101 research outputs found

    Genetic complexity of miscanthus cell wall composition and biomass quality for biofuels

    Get PDF
    BACKGROUND: Miscanthus sinensis is a high yielding perennial grass species with great potential as a bioenergy feedstock. One of the challenges that currently impedes commercial cellulosic biofuel production is the technical difficulty to efficiently convert lignocellulosic biomass into biofuel. The development of feedstocks with better biomass quality will improve conversion efficiency and the sustainability of the value-chain. Progress in the genetic improvement of biomass quality may be substantially expedited by the development of genetic markers associated to quality traits, which can be used in a marker-assisted selection program. RESULTS: To this end, a mapping population was developed by crossing two parents of contrasting cell wall composition. The performance of 182 F1 offspring individuals along with the parents was evaluated in a field trial with a randomized block design with three replicates. Plants were phenotyped for cell wall composition and conversion efficiency characters in the second and third growth season after establishment. A new SNP-based genetic map for M. sinensis was built using a genotyping-by-sequencing (GBS) approach, which resulted in 464 short-sequence uniparental markers that formed 16 linkage groups in the male map and 17 linkage groups in the female map. A total of 86 QTLs for a variety of biomass quality characteristics were identified, 20 of which were detected in both growth seasons. Twenty QTLs were directly associated to different conversion efficiency characters. Marker sequences were aligned to the sorghum reference genome to facilitate cross-species comparisons. Analyses revealed that for some traits previously identified QTLs in sorghum occurred in homologous regions on the same chromosome. CONCLUSION: In this work we report for the first time the genetic mapping of cell wall composition and bioconversion traits in the bioenergy crop miscanthus. These results are a first step towards the development of marker-assisted selection programs in miscanthus to improve biomass quality and facilitate its use as feedstock for biofuel production

    Low-Dosage Inhibition of DII4 Signaling Promotes Wound Healing by Inducing Functional Neo-Angiogenesis

    Get PDF
    Recent findings regarding Dll4 function in physiological and pathological conditions indicate that this Notch ligand may constitute an important therapeutic target. Dll4 appears to be a major anti-angiogenic agent, occupying a central role in various angiogenic pathways. The first trials of anti-Dll4 therapy in mice demonstrated a paradoxical effect, as it reduced tumor perfusion and growth despite leading to an increase in vascular density. This is seen as the result of insufficient maturation of the newly formed vasculature causing a circulatory defect and increased tumor hypoxia. As Dll4 function is known to be closely dependent on expression levels, we envisioned that the therapeutic anti-Dll4 dosage could be modulated to result in the increase of adequately functional blood vessels. This would be useful in conditions where vascular function is a limiting factor for recovery, like wound healing and tissue hypoxia, especially in diabetic patients. Our experimental results in mice confirmed this possibility, revealing that low dosage inhibition of Dll4/Notch signaling causes improved vascular function and accelerated wound healing

    A Low-Cost GPS GSM/GPRS Telemetry System: Performance in Stationary Field Tests and Preliminary Data on Wild Otters (Lutra lutra)

    Get PDF
    Background: Despite the increasing worldwide use of global positioning system (GPS) telemetry in wildlife research, it has never been tested on any freshwater diving animal or in the peculiar conditions of the riparian habitat, despite this latter being one of the most important habitat types for many animal taxa. Moreover, in most cases, the GPS devices used have been commercial and expensive, limiting their use in low-budget projects. Methodology/Principal Findings: We have developed a low-cost, easily constructed GPS GSM/GPRS (Global System for Mobile Communications/General Packet Radio Service) and examined its performance in stationary tests, by assessing the influence of different habitat types, including the riparian, as well as water submersion and certain climatic and environmental variables on GPS fix-success rate and accuracy. We then tested the GPS on wild diving animals, applying it, for the first time, to an otter species (Lutra lutra). The rate of locations acquired during the stationary tests reached 63.2%, with an average location error of 8.94 m (SD = 8.55). GPS performance in riparian habitats was principally affected by water submersion and secondarily by GPS inclination and position within the riverbed. Temporal and spatial correlations of location estimates accounted for some variation in the data sets. GPS-tagged otters also provided accurate locations and an even higher GPS fix-success rate (68.2%). Conclusions/Significance: Our results suggest that GPS telemetry is reliably applicable to riparian and even divin

    Brazil in the Era of Fascism: The “New State” of Getúlio Vargas

    Get PDF
    The New State established in Brazil by Getúlio Vargas (1937–1945) is the most important case of the institutionalisation of a dictatorship of the fascism era in Latin America. During this time, an impressive spectrum of authoritarian regimes was established, some of which were very instable and poorly institutionalised, while others were more consolidated. Roger Griffin coined the concept of para-fascism for some of them, and the “New State” of Getúlio Vargas in Brazil is a paradigmatic case. In this essay, we analyse the processes of institutional reform in 1930s Brazil paying particular attention to how domestic political actors look at institutional models of fascism and corporatism.info:eu-repo/semantics/publishedVersio

    Factors associated with neural alterations and physical disabilities in patients with leprosy in São Luis, State of Maranhão, Brazil

    Get PDF
    Introduction Leprosy is a chronic infectious disease that is caused by Mycobacterium leprae. The objective of this study was to evaluate the risk factors that are associated with neural alterations and physical disabilities in leprosy patients at the time of diagnosis. Methods A prospective cross-sectional study was conducted on 155 leprosy patients who participated in a program that aimed to eliminate leprosy from São Luis, State of Maranhão. Results Patients who were 31-45 years of age, were older than 60 years of age or had a partner were more likely to have a disability. Patients with partners were 1.14 times more likely (p = 0.025) to have disabilities of the hands. The frequency of disabilities in the feet among the patients with different clinical forms of leprosy was statistically significant. Conclusions The identification of risk factors that are associated with neural alterations and physical disabilities in leprosy patients is important for diagnosing the disease because this approach enables physicians to plan and prioritize actions for the treatment and monitoring of patients

    Nursing Activities Score: nursing work load in a burns Intensive Care Unit

    Get PDF
    OBJECTIVE: to evaluate the nursing work load in a Burns Intensive Care Unit according to the Nursing Activities Score.METHOD: an exploratory, descriptive cross-sectional study with a quantitative approach. The Nursing Activities Score was used for data collection between October 2011 and May 2012, totalling 1,221 measurements, obtained from 50 patients' hospital records. Data for qualitative variables was described in tables; for the quantitative variables, calculations using statistical measurements were used.RESULTS: the mean score for the Nursing Activities Score was 70.4% and the median was 70.3%, corresponding to the percentage of the time spent on direct care to the patient in 24 hours.CONCLUSION: the Nursing Activities Score provided information which involves the process of caring for patients hospitalized in a Burns Intensive Care Unit, and indicated that there is a high work load for the nursing team of the sector studied

    Flexibility of a biotinylated ligand in artificial metalloenzymes based on streptavidin—an insight from molecular dynamics simulations with classical and ab initio force fields

    Get PDF
    In the field of enzymatic catalysis, creating activity from a non catalytic scaffold is a daunting task. Introduction of a catalytically active moiety within a protein scaffold offers an attractive means for the creation of artificial metalloenzymes. With this goal in mind, introduction of a biotinylated d6-piano-stool complex within streptavidin (SAV) affords enantioselective artificial transfer-hydrogenases for the reduction of prochiral ketones. Based on an X-ray crystal structure of a highly selective hybrid catalyst, displaying significant disorder around the biotinylated catalyst [η6-(p-cymene)Ru(Biot-p-L)Cl], we report on molecular dynamics simulations to shed light on the protein–cofactor interactions and contacts. The results of these simulations with classical force field indicate that the SAV-biotin and SAV-catalyst complexes are more stable than ligand-free SAV. The point mutations introduced did not affect significantly the overall behavior of SAV and, unexpectedly, the P64G substitution did not provide additional flexibility to the protein scaffold. The metal-cofactor proved to be conformationally flexible, and the S112K or P64G mutants proved to enhance this effect in the most pronounced way. The network of intermolecular hydrogen bonds is efficient at stabilizing the position of biotin, but much less at fixing the conformation of an extended biotinylated ligand. This leads to a relative conformational freedom of the metal-cofactor, and a poorly localized catalytic metal moiety. MD calculations with ab initio potential function suggest that the hydrogen bonds alone are not sufficient factors for full stabilization of the biotin. The hydrophobic biotin-binding pocket (and generally protein scaffold) maintains the hydrogen bonds between biotin and protein
    corecore