in a

1404 ROS-independent manner (Franco et al. 2009).

1405 Current data on Be effects to humans is lacking; more attention should be paid to

1406 this emerging element.

1407 2.2.4 Bismuth

1408 Bismuth is an emerging metal belonging at the same group as As and Sb, and the

1409 most common chemical form is sulphide; large ore deposits are found in southern

1410 America, Australia and northern Sweden. Its geochemical behaviour may be

1411 compared with that of As and Sb. Although little investigated, it is known since

1412 ancient times, and the main usage is in easy fusible alloys with Pb and Sn, and in

1413 pharmaceutical industry, as substitute for Hg, being less toxic. Currently there is a

1414 great interest in some clinics for the monitoring of patients on bismuth drip

1415 treatment for peptic ulcer complaints (Rahman et al. 2000).

1416 Industrially it is considered one of the less toxic heavy metals. Yet, the metallic

1417 form Bi is not considered toxic and poses minimum threats to the environment.

1418 Conversely, Bi compounds generally have very low solubility but they should be

1419 handled with care, as there is only limited information on their effects and fate in

1420 the environment, and the cautelative principle should apply.

1421 The main routes of Bi entry in the human body are dust inhalation, skin contact

1422 and ingestion by food or drinking water. Exposure may cause both acute and

1423 chronic effects. The bismuth content in most biological samples is very low, with

1424 biological fluids normally containing only a few ng ml�1, while in biological tissues

1425 concentrations may range from 10 to 90 ng g�1. Jorgensen et al. (quoted in Liu

1426 et al. 2011) reported that bismuth concentrations ranged <0.03 to <0.1 μg/g in

1427 mammalian tissues. Hair is the target tissue for assessing Bi poisoning. Park

1428 et al. (2007) found a mean bismuth level of 0.04 μg/g in hair samples from

1429 655 children (3–6 years old) from metropolitan and small cities in Korea. High

1430 bismuth concentrations (�0.1 μg/g) were observed in individual groups of various

1431 ages affected by bismuth exposure. Children (5–9 years) and adults aged�41 years

1432 presented higher Bi levels than individuals in other age groups.
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1433Toxic effects, both acute and chronic, have been recorded upon exposure to

1434bismuth and its salts.

1435Acute effects determined by inhalation are a nuisance dust causing respiratory

1436irritation. Inhalation may cause foul breath, metallic taste and gingivitis. Ingestion

1437may cause nausea, loss of appetite and weight, albuminuria, diarrhoea, skin reac-

1438tions, stomatitis, headache, fever, sleeplessness, depression, rheumatic pain and a

1439black line may form on guns in the mouth due to deposition of bismuth sulphide.

1440Skin contact and dermal absorption may cause irritation. Exposure to contaminated

1441atmospheric particulate may cause eyes irritation (Lenntech BV – Internal report,

14422013, unpublished. Delft, The Netherlands).

1443Bismuth Chronic effects: long-term Bi inhalation may affect the function of liver

1444and kidneys. Ingestion, besides affect the function of liver and kidneys, may cause

1445anaemia, black line on gums and ulcerative stomatitis. Skin contact and dermal

1446absorption may cause dermatitis.

1447Although little information is available on Bi carcinogenicity, bismuth is not

1448considered a human carcinogenic; nevertheless, it can cause kidney damage. Other

1449toxic results may develop, such as vague feeling or bodily discomfort, presence of

1450albumin or other protein substance in the urine, diarrhea, skin reactions and

1451sometimes serious exodermatitis. Serious and sometimes fatal poisoning may

1452occur from the injection of large doses into closed cavities and from extensive

1453application to burns (in form of soluble bismuth compounds). Administration of

1454large doses can be fatal. It is stated that the administration of Bi should be stopped

1455when gingivitis appears, for otherwise serious ulceration stomatitis is likely to

1456result.

14572.2.5 Boron

1458Boron is a widely diffused light non-metallic element, that is easily available as

1459H3BO3 (sassolite) in volcanic fluids in Tuscany (Italy) and as Na2B4O7.10H2O

1460(borax) in Tibet, Chile and California (USA). Boron compounds usage was

1461recommended at very low dose as food preservative, but is currently prohibited in

1462several countries because of its toxicity at doses of grams; the main industrial use is

1463in glass, email and paints industry, soaps and teeth pasts preparation. As pharma-

1464ceutical it is a light antiseptic, and in agriculture, it proved efficient in enhancing

1465flowering of orchards, and particularly the olive groves. Given its ability to form

1466complexes with sugars, B has been implicated in sugar transport across cell

1467membrane. Some plants (sesame, sugar beet) showed B accumulation in leaves as

1468a consequence of passive transport from roots to shoots, via xylem, eventually up to

1469a toxic level (Adriano 2001). Boron is essential for plant growth, although the

1470amounts requested for some crops (e.g. alfalfa) may cause damage to other crops

1471(e.g. legumes and cereals). Conversely, B deficiency has been reported in food

1472crops in USA, UK and Australia, without apparent geographic pattern. Concentra-

1473tions <0.05 μg B mL�1 proved to produce deficiency, while 1.0 μg B mL�1proved

1474toxic; 0.50 mg kg�1 is likely a safe level, while ranges 0.05–0.10 μg B mL�1 look
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1475 adequate for many plants. For example, sunflower, cotton, celery, cauliflower are

1476 more sensitive in comparison to cabbage, broccoli, carrots, clover, radish, olive

1477 (semitolerant), and to tolerant plants such as corn, oat, onion, potato. High boron

1478 levels in irrigation water may cause a rise of boron levels in the soil to a toxic

1479 extent. Tolerant crops may achieve 2.0–4.0 μg B mL�1 before presenting toxicity

1480 symptoms (e.g. chlorosis), while USEPA has set a limit of 0.75 μg BmL�1 for long-

1481 term irrigation water.

1482 From plants, B may enter the food chain. To date, there is no sufficient infor-

1483 mation on the essentiality of B in animal nutrition and human health, and also its

1484 toxicity has not been established conclusively (Steinnes 2009). The World Health

1485 Organization Committee on Trace Elements in Human Nutrition (WHO 1996)

1486 concluded that B is probably essential, being beneficial in humans and animals

1487 for many life processes as cell membrane function, mineral and hormone metabo-

1488 lisms, and enzyme reactions (Kabata-Pendias and Mukherjee 2007). The only

1489 information is that excessive boron intake (4,000 mg day�1) may cause symptoms

1490 of boron poisoning, such as gastrointestinal disturbances, skin eruptions, and signs

1491 of central nervous system stimulation, followed by depression (WHO 1996).

1492 2.2.6 Copper

1493 Copper is known since the pre-historical times, and gives the name to an epoch of

1494 civilization; Greeks and Romans exploited Cu from Cyprus (its Latin name cuprum
1495 comes from there) and Spain, and commerce flourished with copper, as well as with

1496 lead. Native Cu and Cu compounds come from Chile, USA, Russia, Africa; mixed

1497 sulphide with Pb, Fe, Zn were exploited until the 1960s of the last century in several

1498 countries, including Italy (Bini 2012; see also this volume, Chap. 5). Copper is the

1499 most widely used metal in the world, after iron. Its usage is mainly in electrical

1500 applications and energy transport (42 %), metallurgy (33 %), agrochemicals (12 %),

1501 and others.

1502 Copper is an essential microelement to living organisms, contributing to

1503 haematopoietic function and to the formation of bone tissue. Moreover, it is a

1504 component of several important enzymes acting in oxidation-reduction processes

1505 and in catalysis of enzymatic reactions such as urease, laccase, hydroxylase. Copper

1506 is considered slightly toxic; Cu-poisoning may occur as a consequence of excessive

1507 Cu intake from the food chain (e.g. from pesticide-contaminated forage, vegetables

1508 and particularly vineyards treated with the classic “Bordeaux mixture” based on

1509 copper sulphate). Yet copper, unlike lead, is largely absorbed by plants growing on

1510 naturally enriched soils or in areas conterminous to industrial plants (smelters) and

1511 mines, or spread with sewage sludge and as antiparasitic and fungicide in

1512 agriculture.

1513 Copper is essential for man; it forms organic complexes, and metalloproteins,

1514 especially haemoglobin. Some function as enzymes in metabolic reactions. Copper

1515 aids blood clotting, maturation of connective tissue, development of the bones, and

1516 participates in lipid metabolism (Davis and Mertz 1987). The metabolic behaviour
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1517of Cu is strictly connected with that of Mo. This metal, indeed, enhances copper

1518elimination from liver, and counteracts, as well as other metals (Fe, Zn, Cd) its

1519absorption in the gastro-intestinal tract, at amounts less than 30 % of the ingested

1520Cu. The ingested copper dissociates and forms new Cu-complexes with amino acid

1521as carriers of active transport crossing the intestinal mucous; within the cells, it

1522binds metallothionein and than enters the circulatory system; in the plasma, it may

1523bind albumins or is distributed in cytoplasm and in different subcellular fractions,

1524where enzymatic synthesis occurs.

1525Similarly to other essential (and critical) elements, both Cu-deficiency and

1526excess may occur, and the pathways of exposition are inhalation, ingestion and

1527skin contact, the latter being common with workers in agriculture; however,

1528ingestion of contaminated food is the most likely to occur.

1529An intake of 2 mg Cu day�1 is assumed to be adequate for healthy adults,

153080 pg day�1for infants and 40 pg day�1 for children (Oliver 1997). Deficiency is

1531generally induced by inadequate diet, especially in developing countries. Toxicity

1532from Cu excess is rare: the WHO (1996) suggests a safe upper limit of 12 mg day�1

1533for adults and 150 pg day�1 for children.

1534Copper deficiency in humans is serious and may lead to typical disease symp-

1535toms such as anaemia and leukopenia, bone deformations, osteoporosis, lack of

1536colour of the hair and skin, degeneration of the hearing muscle, reduced elasticity of

1537arteries, coronary heart disease, and neurological disorders. Antagonistic effects

1538with Mo are reported (Steinnes 2009). Deficiency is associated with anaemia and

1539neutropenia in premature babies, and with diarrhoea in children (Oliver 1997).

1540Excessive Cu intake induce acute and chronic toxicity, although with generally

1541mild forms. Acute poisoning may be determined by Cu intake up to 200 mg kg�1;

1542more complex is quantification of chronic poisoning, given the interaction/coun-

1543teraction with other metals; for example, it is considered to be harmful a diet with a

1544ratio Cu/Mo less than 10:1. If ingested at high amounts, copper acts as a

1545protoplasmatic poison with regard to the gastro-enteric tract mucous. The long-

1546term intake of Cu normal doses may determine metal accumulation in liver,

1547provoking functional and structural alterations symptomatic of incipient poisoning.

1548However, no carcinogenic effects are recorded with copper. Once overcome a

1549certain accumulation level (e.g. 150 mg kg�1), liver releases a huge amount of

1550metal, and possibly oxidant substances in the circulatory system, with red globule

1551membrane damage (LPO), determining haemolytic crisis. Indeed, copper is prone

1552to participate in the formation of ROS, leading to final LPO and cell apoptosis

1553(Franco et al. 2009).

1554Acute poisoning symptoms, as for other metals (e.g. Hg, Pb, Tl) are generally

1555vomit, colic pains, diarrhoea with fluid greenish faeces, cardio-circulatory

1556collapse, and death is likely to occur. The lethal dose for humans is considered to

1557be 2.5 g/70 kg body weight.

1558Similar critical evolution occurs also with chronic poisoning; symptoms are

1559weakness, muscle tremors, haemoglobinuria, jaundice, dyspnea. Liver is generally

1560hypertrophic, kidney presents necrotic tubular alterations, that may induce
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1561 degenerative phenomena in the brain. Morbidity of chronic poisoning is generally

1562 low (<5 %), while mortality is high, with 75 % of subjects dying within 3–4 days.

1563 Chronic poisoning may be assessed by the quantitative estimate of blood-Cu,

1564 whose physiological amount is in the range 1–3 mg kg�1. Poisoning prevention

1565 may be achieved with equilibrated administration of NH4-molibdate.

1566 2.2.7 Fluorine

1567 Fluorine is a very reactive element (most of the halogen group) and may combine

1568 with several other elements, including inert gases. Fluorite (CaF2) is the most

1569 common commercial source of F. It is used the Al-industry, in the steel industry,

1570 and also in plastic, ceramic and glass production and in various chemical processes

1571 (Kabata-Pendias and Mukherjee 2007).

1572 Fluoride has long been added to municipal drinking water (at the level of 1.2–

1573 1.9 mg L�1) for the prevention of dental caries. It is still added to tooth pastes.

1574 Elemental fluorine does not pose severe poisoning hazard to living organisms,

1575 while both organic and inorganic compounds play a significant role in toxicology,

1576 being frequent in nature, associated with P-bearing minerals. Soils derived from

1577 P-bearing rocks contain huge amounts of F; however, it is not easily translocated to

1578 plants, being arrested mostly in roots. The main source of fluorine is from industrial

1579 plants such as smelters, foundries, glass factories, aluminium and steel produce,

1580 whose emissions (both fumes and dust) are dispersed in conterminous areas,

1581 contaminating soils and vegetation. Contamination, therefore, results from the

1582 site topography and from wind regime.

1583 Environmental pollution by F in some regions has become of ecological impor-

1584 tance. The reactions of plants exposed to F pollution, before any visible toxicity

1585 symptom, are retarded growth, inhibited reproduction, and yield reduction. How-

1586 ever, the greatest concern with increased F concentrations in plants is related to the

1587 toxicity to mammals, including humans (Kabata-Pendias and Mukherjee 2007).

1588 The average F contents in mammalian tissues are established as 2–5 mg kg�1 in soft

1589 tissues and 250 mg kg�1 in the skeleton, where F substitutes for (OH) in the mineral

1590 structure of teeth and bones. Fluoride ion F- is able to bind and precipitate the

1591 essential ion Ca2+, decreasing its physiological functions, and in particular

1592 inhibiting enzymatic activity and arresting cell respiration. Dental fluorosis affects

1593 developing teeth with thinning of the layer of enamel and dentin defective miner-

1594 alization. Bone lesions are a consequence of inadequate formation of bone matrix

1595 and subsequent deficient mineralization.

1596 Exposure to fluoride may occur by ingestion, inhalation or by skin absorption;

1597 the oral pathway is the prominent, and fluoride absorption by the gastro-intestinal

1598 tract is very rapid, although the occurrence of Ca, Al, Mg, Fe, P counteracts F�

1599 absorption. Fluoride distribution in the animal body is mostly in hard tissues

1600 (skeleton and teeth) and secondly in kidney, although it has been found in all

1601 organs and tissues. Excretion is generally via renal system; by interrupting expo-

1602 sure, F- depletion occurs very slowly, in several months or even years.
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1603Recently there has been a wide discussion on the health risk associated with

1604increased intake of F. Fluorine toxicity may occur both in acute and chronic form,

1605in relation to ingested amount, exposition, absorption capacity in bones and teeth.

1606Threshold levels are considered to correspond to a daily intake up 40 mg kg�1 NaF;

1607however, with only 15 mg kg�1 dental alterations may occur. Severe toxicity and

1608bone lesions have been observed within 30 days after intake of 100 mg kg�1 NaF;

1609lethal doses are achieved with intake 100 g (Beretta 1984). The intake of 20–

161070 mg F day�1 by adults can cause heartburn symptoms due to displacement of Ca.

1611Elevated F levels in drinking water can produce both mutagenic and carcino-

1612genic changes in the kidneys. It has been observed that the mortality rate from

1613cancer in the cities using fluorinated water increased significantly as compared with

1614the cities that did not use fluorinated water. Consistently, in several countries, F

1615addition to drinking water has ceased, although in the last century there has been

1616great interest in the fluoridation of water as means of reducing dental caries

1617(Kabata-Pendias and Mukherjee 2007). Dental tissue also shows the earliest sign

1618of toxicity; concentrations of F over 1 mg L�1 are likely to produce symptoms, and

1619mottling of the teeth is prevalent when the concentration exceeds 4.5 mg F L�1

1620(WHO 1996). Nearly one million people in rural India suffer for fluorosis, a

1621chronic, incurable, and debilitating affliction (Oliver 1997). Moderate amounts of

1622F are beneficial to dental structure, whereas intake of high amounts may lead to

1623development of dental fluorosis, and in extreme cases skeletal fluorosis.

1624Although no cases of F deficiency have been reported in humans, some symp-

1625toms of low F supply have long be linked to dental decay, osteoporosis, and

1626possible with growth retardation (Steinnes 2009). These symptoms are observed

1627mainly in children <6 year age.

1628Typical symptoms of intoxication (fluorosis) are mottling of tooth enamel and

1629several skeletal and joint deformation including spinal curvature and knock-knees

1630problems. Some individuals may be especially susceptible to F and its compounds.

1631These include elderly people, persons with deficiencies of Ca, Mg, and vitamin C,

1632as well as people with cardiovascular and kidney problems (Kabata-Pendias and

1633Mukherjee 2007).

1634Acute fluorine intoxication is characterized initially by gastro-enteric distur-

1635bances, vomit, abdominal pains, diarrhoea, as a consequence of gastro-intestinal

1636mucous irritation. Afterwards, muscle tremors, urinary incontinence, cardio-

1637circulatory collapse may occur owing to hypocalcaemia. Respiratory paralysis

1638and heart failure determine lethal consequences.

1639Chronic intoxication is the most frequent, and is characterized mostly by evident

1640disturbances of skeletal apparatus during a time span ranging from 6 to 12 months.

1641The process starts with scarcely relevant bone lesions, and proceeds with thickening

1642of the long bones of the limbs, calcification, spontaneous fractures. Dental lesions

1643too (e.g. partial enamel loss, teeth erosion) are a sensible index of chronic intoxi-

1644cation, with possible infection of oral cave. Chewing is more and more difficult and

1645painful, and this is reflected on the nutritional state and the growth retardation.

1646Urinary excretion may be accompanied by the reduction of blood levels of goitre

1647hormone, determining hypothyroidism, anaemia, leucocytosis.
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1648 An improvement of the fluorosis disease may be obtained by administering in

1649 the diet Ca-salts and especially Al-salts, that reduce fluorine bone content by 45 %.

1650 Fluoride tolerance may be augmented by equilibrated assumption of Ca, P,

1651 vitamin D.

1652 2.2.8 Iodine

1653 Iodine has an extreme variability in the earth’s crust, with the highest content in

1654 sedimentary rocks (1.5 mg kg�1 in shale), and the lowest in volcanic rocks. Its

1655 concentration in surface soils is generally higher than the corresponding parent

1656 material, and the suggestion of an atmospheric origin of I seems to be most

1657 reasonable. Iodine and its organic compounds are utilized in a number of chemicals

1658 and pharmaceutics, both for external and internal applications. Radioactive isotopes

1659 are most commonly by-products of atomic reactors and are used in medical

1660 diagnosis; being released in various proportion into the environment, they are of

1661 growing environmental and health concern (Kabata-Pendias and Mukherjee 2007).

1662 Iodine was the first element to be recognized as essential to human health, in

1663 1846 (Oliver 1997). It has long been known as an essential element for humans and

1664 mammals, where it is a component of the thyroid hormone thyroxin (Steinnes

1665 2009). This contains up to 80 % of the total body store of I and is involved in

1666 most biological processes (e.g. bone growth, reproduction). Therefore, an adequate

1667 level of I in the human body is crucial (Kabata-Pendias and Mukherjee 2007).

1668 The daily requirement of I by adults is around 150–200 μg. Intake below 100 μg
1669 day�1 has resulted in mild deficiency, and a dose below 20 μg day�1 has caused

1670 severe deficiency symptoms (Kabata-Pendias and Mukherjee 2007).

1671 Insufficient supply of I (hyperthyroidism) may lead to a series of iodine defi-

1672 ciency disorders, the most common being endemic goitre, which was the first

1673 endemic disease attributed to the environment. Goitre was first recognized as

1674 resulting from I deficiency in areas far from the sea and in the Alps and Himalayas.

1675 Iodine deficiency during pre-natal development and the first year of life can

1676 result in endemic cretinism, a disease that causes stunted growth and brain damage.

1677 Other consequences of I deficiency include abortions, stillbirths, congenital abnor-

1678 malities, impaired mental function and reduced thyroid hormones. Of these the

1679 most serious disorder is endemic cretinism (Oliver 1997) which is caused by the

1680 most severe I deficiency. Goitre occurs when I intake is 50 % of normal (WHO

1681 1996). Hyperthyroidism is generally counteracted administrating more (radioac-

1682 tive) I to patients. The only common side effect of radioactive iodine treatment is

1683 underactivity of the thyroid gland. The problem here is that the amount of radio-

1684 active iodine given kills too many of the thyroid cells so that the remaining thyroid

1685 does not produce enough hormone, a condition called hypothyroidism. There is no
1686 evidence that radioactive iodine treatment of hyperthyroidism causes cancer of the

1687 thyroid gland or other parts of the body, or that it interferes with a woman’s chances

1688 of becoming pregnant and delivering a healthy baby in the future. It is to note,
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1689moreover, that women are more prone to hyperthyroidism than men, and that this

1690disease affects more frequently older individuals than young persons.

16912.2.9 Cobalt

1692Cobalt, as well as manganese (see below) are two heavy metals which have

1693received little attention in comparison to other heavy metals such as lead and

1694cadmium, for example. Their lack of notoriety is a result of their lower potential

1695to exert any toxic properties that they may have and to the lack of appropriate

1696situations, particularly in soils (Alloway 2013). Nevertheless, they play significant

1697roles in soil health, acting as oxidants and Co, in particular, for medical treatments.

1698Indeed, the only known Co function is as a constituent of Vitamin B12, which plays

1699a major part in animal cells; its deficiency in humans causes pernicious anaemia and

1700severe effects on the nervous system.

1701Cobalt occurs in all mammalian tissues and its contents vary from 5.5 to

1702230 μg kg�1, with the highest value in the liver and the lowest in the brain.

1703Although inorganic Co is present in several organs and tissues, its possible other

1704physiological functions are unknown. Cobalt is likely to be bound by some proteins

1705and to replace other divalent cations (e.g., Zn, Mn) in various enzymes, without any

1706effects. Some organic Co compounds are apparently involved in processes of

1707stabilizing the DNA structure (Kabata-Pendias and Mukherjee 2007). Co has also

1708been observed to induce ROS and apoptosis in different cell lines, leading to

1709oxidative DNA damage via OH� formation (Franco et al 2009).

1710Cobalt deficiency in living organisms refers to the scarcity of Co in soils

1711(0.30 mg kg�1 in severely Co-deficient areas, according to Adriano 2001) and

1712may affect the animals’ health, when pasture concentration falls below

17130.08 mg kg�1. Conversely, the occurrence of Co contamination of soils is rare

1714(up to 1,000 mg kg�1 in serpentine soils), as well as Co toxicity, except in particular

1715circumstances.

1716The deficiency of Co may affect anaemia and anorexia. The excessive ingestion

1717of Co may cause polycythemia (increased red blood cells), cardiomyopathy, hypo-

1718thyroidism, pancreas failure, bone marrow hyperplasia, and some types of cancer.

1719Human dietary intakes of AU4Co vary from 5 to 40 μg day�1 and is mainly from the

1720ingestion of foods, particularly from livers and meet products (Kabata-Pendias and

1721Mukherjee 2007).

17222.2.10 Manganese

1723Manganese, as well as Co (see above) is an heavy metal which has received little

1724notoriety in comparison to other heavy metals such as lead and cadmium, for

1725example. The lack of notoriety is a result of its low potential to exert any toxic

1726properties, and to the lack of appropriate situations, particularly in soils.
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1727 Nevertheless, the ability of Mn oxides to absorb preferentially heavy metals and to

1728 act as oxidants means that it plays a significant role in soil health (Alloway 2013).

1729 Both Mn deficiency and toxicity occur in plants and Mn may be of environmen-

1730 tal concern in a few situations associated with water quality and the mining of

1731 Mn ores.

1732 Mn is an essential element for humans and is considered an element of low

1733 toxicity. Its physiological function is closely associated with some enzyme activ-

1734 ities, (e.g. superoxidase, dismutase, arginase) and with metallothionein. It is also

1735 known that Mn2+ is involved in gene expression processes and stabilizes the DNA

1736 structure (Kabata-Pendias and Mukherjee 2007).

1737 In general, Mn is an activator of different enzymes that control the metabolisms

1738 of carbohydrates, proteins and lipids (including cholesterol), and nitrogen metab-

1739 olism. Moreover, it affects the functioning of other enzymes which are involved in

1740 bone formation.

1741 The most common Mn deficiency symptoms in livestock are impaired repro-

1742 duction, skeletal deformities and shortened tendons in the newborn; in humans it

1743 can also cause impaired insulin production, lipoprotein metabolism, oxidant

1744 defence and growth factor metabolism (Alloway 2013), and neurological distur-

1745 bances (Iregren 1990).

1746 A great proportion (over 50 %) of Mn in the human body is located in the

1747 hepatocyte nuclei of liver, likely indicating some functions of this metal in genetic

1748 regulation (Kabata-Pendias and Mukherjee 2007, and references therein). The Mn

1749 contents in human tissues, especially in bones, decrease with age; this can be

1750 associated with skeletal deformities and bone fractures (osteoporosis), dermatitis

1751 and hypocholesterolemia. Moreover, testicular dysfunctions can result from a Mn

1752 deficiency.

1753 Manganese deficiency in humans has also been associated with the incidence of

1754 esophageal and other types of cancer (Steinnes 2009). However, symptoms of Mn

1755 deficiency in humans are very rare.

1756 The adequate daily intake of Mn by adults was previously given to be between

1757 2 and 6 mg day�1 whereas the recent USEPA recommendation is up to 10 mg day�1

1758 for a 70 kg body weight.

1759 Of the three pathways of Mn exposure, the most harmful is inhalation. Oral Mn

1760 poisoning has not been recorded often and is mainly related to drinking water. The

1761 ingestion of excess Mn by food may result in liver cirrhosis. The inhalation of

1762 Mn-rich dust by humans can increase susceptibility of the respiratory tract to

1763 infection and can induce Mn-pneumonitis and some neurobehavioral impairment

1764 (Kabata-Pendias and Mukherjee 2007). Mn, together with As, has also been

1765 suggested as ototoxin affecting hearing (Chuang et al. 2007).

1766 2.2.11 Molybdenum

1767 Molybdenum occurs at relatively low concentrations in most rocks and soils, but in

1768 relatively high concentrations in soils developed on black shales (Abrahams 2002).
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1769It is most mobile and plant available in alkaline conditions. It is primarily used in

1770metallurgy for producing various alloy steels and stainless steel, aircraft and

1771automobile components, cutting tools, support wires for filaments in incandescent

1772light bulbs, catalysts, lubricants, pigments and other uses (Alloway 2013).

1773Concentrations of Mo in soils are generally the lowest of all the essential trace

1774elements for plants (B, Cl, Cu, Fe, Mn, Mo, Ni and Zn). Sewage sludges commonly

1775contain 5–50 mg Mo kg�1and if high Mo sludges are applied to pastures they could

1776cause molybdenosis problems in livestock. Yet, molybdenum-induced copper defi-

1777ciency is a serious problem on Mo-rich pasture soils in several countries.

1778Besides its known essential role of micronutrient for plants, Mo has recently

1779proved an essential element for both animals and humans. Normal Mo concentra-

1780tions in plant leaves are 1 mg kg�1 or less; plants growing on contaminated soils

1781have been reported to contain <200 mg Mo kg�1 (Steinnes 2009). On a global

1782scale, deficiency of Mo in crops is more important than potential excesses from

1783contamination because it is essential to plants. Nevertheless, deficiencies can occur

1784in Brassicaceae, legumes, wheat, sunflower and some other crops in many parts of

1785the world, mainly on acid and sandy soils (Alloway 2013).

1786In animals, Mo is required for the functioning of several enzymes involved in

1787transformations of C, N and S. In grazing livestock, a close connection betweenMo,

1788Cu and S is involved in molybdenosis, which is a Mo-induced Cu deficiency.

1789(Alloway 2013). However, deficiency cases are rare. The only people known to

1790have Mo deficiency are those with a genetic defect which prevents the synthesis of

1791sulphite oxidase and causes severe illness except when Mo is administered. Symp-

1792toms included tachycardia, headache, nausea and vomiting (Kabata-Pendias and

1793Mukherjee 2007). Sulphite oxidase is very important in humans because it is

1794involved in the metabolism of S-containing amino acids and bisulphite preservative

1795in foods (Alloway 2013).

1796The main dietary sources of Mo are legumes, nuts and grain products. Tissue

1797concentrations of 0.03–0.15 mg kg�1 (dry weight) are considered to be adequate for

1798nutritional requirements (Steinnes 2009). The excess Mo in the human diet influ-

1799ences its accumulation in serum, urea, and hair. With excess amounts, it may exert

1800an antagonistic effect on Cu, causing a secondary copper deficiency.

1801Molybdenum is not considered as a carcinogenic element. However, there is still

1802inconclusive epidemiological evidence that low Mo intakes may be associated with

1803the occurrence of oesophageal cancer in humans. Apparently, it is also related to

1804cancer of the stomach (Kabata-Pendias and Mukherjee 2007).

18052.2.12 Nickel

1806Nickel is a transition element with a broad range of applications in modern industry,

1807being used in everything from coins to automobiles to jewellery (Alloway 2013).

1808The largest Ni use is by far stainless steel manufacturing. Moreover, Ni is an

1809excellent catalyst for many reactions and so it is used for a large number of

1810industrial and research applications alone or in combination with other metals.
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1811 Ni is well known as an essential trace element for plants and domestic animals,

1812 but has not yet proven to be essential to humans. Nickel in plants ranges generally

1813 from 0.05 to10 mg kg�1 dry matter. Nickel deficiency is very rarely found in plants,

1814 due to the very small amount needed for normal metabolism; symptoms of Ni

1815 deficiency, such as leaf tip and vein necroses, and patchy necrosis of younger leaves

1816 may occur (Gonnelli and Renella 2013).

1817 With increasing Ni contamination, excess Ni is more commonly found in these

1818 organisms, and toxicity symptoms may occur. With regard to Ni toxicity to plants,

1819 threshold concentrations are commonly reported to be less than 100 mg g�1.

1820 Responses to toxicity differ significantly according to plant species, growth stage,

1821 soil Ni concentration and exposure time. In general, critical toxicity levels are

1822 >10 mg g�1 dry matter in sensitive species, and >50 mg g�1(dry matter) in

1823 moderately tolerant species (Alloway 2013). Among the toxic effects due to high

1824 Ni concentrations in plants, retardation of germination, inhibition of growth, reduc-

1825 tion of yield, induction of leaf chlorosis and wilting, disturbance of photosynthesis

1826 (Gonnelli and Renella 2013) are the most common symptoms. However, there exist

1827 Ni-accumulator plants (e.g. the well known Alyssum bertoloni, a typical endemic of

1828 serpentine soils) that apparently do not show evidence of toxicity symptoms.

1829 Ni-beneficial effects have been recorded in experiments with Ni-deprived ani-

1830 mals. Nickel seems to be a bioactive element with some beneficial functions. Ni

1831 deprivation affects reproductive function in goats and rats, and changes carbohy-

1832 drate and lipid metabolism. Nickel has beneficial effects in bone and may also

1833 alleviate Vitamin B12 deficiency (Gonnelli and Renella 2013).

1834 Nickel is scarcely absorbed by human organism, with the exception of the

1835 respiratory tract in metal industry workers, since it may be released by Ni- bearing

1836 alloys (e.g. special steel widely used in food industry).

1837 The Ni deficiency seems unlikely to occur in humans. However, Ni requirements

1838 by adults have been established as 25–35 μg day�1 (Kabata-Pendias and Mukherjee

1839 2007). Lower Ni intake can induce some dysfunction of lipid metabolism, but

1840 human diets generally contain sufficient amounts of Ni. The usual Ni daily intake,

1841 comprehensive of the three pathways, is within the range 0.3–0.6 mg day�1for

1842 humans (70 kg body weight). Legumes contain the highest Ni amounts (up to

1843 1.60 mg kg�1 in peas), whilst it is nearly absent in milk, eggs and cattle meat.

1844 Normally, food assumption does not induce toxic effects. The optimum Ni intake

1845 should probably be <100 mg day�1. and the average Ni intake by inhalation is

1846 calculated to range from 0.1 to 1 μg day�1. Smokers inhale from 2 to 12 μg of this

1847 metal, for each pack of cigarettes (ATSDR 2002).

1848 The toxicity of Ni is relatively low, but Ni allergy is a significant problem in

1849 humans, even at low exposure doses (Steinnes 2009). Instead, the toxicity and

1850 carcinogenicity of high doses of Ni are well documented and depend mainly on its

1851 potential to damage proteins and nucleic acids. Yet, Ni is known as producer of

1852 ROS (e.g. OH�), lipid peroxidation (LPO) and oxidative DNA damage and, in

1853 addition, has been shown to induce NO production (Franco et al. 2009).

1854 Investigations on the toxicity of Ni have indicated various effects of its excess,

1855 among which the most important are developmental, genotoxic, neurological,
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1856reproductive, and carcinogenic (Kabata-Pendias and Mukherjee 2007). Slightly

1857soluble Ni compounds, in particular, are likely to be carcinogenic at the site of

1858deposition (ATSDR 2002). Toxicology concerns nearly exclusively the incidence

1859of lung and respiratory tract cancer as professional disease of nickel refinery

1860workers.

1861Therefore, Ni should be used with great precautions in industry since it is

1862exceedingly toxic when inhaled. Moreover, sensitivity from Ni may occur also

1863with dermal absorption (e.g. by bracelets and other fittings), causing allergenic

1864dermatitis.

18652.2.13 Thallium

1866Thallium is an actual poisonous heavy metal, and is a US Environmental Protection

1867Agency (USEPA) priority pollutant. It was discovered in 1861 in Pb-bearing mud

1868with which it has somewhat chemical affinity but, while being a highly toxic

1869element, has been studied to a much lesser degree than other toxic elements such

1870as cadmium or mercury, probably because classical analytical methods have less

1871sensitivity for Tl than for other elements.

1872Besides current industrial uses in semiconductors, electronics, NMR, glasses

1873etc., over 150 uses and potential applications for thallium and its compounds are

1874recorded. In the past (since 1883), thallium was extensively used for medical

1875purpose: in the treatment of venereal diseases, tuberculosis and malaria, to produce

1876hair loss in the treatment of children ringworm ( AU5Peter and Viraraghavan 2005). The

1877use of thallium salts as poisons for rodents and later as insecticides began in 1920

1878and for the next 45 years remained the principal use for this element (Nriagu 1988).

1879Thallium is normally associated with sulphide minerals and is often found in

1880mineralized areas interspersed with sulphide deposits. Thallium pollution, there-

1881fore, is manmade; the most important anthropogenic sources of thallium are

1882emissions and solid wastes from coal combustion and ferrous and non-ferrous

1883smelting (Oliver 1997).

1884The ecotoxicological importance of thallium is derived from its high acute

1885toxicity on living organisms, comparable to that of lead and mercury (Peter and

1886Viraraghavan 2005). The major pathway of Tl exposure for animals and humans is

1887the ingestion of plants grown in Tl-contaminated soils (Alloway 2013). A concen-

1888tration range of 0.17–0.22 μg g�1in garden soils, in Canada, and a range of 0.2–2.8

1889μg g�1on various soils in the USA were reported (Ferguson 1990). In soils origi-

1890nating from a mining area southwest Guizhou, China, Tl concentrations ranged

1891from 40 to 124 mg kg�1, and from 1.5 to 6.9 mg kg�1 in undisturbed natural soils

1892(Peter and Viraraghavan 2005).

1893The most widely documented case (Alloway 1995) was inWest Germany near to

1894a cement works, where Tl was deposited on the soil from the atmosphere. Crops

1895grown on the contaminated soil showed significant amounts of Tl, and the people

1896living there were poisoned by eating them. Many inhabitants suffered ill health,

1897such as depression, insomnia and various nervous disorders (Alloway 1995).
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1898 Following that episode, in Germany, 1 mg kg�1 Tl in soils has been established as

1899 the tolerance level for agricultural use (Alloway 2013).

1900 The contents of Tl in most mammalian tissues is reported to be <200 μg kg�1,

1901 with level increasing at 500 μg kg�1 in skin (Kabata-Pendias and Mukherjee 2007).

1902 Mean Tl concentrations in human tissues and fluids range from <1–9 μg kg�1 and

1903 0.2–0.4 μg L�1, respectively. The median contents of Tl in kidneys and hair of

1904 healthy unexposed individuals have been reported as 0.5 and <1 μg kg�1, respec-

1905 tively (Kabata-Pendias and Mukherjee 2007).

1906 Although several hundred cases of acute and chronic thallium poisoning in man

1907 have been recorded, only a few cases resulting from industrial exposures have been

1908 reported. Intoxication mainly resulted from skin contact, since it is easily absorbed

1909 not only through the gastrointestinal tract but also through the skin. Exposure via

1910 inhalation may occur in the extraction of the metal, in the manufacture of thallium-

1911 containing rodenticides and thallium-containing lenses, and in the separation of

1912 industrial diamonds (Peter and Viraraghavan 2005).

1913 Considering that exposure to high levels of thallium can result in harmful health

1914 effects for workers and general people, several World Organizations (e.g. OSHA,

1915 ACGIH, NIOSH) and Governments (e.g. in Canada, Russia, Switzerland, USA)

1916 have proposed a threshold limit value (TLV) of 0.1 mg/m3 for thallium in work

1917 place air. Yet, a study on chronic health effect of workers exposed to Tl over several

1918 years reported nervous system effects, such as numbness of fingers and toes, from

1919 breathing thallium. Based on previous studies, the National Institute for Occupa-

1920 tional Safety and Health (NIOSH) has recommended that 15 mg/m3 of thallium be

1921 considered immediately dangerous to life and health. However, some studies

1922 indicated that there is no thallium mutagenicity or teratogenicity (Peter and

1923 Viraraghavan 2005).

1924 Ingested Tl is also harmful to organisms. General exposure occurs through the

1925 food chain, especially from fruits and vegetables grown on contaminated soils

1926 (Kabata-Pendias and Mukherjee 2007). Accordingly, Swiss and Canadian Govern-

1927 ments, established the maximum admissible level of thallium in agricultural soil at

1928 1 mg/kg dry weight.

1929 The toxicity of Tl has not been greatly studied, but its harmful impact has been

1930 observed in both humans and animals; moreover, Tl does not play any role in their

1931 metabolisms. It has been reported also that Tl is more acutely toxic than Hg, Cd, Pb,

1932 Zn and Cu in mammals (Peter and Viraraghavan 2005).

1933 Initial thallium poisoning symptoms in humans are palmar erythema, acne, loss

1934 of hair and hallucinations. The principal features of acute thallium poisoning are

1935 gastroenteritis, polyneuropathy and alopecia (Kazantzis 1986, 2000). With acute

1936 intoxication, there is usually an initial hypotension and bradycardia, followed by

1937 hypertension and tachycardia. The central and peripheral nervous system is the

1938 main critical organ in thallium intoxication. Major symptoms of Tl poisoning

1939 include anorexia, headache, pains in abdomen, upper arms and thighs and even in

1940 the whole body. In extreme cases, alopecia, blindness and even death may be

1941 caused (Peter and Viraraghavan 2005, and references therein).
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1942The mechanism of Tl poisoning is not very clear but, similarly to other trace

1943metals, Tl binds sulfhydryl groups of proteins and mitochondrial membranes,

1944thereby inhibiting a range of enzyme reactions and leading to a generalized

1945poisoning (Kabata-Pendias and Mukherjee 2007). Possible toxic mechanisms of

1946thallium include ligand formation with proteins, inhibition of cellular respiration,

1947interaction with riboflavin (Vitamin B2), and distribution of calcium homeostasis

1948(Peter and Viraraghavan 2005).

1949Thallium is excreted mainly through the urine. Thallium excretion via the kidney

1950can be increased upon dosage of potassium chloride, potassium ferricyanoferrate

1951(Prussian Blue) or employment of diuretics (Ghezzi and Marrubini 1979; Hoffman

19522003). Hemodialysis and forced diuresis can be an effective means of decreasing

1953the Tl body burden. Polyneuritic symptoms, sleep disorders, headache, fatigue and

1954other signs of psychasthenia were found to be the major health effects associated

1955with increased thallium levels in urine and hair (Peter and Viraraghavan 2005).

19562.2.14 Tin

1957Tin (Sn) is one of the metals of antiquity and its use with copper in the alloy bronze

1958contributed to a major development in human history since the Bronze Age

1959(Alloway 2013).

1960The distribution of Sn in the Earth’s crust averages at 2.5 mg kg�1 crustal

1961abundance with two oxidation states (II and IV), of which SnIV is prevalent in

1962both inorganic and organic compounds; yet, it is a component of few minerals, of

1963which only cassiterite (SnO2) is commercially important (Adriano 2001). Organo-

1964metallic complexes with Sn are prevalent in aquatic systems (see this volume,

1965Chap. 2), and contribute to its enrichment in biolites (Alloway 2013).

1966Malaysia is the main Sn producer in the world, with about 50 % of the total Sn

1967produced. Major uses of Sn are in alloys with Zn and Cd (tinplate and bronze), in

1968vehicle and aerospace industry, and as protective coating agent; organic complexes

1969(e.g. tributyltin, TBT) are used mostly as biocides in agriculture and as antifouling

1970agent in paints, with significant environmental effects (Adriano 2001). Organotins

1971are more ubiquitous sources of Sn in the environment than inorganic forms, and are

1972added to soil by atmospheric dust deposition, fungicidal sprays and sewage sludge

1973spread on agricultural land, constituting the greatest ecotoxicity hazard.

1974In uncontaminated soils, Sn is largely derived from its content in the bedrocks,

1975and occurs with a range between 1 and 10 mg kg�1. In polluted sites, however, its

1976concentration may be highly elevated, as near smelter areas, where it may achieve

1977up to 1,000 mg kg�1 (Kabata-Pendias and Mukherjee 2007). Significant differences

1978in Sn concentrations in soils among various countries have been recorded

1979(0.89 mg kg�1 in USA; 2 mg kg�1 in andisols of Japan; 1.8 mg kg�1 in Swedish

1980topsoils, with a range 0.4–8.6 mg kg�1; 3 mg kg�1 in tea soils of Nyasaland

1981(Adriano 2001; Kabata-Pendias and Mukherjee 2007, and references therein).

1982Tin is fairly immobile in typical arable soils, and is considered a non essential

1983element in plant nutrition; conversely, it is considered as toxic to both higher plants
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1984 and fungi. Hence, plants tend to accumulate tin in roots when it occurs in easily

1985 available forms in soils, and it is poorly translocated to shoots and leaves. Yet, as

1986 reported by Tyler (2005), the biological absorption coefficient (BAC ¼ metal in

1987 root /metal in soil) for tin is about 0.10. Common ranges of Sn in food plants and

1988 cereal grains are reported to be between 0.01 and 0.12 mg kg�1 (Kabata-Pendias

1989 and Pendias 2001). Conversely, plants growing in mineralized or contaminated

1990 soils accumulate Sn to high levels (up to 2,000 mg kg�1 in vegetation near

1991 Sn-smelters) (Kabata-Pendias and Mukherjee 2007).

1992 The organic tin compounds (OTCs), and particularly TBT, are regarded as

1993 contaminants in the environment, with particular reference to the aquatic systems.

1994 High contamination of ports and marinas waters has been reported, and TBT

1995 residues have been recorded in fish and marine mammals living in contaminated

1996 waters, with TBT concentrations up to 2,000 ng g�1 in dolphin liver in the

1997 Mediterranean sea (Adriano 2001). Given the recognized toxicological importance

1998 of OTCs to aquatic biota, the recent detection of TBT in human blood points to its

1999 potential effect on human health. Indeed, as stated by Alloway (2013), OTCs

2000 behave as enzyme disruptors in many animal species and there is concern about

2001 their possible impact on human health.

2002 Recent findings indicate that Sn is likely to be an essential trace element

2003 (micronutrient) for mammals, with low mammalian toxicity (Alloway 2013 and

2004 references therein). It is reported that mammalian tissues contain Sn in the range

2005 0.1–0.85 mg kg�1, with liver and kidney being the target organs (Kabata-Pendias

2006 and Mukherjee 2007). Tin in the inorganic forms is considered as being relatively

2007 non-toxic because of their low solubility, whereas some OTCs are considered to be

2008 toxic, although information on OTC contents to in human tissues is quite rare.

2009 Human exposure pathways to Sn are mainly from seafood ingestion, with an

2010 exception of industrial areas where its concentrations in water and air are elevated;

2011 inhalation, and dermal adsorption are minor pathways. Therefore, there is consid-

2012 erable concern about the risk to people consuming a large amount of seafood due to

2013 the accumulation of tributyltin (TBT) in marine ecosystems, where up to

2014 78 μg kg�1OTCs in tissues of people from Japan have been reported (Kabata-

2015 Pendias and Mukherjee 2007). Mammalian toxicity of OTCs is likely due to their

2016 lipophilic character that enables them to penetrate and damage cell membranes,

2017 mitochondria, and DNA (Alloway 2013 and references therein).

2018 The typical dietary intake of total Sn in humans is 1–40 mg day�1 (Alloway

2019 2013), and the free-hazard inorganic Sn intake has been proposed not to overcome

2020 2 mg kg�1 body weight. Canned foods, especially fruits and vegetable products, are

2021 considered to be the main source of Sn in the diet. Some canned fruits and juice may

2022 contain Sn at the range from 141 to 2,000 mg kg�1 (Kabata-Pendias and Mukherjee

2023 2007; Alloway 2013). Higher levels of Sn may be found in some processed food

2024 due to the addition of Sn-based preservatives and stabilizers such as stannous

2025 chloride (Kabata-Pendias and Mukherjee 2007).

2026 Increased Sn concentration in food may cause acute gastric irritation, impaired

2027 reproductivity, and bone strength failure. It is also considered to be genotoxic.

2028 Some organotins are highly dermal irritants (Kabata-Pendias and Mukherjee 2007).
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2029As in the case of other elements (e.g. Mo, Se), a dietary deficiency of Sn is likely

2030to induce some disturbances in humans, as hair loss, depressed growth, response to

2031sound, feed efficiency, synergic decrease of other elements in various organs

2032(e.g. Fe in kidney, muscle and spleen) (Alloway 2013).

20332.2.15 Tungsten

2034Tungsten (W) is an emerging PHE about which there is little information, although

2035it is an important strategic element with a wide range of applications in modern

2036science and technology (e.g. metallurgy, lamp filaments and x-ray tubes), and

2037military applications as substitute for the toxic Pb in ammunition (Alloway 2013

2038and references therein).

2039It occurs naturally in small concentrations (1–2 mg kg�1) in granitic and

2040sedimentary rocks, while in soils it ranges from 0.5 (in USA) to 85 mg kg�1

2041(in China, that is the biggest utilizer), with even 100–200 mg kg�1 in the vicinity

2042of ore-processing plants (Kabata-Pendias and Mukherjee 2007).

2043There are confusing reports on the phytoavailability of W, but plant uptake and

2044accumulation of W is apparently related to the soil content (Alloway 2013). The

2045common range of W in terrestrial plants is generally very low, being established at

2046the range of <1–150 μg kg�1, with concentrations in mosses up to 2,500 μg kg�1

2047(Reimann and de Caritat 1998).

2048There is some evidence that W, similarly to Mo, might have a biological

2049function in plants, since the behaviour of Mo and W is similar in biochemical

2050processes (Alloway 2013). However, W displays competitive inhibition of Mo,

2051reducing the enzyme catalytic activity. Moreover, some observations on the antag-

2052onistic interactions between W and Mo have been recorded, and some substitution

2053by W for Mo has been reported (Kabata-Pendias and Pendias 2001).

2054The biological functions of tungsten are not well known. Information on adverse

2055and stimulating effects of W in animals and humans are confusing and need more

2056studies. The only available (and contradictory) data for human fluids indicate

2057concentrations of W as follows: 1–390 ng L�1 in blood, and 5–320 ng L�1in

2058urine. The reference value for W in urine has been estimated as 860 ng L�1, and

2059the intake of W by individual animals is estimated as 13 μg day�1 (Kabata-Pendias

2060and Mukherjee 2007).

2061It appears that the toxicity of W depends on the solubility of its compounds, and

2062is the highest for polytungstates. Easily soluble W (e.g., from sodium tungstate,

2063Na2WO4) is also easily absorbed and is harmful to the nervous system. Dust

2064inhalation is a major exposure pathway for tool-manufacturing workers. The

2065reference value for W in atmospheric dust in Germany has been set at 1 mg m�3

2066for soluble W compounds (Kabata-Pendias and Mukherjee 2007).

2067The potential environmental effects of W are essentially unknown and not yet

2068thoroughly investigated, but adverse toxicological effects of W (e.g. growth

2069enhancement and moderate toxicity to certain plants and animal species associated

2070with the presence of W) have been recorded recently (Alloway 2013). Fibrotic lung
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2071 changes are observed in animals under exposure to tungsten-carbide dust (Kabata-

2072 Pendias and Mukherjee 2007). Therefore, its designation as a non-toxic and envi-

2073 ronmentally friendly metal should be reconsidered.

2074 2.2.16 Vanadium

2075 Vanadium is a polyvalent element, with various oxidation states and a tendency to

2076 form oxyanions, a property it shares with Mo, As, W, and P (Adriano 2001). It is

2077 ubiquitous in the lithosphere, with some prevalence in igneous rocks (135 mg kg�1

2078 on average) and shale (130 mg kg�1), and is widely distributed in nature. Vanadium

2079 is largely used in manufacturing steel (80 %), in ceramics, in some alloys with Sn,

2080 in chemical industry. Vanadium is the major trace metal in petroleum products.

2081 Combustion of coals and oils represents the major source of environmental V

2082 enrichment. Industrial activities and anthropogenic emissions have increased sig-

2083 nificantly V concentrations in soils: the world median is 90 mg kg�1; the range 3–

2084 500 mg kg�1 (Reimann and de Caritat 1998). Therefore, its potential to enter the

2085 food chain is significant, and the number of people exposed to V pollution is

2086 increasing (Alloway 2013).

2087 Vanadium is not considered to be an essential element for higher plants; how-

2088 ever, some evidence exists that it may be essential to bacteria, fungi and algae as

2089 Azotobacter, Aspergillus and Scenedesmus (Adriano 2001). Its content in plants

2090 vary broadly: from 10 to 700 mg kg�1 (Kabata-Pendias and Mukherjee 2007).

2091 Trace concentrations of V have been reported to benefit plant growth, while higher

2092 concentrations are toxic (Alloway 2013). Adriano (2001) reports a mean V content

2093 of 1 mg kg�1 in plants growing on not contaminated soils, with roots having more V

2094 than the aerial tissues; no significant correlation was observed between V in soils an

2095 in plants, and it is concluded that soils having high V contents should not pose any

2096 risk for V bioaccumulation in the food chain.

2097 Vanadium toxicity has proven virtually not existent for plants; however, excess

2098 V seems to interfere with chlorophyll synthesis, photosynthetic electron transport,

2099 inhibit the plasma membrane ATPase and acid phosphatase (Adriano 2001). Ele-

2100 vated V content in plants is of a great significance since V5+ is recognized as a

2101 potent inhibitor of several enzymes (Kabata-Pendias and Mukherjee 2007).

2102 Conversely, V is an essential element for some marine organisms, and has long

2103 been suspected to have a biological function in humans and domestic animals as

2104 well (Steinnes 2009); this explains the increasing interest for V content in plant

2105 material.

2106 The critical level of V for livestock has been established at 25 mg kg�1 of total

2107 diet; if it would be exceeded, the environmental concern about V is primarily due to

2108 the air pollution aspect (Adriano 2001; see also this volume, Chap. 1). Although

2109 information on the environmental biogeochemistry of V is nearly insignificant, and

2110 little is known on the toxicological effects of V in aquatic systems, it is known to

2111 have low toxicity to fish (this volume, Chap. 2).

C. Bini and M. Wahsha

http://dx.doi.org/10.1007/978-94-017-8965-3_1
http://dx.doi.org/10.1007/978-94-017-8965-3_2
Claudio Bini
Cross-Out

Claudio Bini
Inserted Text
replace with and



2112The common pathways of V exposure for the general population are ingestion of

2113food, and dust inhalation during everyday activities; soils containing increased

2114levels of V may result in their increased V exposure. Airborne V can cause irritation

2115of eyes and respiratory track. The threshold level for V toxicity to humans is

2116established at 10–20 mg day�1; requirement is probably less than 2 mg day�1

2117(Alloway 2013).

2118In humans and animals, V appears to have insulin-like actions at the cellular

2119level, stimulating cellular proliferation and differentiation. Lipids level in blood

2120and abnormalities in bone mineralization have also been reported with V defi-

2121ciency, suggesting it to play a role in the formation and function of bone and

2122connective tissue (Alloway 2013). Vanadium is easily reduced to V(IV), leading to

2123accumulation of ROS which induce lipid peroxidation, oxidative DNA damage and

2124apoptosis (Franco et al. 2009). Highly oxidized species of V are toxic, especially to

2125nervous system and digestion processes (Kabata-Pendias and Mukherjee 2007).

2126The USEPA has not listed V as a pollutant requiring urgent research and

2127legislation, because “there is no evidence that the general population is at risk,
2128either through deficiency of, or overexposure to vanadium” (USEPA 1991).

21292.2.17 Zinc

2130Among trace elements, zinc is a micronutrient for all biota, and is one of the most

2131important contributors to human health, being essential for the functioning of a

2132great number of enzymes. It is an important component of the earth’s crust (24th

2133element in the ranking of abundance), where it is present in rocks and soils in

2134amounts ranging from 40 mg kg�1 in acid rocks (granite and gneiss) to 110 mg kg�1

2135in basalts. The average content of soils worldwide is 55 mg kg�1, with typical

2136background concentrations 10–300 mg Zn kg�1 (Kabata-Pendias and Mukherjee

21372007). Significant differences, up to hundreds of mg Zn kg�1 can be recorded at

2138several sites, reflecting the high Zn soil parent material, the presence of mining

2139areas and the anthropic contribution (sewage sludge application, fertilizers, atmo-

2140spheric emissions from industries and smelters). Yet, besides the limited metal

2141utilization by Romans, and until last century, Zn occurred naturally in soils with the

2142above reported range, and it was only from the middle of nineteenth century that Zn

2143production started to increase dramatically, and has been almost doubled in the last

214420 years. The main utilization (50 %) of Zn produced worldwide (11 � 106 tons) is

2145in the galvanic industry, followed by Zn alloys, tyres and rubber (Alloway 2013).

2146The increased Zn production has released consistent industrial Zn emissions in

2147the atmosphere, and the subsequent deposition onto soil and water determined

2148environmental contamination, with possible ecotoxicological effects. Yet, elevated

2149Zn concentrations can cause toxic effects to plants, soil organisms and microor-

2150ganisms, and to wildlife, and these ecotoxicological effects precede possible effects

2151on humans. Therefore, risk assessment on Zn should be focuses on the effects to soil

2152biota and soil functioning, before considering human risk.
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2153 Zinc in waters is not very toxic to the biota, however, concentrations above

2154 240 μg l�1 may have adverse effects on some sensitive organisms, as for example

2155 salmons (Kabata-Pendias and Mukherjee 2007 and references therein).

2156 Zinc has essential functions in the metabolism of carbohydrates, proteins, and

2157 phosphate in plants; moreover, it is an active component of a variety of enzymes

2158 and also influences the permeability of membranes and stabilizes cellular compo-

2159 nents (Kabata-Pendias and Mukherjee 2007). Therefore, plant response to Zn

2160 content, as well as several other trace elements (e.g. Cu, Mo, Se), relies to both

2161 excess and deficient Zn levels.

2162 Zinc toxicity and Zn tolerance in plants have been of concern because of the

2163 prolonged use of Zn fertilizers, the application of sewage sludge, and other pollu-

2164 tion sources, that enhances Zn content of surface soils. Although Zn content of

2165 plants vary considerably, Zn uptake and translocation from soil to the aerial parts

2166 seems to be effectively limited by a barrier root. Notwithstanding, phytotoxicity is

2167 reported relatively often, although no apparent signs of toxicity are present. Typical

2168 Zn concentrations in healthy plants are 60 mg Zn kg�1, although an yield reduction

2169 is likely to occur at 100–500 mg Zn kg�1 (Alloway 2013). The toxicity limit for Zn

2170 depends on the plants species and genotypes, as well as on the growth stage.

2171 Kabata-Pendias and Mukherjee (2007) report that sensitive terrestrial plants die

2172 when soil Zn concentration exceeds 100 mg kg�1, and photosynthesis is stopped

2173 when the content is more than 178 mg Zn kg�1. Conversely, some species

2174 (e.g. Thlaspi caerulescens) are known to hyperaccumulate Zn above

2175 10,000 mg kg�1, without showing any toxic symptoms (McGrath 1995).

2176 The opposite concern is the Zn deficiency in soils and, accordingly, in plants,

2177 which is a worldwide problem and is reflected also on human health. Approxi-

2178 mately one third of land all over the world, most of which in developing countries

2179 (central Africa, middle and far East, southern America), is Zn-deficient. Zinc

2180 deficient soils produce food crops that are low in Zn (e.g. below 15 mg kg�1 in

2181 wheat grains), and consequently Zn deficiency may affect human population

2182 residing in that areas and consuming deficient food; consistently, it has been

2183 estimated that approximately 1/3 of the world population may be affected. Zinc

2184 deficiency in plants is generally observed when the plant contains less than

2185 20 mg kg�1of this metal. As previously stated, Zn is not readily translocated from

2186 roots to the aerial parts of plant; generally, deficiency occurs firstly in younger

2187 leaves. Deficiency symptoms are plant shortness and underdevelopment as the

2188 result of an inadequate supply of the growth hormone (Kabata-Pendias and

2189 Mukherjee (2007); large yield losses, due to Zn deficiency, have been reported

2190 for various crops in USA and Australia.

2191 Zinc is actually essential for mammals, and must be supplied continuously with

2192 the diet; indeed, the main pathway of Zn intake is by food ingestion. The required

2193 amounts of Zn vary highly (10–200 mg kg�1), and are generally achieved with

2194 normal feeding; few cases of Zn deficiency have been reported. Symptoms of Zn

2195 deficiency, such as decreased growth, testicular atrophy, alopecia, and dermal

2196 lesions have been observed mainly in young animals, as reported by Kabata-

2197 Pendias and Mukherjee (2007).
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2198Farm animals are rather tolerant to high Zn levels in the diet. Horses are the most

2199sensitive to the Zn excess, with symptoms as lameness, osteoporosis, and lymphoid

2200hyperplasia; lethal dose is 10 mg Zn kg�1 body weight.

2201Zinc plays a fundamental role in human health, and is regarded as second only to

2202iron in importance; it is a structural component of several enzymes, and participates

2203in the genetic expression as well. It is important during pregnancy, for brain growth

2204in infants, and in immunocompetence (Steinnes 2009). Deficiency of Zn in the

2205human diet was suspected first in 1961 in some Iranian males with a syndrome that

2206includes hypogonadism, dwarfism, hepatosplenomegaly, geophagia and anaemia

2207(Oliver 1997). Other symptoms include skin lesions, increased susceptibility to

2208infections, growth retardation, delayed sexual and skeletal maturation, anorexia,

2209and behavioral effects. Moderate Zn deficiency has been cited as a major

2210aetiological factor in the adolescent nutritional dwarfism syndrome in the Middle

2211East. Yet, in many Central Asian and Middle Eastern countries wheat provides

221250 % of the daily energy intake, and the proportion can exceed 70 % in rural areas.

2213A daily portion of 400 g rice for subsistence farmers contributes less than 10 mg Zn

2214day�1, an amount that counteracts a daily consumption of 250 g meat and 500 g

2215dairy products that contributes >20 mg Zn in normal diet (Alloway 2013).

2216Opposite to deficiency, zinc can also accumulate in human diets to the point of

2217toxicity. Its intake from food varies highly and depends on several factors, but often

2218on interactions with other metals. Important antagonistic relationship is between

2219Zn-Cd and Zn-Cu. Also increased levels of Ca and Mg in food inhibit its availabil-

2220ity (Kabata-Pendias and Pendias 2001). The safe recommended intake of Zn is

222115 μg day�1(Oliver 1997), while the average content in tissues of the reference man

2222(40–60 years, 70 kg body weight) is 33 mg kg�1. The ingestion or inhalation of

2223larger doses of Zn, especially in forms of inorganic compounds, can be harmful to

2224individuals. It can damage alimentary tracts, and affect diarrhoea and fever

2225(Kabata-Pendias and Mukherjee 2007); the lethal dose for humans is expected to

2226be less than 3 g kg�1 body weight.

22273 Conclusions

2228The flux of elements from the soil/plant system to humans through the food chain is

2229rather well known since the early research papers of the last century (see Oliver

22301997 and references therein). The effects of most trace metals on human health

2231seem to be less well understood, partly because of the interactions between them,

2232and partly because of the complex metabolic reactions in the human body, although

2233there are several well-documented case studies.

2234Despite the copious research addressed to this topic, with thousands of papers

2235published in the last decades, there is still a paucity of quantitative information on

2236the relations between elements in soils and human health. Much is known about the

2237functions of most elements in human body, but there is increasing evidence that the

2238interactions among them are more complex than originally thought. Uncertainty is
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2239 still prevailing, particularly with non essential elements that are “suspected” to be

2240 harmful to humans. The non essential elements As, Cd, Hg, Pb have attracted most

2241 attention worldwide, due to their toxicity towards living organisms (Adriano 2001).

2242 Other elements (Al, Be, Bi, Sb, Sn, Tl, V, W) are likely harmful, but may play some

2243 beneficial functions not yet well known, and should be more investigated.

2244 Among essential elements, Cu, Fe and Zn are of considerable interest. Iron and

2245 zinc deficiencies in humans are rather common, and their effects already known.

2246 Other essential elements (B, Co, Cr, F, I, Mn, Mo, Ni, Se,) have received less

2247 attention.

2248 Potentially (and actually) harmful elements are responsible for some of the main

2249 threats to human health. Arsenic is a silent killer, that takes 8–14 years to develop

2250 arsenicosis, an As-poisoning that affects more than 20 millions people exposed to

2251 As through drinking water (Adriano 2001). Skin pigmentation, diarrhoea, and

2252 ulcers are the effects appearing during the initial stage. In the most severe cases,

2253 arsenicosis causes liver and renal deficiencies or cancer that may lead to death.

2254 Dozen of death induced by skin cancer have been reported in recent years.

2255 Cadmium toxicity is considered among the worst human diseases. Epidemio-

2256 logical studies indicate that renal dysfunctions are caused by Cd poisoning,

2257 followed by development of osteomalacia. Once in the body, the elimination of

2258 Cd is very slow, with a biological half-life of 20 year. The kidney is considered as

2259 the critical target organ for Cd-induced cancer in the general population.

2260 Inorganic Hg is effectively absorbed via the lungs, passing through the blood-

2261 brain barrier, and subsequently bioaccumulating in the brain, provoking the

2262 Minamata disease (mercurialism). Hg is distributed to all tissues within a short

2263 time (ca 4 days), its toxic effects are selective to the nervous system (central system

2264 and peripheral nerves). Hg bioaccumulates and biomagnifies in the aquatic food

2265 chain, that constitutes the predominant pathway of human exposure to Hg.

2266 Lead enters the human body mainly via inhalation and ingestion. The pro-

2267 nounced toxic effects of Pb (plumbism) are manifested as dysfunction in the

2268 nervous system. The neurological effects on children of the slow (chronic) accu-

2269 mulation of Pb should be a matter of immediate concern: US EPA recommends that

2270 all children up to 6 year of age be screened for Pb at least once yearly. In short, Pb is

2271 the greatest cause of global public health concern.

2272 Deficiency in the soil is implicated in selenium disease (selenosis). Shortage of

2273 Se in China soils induce Keshan disease. Evidently soils are deficient in Se, as well

2274 as the general population diet. Selenium deficiency is also considered to be impli-

2275 cated in the incidence of cancer and heart disease.

2276 Potential toxicity in humans from chronic exposure to Tl, Sn, V, and Sb has also

2277 been reported. Also, there is a current question nowadays: does free Al in poor acid

2278 soil contribute to Alzheimer’s disease? Yes, it does! and soil acidification is a

2279 current process today.

2280 As Oliver pointed out (Oliver 1997), “if people were able to optimize their intake

2281 of trace elements, then their health might benefit in the same way as it has done

2282 through the controlling of infectious diseases during this century”. On this roadmap,

2283 epidemiological research is providing increasing evidences that cancer is largely a
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2284man-made disorder and that it should be susceptible to preventive intervention. The

2285causes appear to be connected largely with our life-style, that is, smoking and eating

2286habits, rather than with specific industrial factors. The major actions are:

2287• excessive tobacco usage continues to be the principal challenge in the area of

2288lung cancer prevention;

2289• heavy alcohol intake enhances the risk of upper alimentary and upper respiratory

2290tract cancer among smokers;

2291• the greater Mn content in soils, the smaller cancer incidence;

2292• the cancer incidence is raised by a high Zn/Cu ratio;

2293• The tissue-damaging activity of the rheumatoid arthritis is accelerated by defi-

2294cient intake of copper, zinc and/or selenium;

2295• a deficiency of Mn and Se, as well as an abundance of Zn, has a carcinogenic

2296effect?

2297In conclusion, the role of geochemical factors in the aetiology of human diseases

2298should be deepened, in combination with epidemiologists, soil scientists, social

2299statisticians and other specialists. It has been observed since the 1980s (Lag 1980,

23001984, 1987) that there are considerable geographical variations in the distribution of

2301human diseases, and these variations depend on metal distribution, which, in turn,

2302depends on several factors: geology, soils, climate, etc. Arsenicosis is diffused

2303mainly in the Indian region, diabetes and cardiac infarctions are not found among

2304Eskimoes, as well as the rare occurrence of autoimmune diseases such as rheuma-

2305toid arthritis, multiple sclerosis and psoriasis, and the cancer pattern is quite

2306different from the EU one. Most diseases (cardiac-infarction, rheumatoid arthritis,

2307multiple sclerosis, psoriasis) in Nordic Baltic are under the influence of Se-supply.

2308People inhabiting coastal areas proved to have higher dietary intake of aquatic

2309foodstuff, to which correspond higher Hg levels in blood and hair.

2310Epidemiological studies have not revealed any single factor that could account

2311for differences in breast cancer incidence. Rather, a combination of factors (envi-

2312ronmental, genetic, behavioral etc.) is likely the triggering cause for the onset of

2313cancer.

2314Anomalous situations (geochemical hotspots) may occur in the vicinity of

2315mining areas or close to industrial activities, where the metal burden of humans

2316may be augmented through foodstuffs ingestion, drinking water, dust and air

2317inhalation.

2318If the soil, or food crop, is not contaminated, human exposure through food

2319consumption is substantially below the provisional tolerable intake guideline for the

2320FAO/WHO (WHO 1996), and this is what people should achieve for a sustainable

2321environmental and human life quality.
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