643 research outputs found
Synthesis of New Analogues of the Bengamides: Peptidyl Bengamides and Molecular Probes
Isolated from sponges of the Jaspidae family, first members where discovered in 1986. The bengamides represent an interesting and unprecedented family of natural products that displayed striking antitumor activities [1]. The recognition of these natural products as antiangiogenic compounds, in virtue to their inhibition of methionine aminopeptidases, prompted intense research activities in the chemical and biological fields. In fact, the total synthesis of the natural products, together with an extensive variety of analogues, has been reported in the literature [2]. Particularly, we have recently developed a new synthetic methodology which allowed rapid and efficient access to the natural bengamide E (1), together with a wide library of analogues of which the cyclopentyl analogue 2 was identified as a more potent antitumor compound with respect to its natural congener [3]. As continuation of these synthetic efforts, with the objective of identifying new potent and promising analogues, we wish to report our recent synthetic studies directed to the synthesis of new bengamide analogues, featured by the replacement of the caprolactam fragment by a peptidyl residue (compounds type 3). On the other hand, in order to gain insight into the mechanism of the biological action of the bengamides, we describe the preparation of the N-alkyl derivatives 4 and 5, which represent interesting molecules that could be employed as suitable molecular probes.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
LINC complex-Lisl interplay controls MT1-MMP matrix digest-on-demand response for confined tumor cell migration
Cancer cells' ability to migrate through constricting pores in the tissue matrix is limited by nuclear stiffness. MT1-MMP contributes to metastasis by widening matrix pores, facilitating confined migration. Here, we show that modulation of matrix pore size or of lamin A expression known to modulate nuclear stiffness directly impinges on levels of MT1-MMP-mediated pericellular collagenolysis by cancer cells. A component of this adaptive response is the centrosome-centered distribution of MT1-MMP intracellular storage compartments ahead of the nucleus. We further show that this response, including invadopodia formation in association with confining matrix fibrils, requires an intact connection between the nucleus and the centrosome via the linker of nucleoskeleton and cytoskeleton (LINC) complex protein nesprin-2 and dynein adaptor Lis1. Our results uncover a digest-on-demand strategy for nuclear translocation through constricted spaces whereby confined migration triggers polarization of MT1-MMP storage compartments and matrix proteolysis in front of the nucleus depending on nucleus-microtubule linkage
Are peripheral biomarkers determinants of eating styles in childhood and adolescence obesity? A cross-sectional study
Disturbances in eating behaviors have been widely related to obesity. However, little is known about the role of obesity-related biomarkers in shaping habitual patterns of eating behaviors (i.e., eating styles) in childhood. The objective of the present study was to explore the relationships between several biomarkers crucially involved in obesity (ghrelin, insulin resistance, and leptin/adiponectin ratio) and eating styles in children and adolescents with obesity. Seventy participants aged between 8 and 16 (56.2% men) fulfilled the Spanish version of the Dutch Eating Behavior Questionnaire for Children to measure external, emotional, and restrained eating styles. In addition, concentrations of ghrelin, leptin, adiponectin, insulin, and glucose were obtained through a blood test. Hierarchical multiple regression analyses controlling for age and sex were computed for each eating style. Results indicated that individuals with higher ghrelin concentration levels showed lower scores in restrained eating (beta = -0.61, p < 0.001). The total model explained 32% of the variance of the restrained pattern. No other relationships between obesity-related biomarkers and eating behaviors were found. This study highlights that one of the obesity-risk factors, namely lower plasma ghrelin levels, is substantially involved in a well-known maladaptive eating style, restraint eating, in childhood obesity
Determination of scattering lengths from measurement of atom lifetime
The DIRAC experiment at CERN has achieved a sizeable production of
atoms and has significantly improved the precision on its lifetime
determination. From a sample of 21227 atomic pairs, a 4% measurement of the
S-wave scattering length difference
has been attained, providing an important test of Chiral Perturbation Theory.Comment: 6 pages, 6 figure
Consequences of converting graded to action potentials upon neural information coding and energy efficiency
Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a ‘footprint’ in the generator potential that obscures incoming signals. These three processes reduce information rates by ~50% in generator potentials, to ~3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation
Highlights from the Pierre Auger Observatory
The Pierre Auger Observatory is the world's largest cosmic ray observatory.
Our current exposure reaches nearly 40,000 km str and provides us with an
unprecedented quality data set. The performance and stability of the detectors
and their enhancements are described. Data analyses have led to a number of
major breakthroughs. Among these we discuss the energy spectrum and the
searches for large-scale anisotropies. We present analyses of our X
data and show how it can be interpreted in terms of mass composition. We also
describe some new analyses that extract mass sensitive parameters from the 100%
duty cycle SD data. A coherent interpretation of all these recent results opens
new directions. The consequences regarding the cosmic ray composition and the
properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray
Conference, Rio de Janeiro 201
Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory
The Pierre Auger Collaboration has reported evidence for anisotropy in the
distribution of arrival directions of the cosmic rays with energies
eV. These show a correlation with the distribution
of nearby extragalactic objects, including an apparent excess around the
direction of Centaurus A. If the particles responsible for these excesses at
are heavy nuclei with charge , the proton component of the
sources should lead to excesses in the same regions at energies . We here
report the lack of anisotropies in these directions at energies above
(for illustrative values of ). If the anisotropies
above are due to nuclei with charge , and under reasonable
assumptions about the acceleration process, these observations imply stringent
constraints on the allowed proton fraction at the lower energies
Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter
Data collected by the Pierre Auger Observatory through 31 August 2007 showed
evidence for anisotropy in the arrival directions of cosmic rays above the
Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{eV}. The
anisotropy was measured by the fraction of arrival directions that are less
than from the position of an active galactic nucleus within 75 Mpc
(using the V\'eron-Cetty and V\'eron catalog). An updated
measurement of this fraction is reported here using the arrival directions of
cosmic rays recorded above the same energy threshold through 31 December 2009.
The number of arrival directions has increased from 27 to 69, allowing a more
precise measurement. The correlating fraction is , compared
with expected for isotropic cosmic rays. This is down from the early
estimate of . The enlarged set of arrival directions is
examined also in relation to other populations of nearby extragalactic objects:
galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in
hard X-rays by the Swift Burst Alert Telescope. A celestial region around the
position of the radiogalaxy Cen A has the largest excess of arrival directions
relative to isotropic expectations. The 2-point autocorrelation function is
shown for the enlarged set of arrival directions and compared to the isotropic
expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201
Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory
The advent of the Auger Engineering Radio Array (AERA) necessitates the
development of a powerful framework for the analysis of radio measurements of
cosmic ray air showers. As AERA performs "radio-hybrid" measurements of air
shower radio emission in coincidence with the surface particle detectors and
fluorescence telescopes of the Pierre Auger Observatory, the radio analysis
functionality had to be incorporated in the existing hybrid analysis solutions
for fluoresence and surface detector data. This goal has been achieved in a
natural way by extending the existing Auger Offline software framework with
radio functionality. In this article, we lay out the design, highlights and
features of the radio extension implemented in the Auger Offline framework. Its
functionality has achieved a high degree of sophistication and offers advanced
features such as vectorial reconstruction of the electric field, advanced
signal processing algorithms, a transparent and efficient handling of FFTs, a
very detailed simulation of detector effects, and the read-in of multiple data
formats including data from various radio simulation codes. The source code of
this radio functionality can be made available to interested parties on
request.Comment: accepted for publication in NIM A, 13 pages, minor corrections to
author list and references in v
Search for First Harmonic Modulation in the Right Ascension Distribution of Cosmic Rays Detected at the Pierre Auger Observatory
We present the results of searches for dipolar-type anisotropies in different
energy ranges above eV with the surface detector array of
the Pierre Auger Observatory, reporting on both the phase and the amplitude
measurements of the first harmonic modulation in the right-ascension
distribution. Upper limits on the amplitudes are obtained, which provide the
most stringent bounds at present, being below 2% at 99% for EeV
energies. We also compare our results to those of previous experiments as well
as with some theoretical expectations.Comment: 28 pages, 11 figure
- …