83 research outputs found

    Inhibition of Non-Homologous End Joining Repair Impairs Pancreatic Cancer Growth and Enhances Radiation Response

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is amongst the deadliest of human cancers, due to its late diagnosis as well as its intense resistance to currently available therapeutics. To identify mechanisms as to why PDAC are refractory to DNA damaging cytoxic chemotherapy and radiation, we performed a global interrogation of the DNA damage response of PDAC. We find that PDAC cells generally harbor high levels of spontaneous DNA damage. Inhibition of Non-Homologous End Joining (NHEJ) repair either pharmacologically or by RNAi resulted in a further accumulation of DNA damage, inhibition of growth, and ultimately apoptosis even in the absence of exogenous DNA damaging agents. In response to radiation, PDAC cells rely on the NHEJ pathway to rapidly repair DNA double strand breaks. Mechanistically, when NHEJ is inhibited there is a compensatory increase in Homologous Recombination (HR). Despite this upregulation of HR, DNA damage persists and cells are significantly more sensitive to radiation. Together, these findings support the incorporation of NHEJ inhibition into PDAC therapeutic approaches, either alone, or in combination with DNA damaging therapies such as radiation

    A qualitative and quantitative model for climate-driven lake formation on carbonate platforms based on examples from the Bahamian archipelago

    Get PDF
    Lakes on carbonate platform islands such as the Bahamas display wide variability in morphometry, chemistry, and fauna. These parameters are ultimately driven by climate, sea level, and carbonate accumulation and dissolution. The authors propose a model that integrates climatological, geomorphological, and stratigraphic frameworks to understand processes of carbonate-hosted lake formation and limnological characteristics in modern day environments, with applications to carbonate lake sedimentary records. Fifty-two lakes from San Salvador Island and Eleuthera, Bahamas, were examined for water chemistry, basin morphology, conduit development, conductivity, and major ions. Using non-metric, multi-dimensional scaling ordination methods, the authors derived a model dividing lakes into either constructional or destructional formational modes. Constructional lakes were further divided into pre-highstand and highstand types based on whether their formation occurred during a marine regressive or transgressive phase. Destructional lakes are created continually by dissolution of bedrock at fresh/saline water interfaces and their formation is therefore related to changing climate and sea level. This model shows that lake formation is influenced by the hydrologic balance associated with climatic conditions that drives karst dissolution as well as the deposition of aeolian dune ridges that isolate basins due to sea-level fluctuations. It allows for testing and examining the climatic and hydrologic regime as related to carbonate accumulation and dissolution through time, and for an improved understanding of lake sensitivity and response to climate as preserved in the lacustrine sedimentary record

    The lung cancer exercise training study: a randomized trial of aerobic training, resistance training, or both in postsurgical lung cancer patients: rationale and design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Lung Cancer Exercise Training Study (LUNGEVITY) is a randomized trial to investigate the efficacy of different types of exercise training on cardiorespiratory fitness (VO<sub>2peak</sub>), patient-reported outcomes, and the organ components that govern VO<sub>2peak </sub>in post-operative non-small cell lung cancer (NSCLC) patients.</p> <p>Methods/Design</p> <p>Using a single-center, randomized design, 160 subjects (40 patients/study arm) with histologically confirmed stage I-IIIA NSCLC following curative-intent complete surgical resection at Duke University Medical Center (DUMC) will be potentially eligible for this trial. Following baseline assessments, eligible participants will be randomly assigned to one of four conditions: (1) aerobic training alone, (2) resistance training alone, (3) the combination of aerobic and resistance training, or (4) attention-control (progressive stretching). The ultimate goal for all exercise training groups will be 3 supervised exercise sessions per week an intensity above 70% of the individually determined VO<sub>2peak </sub>for aerobic training and an intensity between 60 and 80% of one-repetition maximum for resistance training, for 30-45 minutes/session. Progressive stretching will be matched to the exercise groups in terms of program length (i.e., 16 weeks), social interaction (participants will receive one-on-one instruction), and duration (30-45 mins/session). The primary study endpoint is VO<sub>2peak</sub>. Secondary endpoints include: patient-reported outcomes (PROs) (e.g., quality of life, fatigue, depression, etc.) and organ components of the oxygen cascade (i.e., pulmonary function, cardiac function, skeletal muscle function). All endpoints will be assessed at baseline and postintervention (16 weeks). Substudies will include genetic studies regarding individual responses to an exercise stimulus, theoretical determinants of exercise adherence, examination of the psychological mediators of the exercise - PRO relationship, and exercise-induced changes in gene expression.</p> <p>Discussion</p> <p>VO<sub>2peak </sub>is becoming increasingly recognized as an outcome of major importance in NSCLC. LUNGEVITY will identify the optimal form of exercise training for NSCLC survivors as well as provide insight into the physiological mechanisms underlying this effect. Overall, this study will contribute to the establishment of clinical exercise therapy rehabilitation guidelines for patients across the entire NSCLC continuum.</p> <p>Trial Registration</p> <p>NCT00018255</p

    Perspectives and Integration in SOLAS Science

    Get PDF
    Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm. Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency. The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling. Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earth’s climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter

    Comparative population genetic structure of the endangered southern brown bandicoot, Isoodon obesulus, in fragmented landscapes of Southern Australia

    Get PDF
    Genetic connectivity is a key factor for maintaining the persistence of populations in fragmented landscapes. In highly modified landscapes such us peri-urban areas, organisms' dispersal among fragmented habitat patches can be reduced due to the surrounding matrix, leading to subsequent decreased gene flow and increased potential extinction risk in isolated sub-populations. However, few studies have compared within species how dispersal/gene flow varies between regions and among different forms of matrix that might be encountered. In the current study, we investigated gene flow and dispersal in an endangered marsupial, the southern brown bandicoot (Isoodon obesulus) in a heavily modified peri-urban landscape in South Australia, Australia. We used 14 microsatellite markers to genotype 254 individuals which were sampled from 15 sites. Analyses revealed significant genetic structure. Our analyses also indicated that dispersal was mostly limited to neighbouring sites. Comparisons of these results with analyses of a different population of the same species revealed that gene flow/dispersal was more limited in this peri-urban landscape than in a pine plantation landscape approximately 400 km to the south-east. These findings increase our understanding of how the nature of fragmentation can lead to profound differences in levels of genetic connectivity among populations of the same species.You Li, Steven J.B. Cooper, Melanie L. Lancaster, Jasmin G. Packer, Susan M. Carthe

    Nanoparticle-induced neuronal toxicity across placental barriers is mediated by autophagy and dependent on astrocytes

    Get PDF
    The potential for maternal nanoparticle (NP) exposures to cause developmental toxicity in the fetus without the direct passage of NPs has previously been shown, but the mechanism remained elusive. We now demonstrate that exposure of cobalt and chromium NPs to BeWo cell barriers, an in vitro model of the human placenta, triggers impairment of the autophagic flux and release of interleukin-6. This contributes to the altered differentiation of human neural progenitor cells and DNA damage in the derived neurons and astrocytes. Crucially, neuronal DNA damage is mediated by astrocytes. Inhibiting the autophagic degradation in the BeWo barrier by overexpression of the dominant-negative human ATG4BC74A significantly reduces the levels of DNA damage in astrocytes. In vivo, indirect NP toxicity in mice results in neurodevelopmental abnormalities with reactive astrogliosis and increased DNA damage in the fetal hippocampus. Our results demonstrate the potential importance of autophagy to elicit NP toxicity and the risk of indirect developmental neurotoxicity after maternal NP exposure

    Astronomical pacing of methane release in the Early Jurassic period

    No full text
    A pronounced negative carbon-isotope (δ13C) excursion of ~5–7‰ indicates the occurrence of a significant perturbation to the global carbon cycle during the Early Jurassic period (early Toarcian age, ~183 million years ago). The rapid release of 12C-enriched biogenic methane as a result of continental-shelf methane hydrate dissociation has been put forward as a possible explanation for this observation. Here we report high-resolution organic carbon-isotope data from well-preserved mudrocks in Yorkshire, UK, which demonstrate that the carbon-isotope excursion occurred in three abrupt stages, each showing a shift of -2‰ to -3‰. Spectral analysis of these carbon-isotope measurements and of high-resolution carbonate abundance data reveals a regular cyclicity. We interpret these results as providing strong evidence that methane release proceeded in three rapid pulses and that these pulses were controlled by astronomically forced changes in climate, superimposed upon longer-term global warming. We also find that the first two pulses of methane release each coincided with the extinction of a large proportion of marine species

    Plantation crops

    No full text
    Plantation horticulture is an important part of the economic landscape of many tropical countries. Plantations were developed in association with colonial expansion and the original models were based on the production of monocrops which had a ready export market, using cheap or slave labour. Plantations in the twenty first Century are less likely environments for exploitation of human and environmental capital. They are however, linked to crop production on a large scale for produce to be sold, at profit, for export to distant markets rather than local sale. A range of crops can be broadly categorized into plantation crops. Plantations continue to be effective models for efficient agricultural production and will evolve in response to the continued demand for food, fruit, fibre, oil crops and timber from a growing populatio
    corecore