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Abstract
Genetic connectivity is a key factor for maintaining the persistence of populations in frag-

mented landscapes. In highly modified landscapes such us peri-urban areas, organisms’

dispersal among fragmented habitat patches can be reduced due to the surrounding matrix,

leading to subsequent decreased gene flow and increased potential extinction risk in iso-

lated sub-populations. However, few studies have compared within species how dispersal/

gene flow varies between regions and among different forms of matrix that might be

encountered. In the current study, we investigated gene flow and dispersal in an endan-

gered marsupial, the southern brown bandicoot (Isoodon obesulus) in a heavily modified

peri-urban landscape in South Australia, Australia. We used 14 microsatellite markers to

genotype 254 individuals which were sampled from 15 sites. Analyses revealed significant

genetic structure. Our analyses also indicated that dispersal was mostly limited to neigh-

bouring sites. Comparisons of these results with analyses of a different population of the

same species revealed that gene flow/dispersal was more limited in this peri-urban land-

scape than in a pine plantation landscape approximately 400 km to the south-east. These

findings increase our understanding of how the nature of fragmentation can lead to profound

differences in levels of genetic connectivity among populations of the same species.

Introduction
Habitat loss and fragmentation are the leading threats to biological diversity worldwide [1, 2],
and the rapid spread of urbanisation is a major driver of landscape degradation and fragmenta-
tion. In urban landscapes, once-continuous habitat is largely being replaced with fragmented
remnants surrounded by a heterogeneous matrix of variable human constructs including build-
ings, roads, parks, gardens and even agricultural land in some peri- or semi-urban areas.
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The importance of different types of matrices in fragmented landscapes has been recognised
and their influences on biodiversity (e.g. isolation effects, being alternative or secondary habi-
tats, and providing corridors and stepping stones) have been investigated in numerous studies
(see review by Prevedello & Vieira [3]). In highly modified landscapes with complex matrices,
movements of organisms and subsequent gene flow between habitat patches can be limited by
landscape features such as roads, rivers or other matrices with unsuitable habitat (e.g. [4–6]).
Reduced gene flow can lead to a range of consequences for the remnant populations, including
increased inbreeding, loss of genetic diversity through genetic drift and the potential for increased
extinction risk [7, 8]. Thus, the degree to which organisms are able to move across a heteroge-
neous matrix is crucial for the persistence of populations in fragmented landscapes [9–12].

In practice, the effects of matrices on organisms’movements between habitat patches are
species-specific [3, 12], and dispersal capacity and genetic structure of species can vary depend-
ing on the type of matrix they encounter, their demographic history and their geographical
location (e.g. within species, populations at lower latitudes tend to have greater genetic diver-
gence than populations at higher latitudes; [13]) [14]. Although, there is now a large body of
work on gene flow and dispersal capability for natural and anthropogenically modified land-
scapes (e.g. [5, 15–19]), few studies have investigated how different forms of fragmentation
with distinct matrices influence patterns of population connectivity within the same species
(but see [20, 21]). Such studies are useful because they improve our understanding of dispersal
dynamics and help with decision-making for conservation management of threatened species
(e.g. identifying priority areas for habitat restoration and approaches for developing habitat
corridors).

Populations of the southern brown bandicoot species (Isoodon obesulus) in South Australia
(SA) and their habitat represent an ideal system to explore this issue. I. obesulus is a rabbit-
sized ground-dwelling marsupial, which has dramatically declined in number over the last 220
years, with studies providing evidence for a contracted distribution and local population
extinctions [22–25]. In South Australia, I. obesulus is the only surviving member of the family
Peramelidae. This family originally included eleven Australian species before European settle-
ment, but now only eight species survive in the whole country. The subspecies I. o. obesulus,
distributed in eastern and southern regions of Australia (including SA), is listed as Nationally
Endangered (Australian Environment Protection and Biodiversity Conservation Act 1999),
and, therefore, further understanding of the impact of habitat fragmentation on population
connectivity has important implications for conservation management.

Three current strongholds of I. obesulus persist in South Australia–the Mount Lofty Ranges,
Kangaroo Island and the south-east region (Fig 1). Within the latter region, I. obesulus occurs
only in the Green Triangle Forest area (comprised of three forest districts–Mount Burr, Mount
Gambier and Penola), one of Australia’s major softwood plantation regions currently managed
by the state government-based organisation, ForestrySA. Here, numerous small fragments of
native forest are managed as reserves embedded in matrices of pine (Pinus radiata) plantations
or agricultural land. Investigation of genetic connectivity of I. obesulus showed significant pop-
ulation genetic structuring and restricted gene flow and dispersal to neighbouring patches [26].

The Mount Lofty Ranges are another stronghold of I. obesulus. With its rich biodiversity,
the area was identified as one of 15 Australian biodiversity hotspots by the Commonwealth
Government in 2003 (Department of the Environment, National Biodiversity Hotspots, http://
www.environment.gov.au/biodiversity/conservation/hotspots/national-biodiversity-hotspots).
However, the region has experienced extensive native vegetation clearance and only 13% of the
original vegetation remains [27]. It is also highly fragmented with few relatively intact areas
and variable amounts of degraded native vegetation embedded in a heterogeneous matrix of
urban and agricultural land uses.
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This study aimed to investigate population structure, genetic diversity and the extent of
gene flow of I. obesulus in the central Mount Lofty Ranges (Fig 1 and Table 1), and test the
hypothesis that the species here exhibits genetic structuring due to reduced gene flow across
the fragmented landscape. In addition, since the habitat and matrix structure of the Mount
Lofty Ranges is different and seemingly less fragmented than the previously studied Mount
Burr Range [26], results obtained here were then compared to the Mount Burr study to discuss
connectivity of bandicoot populations in different matrix systems.

Methods

Study area
We surveyed 15 sites within the distribution of I. obesulus in the central Mount Lofty Ranges,
with seven sites located in three national/conservation parks (Fig 1 and Table 1). Due to a lack
of information on the density or level of coverage of native vegetation in the Mount Lofty
Ranges, Fig 1 shows only the broad distribution of native vegetation in this region. Suitable
bandicoot habitats in this region are patchily distributed and often surrounded by open areas
with very low cover of native vegetation, even within the conservation park (e.g. Scott Creek
Conservation Park). These open areas make it unlikely that any of our adjacent collection sites
in the Mount Lofty Ranges are connected by continuous habitat. These national/conservation
parks were thus not treated as continuous habitat.

Fig 1. Map of the location of three strongholds of I. obesulus in South Australia (SA), Australia (left hand side), with the box indicating the location
of sites in the central Mount Lofty Ranges that were used in the current study.Cleared lands are represented in white and the borders of the national
parks are represented in purple. See Table 1 for full names of the sampled sites.

doi:10.1371/journal.pone.0152850.g001
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Trapping sites were chosen based on our own field observations of fresh bandicoot diggings
(conical holes produced during foraging; [28]) and vegetation characteristics–the species is
known to be associated with the grass tree Xanthorrhoea australis [28]. Within sites, traps were
set as two 200 m-long parallel transects of 10 cage traps (55 × 25 × 25 cm treadle) and 10 Elliott
traps (330 × 100 × 100 mm) per transect. Both traps were placed on the ground, covered with
hessian or plastic bags to protect animals from rain and sun, bedded with small pieces of hes-
sian to keep animals warm, and baited with a mixture of peanut butter and oats. Traps were set
and checked in the morning and late afternoon during summer, autumn and spring and in the
morning during winter. Captured bandicoots were processed on site or nearby. Individuals
were permanently identified with a passive integrated transponder tag inserted subcutaneously
in the rump above the right hind leg [29]. A small notch of skin was removed from the ear for
secondary identification and stored in a 50: 50 solution containing ethanol and saline for
genetic analysis. A total of 284 bandicoot tissue samples were collected during 11 field trips
between 2008 and 2011. Of the 284 samples, 30 were collected from pouch young. These sam-
ples were excluded and 254 samples were used in the population analyses.

DNA extraction and genotyping
DNA was isolated using the Gentra Puregene extraction kit, following the manufacturer’s
instructions (Gentra Systems Inc.). Individuals were genotyped at 14 microsatellite loci devel-
oped for I. obesulus: five (B3-2, B15-1, B20-5, B34-2, and B38-1) by Zenger & Johnston [30],
and nine by Li et al. [31]. PCR amplifications followed protocols in Li et al. [31]. Approximately
10% of samples were genotyped twice at all loci to check error rates. These were expressed as
the number of errors per allele, which was calculated as the number of incorrect alleles divided
by the total number of genotyped alleles [32]. Repeat genotyping error rate was very low, with

Table 1. Sampling information and genetic diversity parameters for I. obesulus at 15 sites within the Mount Lofty Ranges.

Site name Site
abbreviation

Distance to nearest sampled site*
(km)

N HO HE FIS A AR IR

Belair National Park BNPS 1.39 40 0.381 0.400 0.047 2.29 1.620 0.472

Ackland Hill Rd Coromandel (Mud
Hut)

MHS 2.53 37 0.506 0.499 -0.014 3.64 1.959 0.236

Pole Rd PRS 0.92 13 0.412 0.501 0.187 3.14 2.031 0.270

Wirra Birra low WBL 0.92 11 0.522 0.542 0.039 2.86 2.038 0.185

Ironbank Rd IRC 1.07 15 0.464 0.550 0.163 3.50 2.017 0.310

Mark Oliphant CP Site 1 MOD 1.08 15 0.537 0.552 0.028 2.93 1.976 0.175

Mark Oliphant CP Site 2 MOC 1.07 22 0.475 0.550 0.141 3.14 2.041 0.234

Dorset Vale Road QUD 1.45 24 0.476 0.569 0.167 4.14 2.208 0.222

Mount Bold Reserve Site 1 MtBS 0.63 17 0.414 0.480 0.143 3.50 1.941 0.345

Scott Creek CP Site 1 SCS 0.63 7 0.594 0.598 0.011 2.93 2.208 0.050

Scott Creek CP Site 2 SC 0.97 12 0.383 0.581 0.352 3.86 2.272 0.389

Scott Creek CP Site 3 SCC 0.97 7 0.709 0.538 -0.354 2.86 2.026 -0.116

Scott Creek CP Site 4 SCD 1.05 6 0.599 0.627 0.048 3.07 2.347 0.102

Mount Bold Reserve Site 2 MtBC 2.59 12 0.446 0.520 0.147 3.29 2.084 0.263

Mount Bold Reserve Site 3 MtBD 2.59 16 0.524 0.575 0.094 3.36 2.129 0.203

Sample size (N), observed heterozygosity (HO), expected heterozygosity (HE), inbreeding coefficient (FIS), allelic diversity (A), allelic richness (AR), and

internal relatedness (IR). Significant FIS values were denoted in bold (P < 0.05). CP = Conservation Park

* The “distance to nearest sampled site” was measured in ArcGIS 10 as straight-line distance.

doi:10.1371/journal.pone.0152850.t001
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an average of 0.0009 across all loci. Amplified products were run on an ABI 3730 DNA Analy-
ser and alleles were scored using GeneMapper 4.0 (Applied Biosystems).

Microsatellite analyses
Variation in allele frequencies within sites sampled across multiple years was examined via
ANOVA [33] in SPSS v.20 (SPSS Inc., Chicago, IL, USA). Since no significant variation in allele
frequencies across years was found for any of the 11 sites examined we were confident about
pooling data across years.

For this study, we did not have complete information on the juvenile or adult status of each
individual. Previous analyses of the Mount Burr population [26] indicated that juveniles are
capable of dispersal and their inclusion in population analyses did not affect the results
obtained. However, to address potential concerns of sampling bias due to the presence of
related individuals, we used COANCESTRY v.1.0.1.2 [34] to investigate the level of genetic
relatedness between individuals using a triadic likelihood estimator (TrioML) [35].

Conformation with Hardy-Weinberg equilibrium (HWE) across loci and sites was assessed in
Genepop 4.1.0 [36] and a test for linkage disequilibrium among loci conducted in Arlequin 3.11
[37]. MICRO-CHECKER v.2.2.3 [38] was used to estimate null allele frequencies. Sequential
Bonferroni corrections [39] were applied to adjust significance values for multiple comparisons.

Number of alleles per locus (A), observed heterozygosity (HO) and expected heterozygosity
(HE) were calculated in Arlequin 3.11 [37], and inbreeding coefficient (FIS) and allelic richness (AR,
corrected for sample size) were estimated in FSTAT 2.9.3.2 [40]. An estimate of parental relatedness
was calculated using internal relatedness (IR) [41] in an R extension package, Rhh [42].

Genetic differentiation and population structure
To assess the degree of genetic differentiation of bandicoots across sites, we measured pairwise
FST in Arlequin 3.11 [37] and calculated pairwise DEST as a measurement of actual differentia-
tion in the package DEMEtics [43] implemented in R, with 1 000 bootstrap iterations to deter-
mine statistical significance. DEST takes account of the effective number of alleles and may
perform better than FST in the case of highly polymorphic markers such as microsatellites [44].

We implemented Bayesian clustering analysis in STRUCTURE 2.3.3 [45] and TESS 2.3.1 [46,
47] to characterize population genetic structure. STRUCTURE uses a non-spatial Bayesian algo-
rithm, while TESS incorporates spatial information into the analysis and thus increases the power of
modelling genetic structure [48]. STRUCTURE analysis used an admixture model with correlated
allele frequencies, a burn-in of 100 000 and 100 000MCMC steps after the burn-in. The value ofK
(K is the number of likely clusters) was set from 1 to 15 with ten replicates of each K to verify the
convergence of theMarkov chain. The method described in [49] was used for determining the most
likely K. For TESS, we ran the analysis under an admixture model using K ranging from 2 to 15 (10
replicates per K), with 10 000 burn-in and 50 000 sweeps. The value of the interaction parameter ψ
(the strength of the spatial autocorrelation) was set to the default value, 0.6. The optimal K for TESS
was chosen as the one with the stabilized value of the Deviance Information Criterion (DIC). For
both analyses, CLUMPP 1.1.2 [50] was used to average the membership probabilities for the ten
runs of the most likelyK and DISTRUCT 1.1 [51] was used to display the averaged results.

Spatial scale of genetic differentiation
To investigate the effect of isolation by distance (IBD), we ran Mantel tests (at both individual
and site level) between linearised genetic distance (FST / (1-FST) and DEST / (1- DEST)) and the
logarithm of geographical distance using the subprogram Isolde of Genepop 4.1.0 [36] with 10
000 permutations.

Population Genetic Structure of Isoodon obesulus
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To complement the IBD analyses, we also conducted a redundancy analysis (RDA) to explore
the relationship between genetic structure and explanatory variables (see below). RDA is an ana-
logue of multivariate linear regression and is reported to have greater power than Mantel tests in
cases where there are multivariate species-environment relationships [52]. We used allele fre-
quencies as dependent variables (unconstrained matrix) and environmental variables as indepen-
dent variables (constrained matrix). The latter included geographic coordinates, minimum
distance to neighbouring site (DN) and degree of isolation (DI). The degree of isolation for each
site was measured as the mean distance to the closest three sites. Partial RDA analyses, in which
genetic variance was conditioned on the remaining variables, were conducted for any significant
associations between genetic variance and one or more environmental variables. Partial and the
full model with all explanatory variables also allowed us to examine how much of the genetic var-
iance was uniquely explained by each variable, and howmuch was due to the joint effect of all
the variables [53]. RDA analyses were conducted in the R package vegan [54].

Spatial autocorrelation analyses were performed in GenAlEx 6.41 [55] to further study the
spatial scale of genetic variation. We used 0.5 km for distance class size, using separate analyses
for males (n = 140) and females (n = 105) to check for sex-biased dispersal (nine samples of
unknown gender were excluded). Statistical testing was based on the 95% confidence interval
defined by 1 000 random permutations.

Migration and gene flow among populations
We explored for recent migration rates among both sites and STRUCTURE clusters with the
program BayesAss3.0.3 [56]. BayesAss uses a Bayesian MCMC approach to estimate asymmet-
ric migration over the last two to three generations [56]. After a few preliminary runs to ensure
convergence of the MCMC analysis, a chain length of 30 million iterations with a burn-in of 3
million iterations and a thinning interval of 2 000 was chosen to run the program. Various
delta values (delta is the parameter that defines the size of the proposed change to the parame-
ter values at each iteration) were used for migration rates, allele frequencies and inbreeding val-
ues. Multiple runs were performed with unique random seeds to assess convergence.

Migrants and individuals with mixed ancestry were detected in both STRUCTURE 2.3.3 [45]
and GENECLASS 2.0 [57]. In STRUCTURE, the analysis was performed using sampling locations
(i.e. sites) as prior population information with 100 000 burn-in and 100 000MCMC steps after
the burn-in. In GENECLASS, the test of first-generation migrants was performed using a Bayesian
approach [58] and the Monte Carlo re-sampling method of Paetkau et al. (2004) [59] with 10 000
simulated individuals and an alpha of 0.05. For the likelihood computation, we used the likelihood
ratio L_home (the likelihood of a given individual being from the population where it was sampled)
because it is more appropriate than other estimations if not all source populations were sampled [59].

Ethics statement
The protocol of sample collections in this study was performed under the University of Ade-
laide Animal Ethics Committee (project number S-2011-041) and Department of the Environ-
ment, Water and Natural Resources (DEWNR) permit to undertake scientific research (permit
number G23771-13).

Results

Genetic variability
Results from COANCESTRY indicated that sampling was not biased towards highly related
individuals. Mean relatedness (R) was 0.08, ranging from 0.04 in SC to 0.19 in SCC. Site SC
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had the fewest (R� 0.5, n = 0) and BNPS had the most highly related individuals (R� 0.5,
n = 69) (n = the number of within-site pairwise relatedness comparisons where R was found to
be� 0.5, total number of comparisons were 780 for site BNPS and 66 for SC). We repeated the
analyses with the related individuals excluded. Since their exclusion did not alter results of the
population analyses (data not shown) we retained the entire data set for analyses.

Significant linkage disequilibrium was detected in 18 of the 1365 (1.3%) pairwise locus com-
binations and none of these were consistent across sites. Close physical linkage between any of
the 14 loci was therefore considered unlikely. Twenty-one of the 210 locus × sites tests departed
significantly from HWE after sequential Bonferroni correction, involving six loci (Ioo7, Ioo5,
Ioo4, Ioo3, Ioo2, B15-1, B20-5 and B3-2). Three loci (Ioo7, Ioo3 and B3-2) deviated from
HWE at more than two sites. Micro-checker detected that these three loci might contain null
alleles. However, the presence of null alleles at these loci was not consistent across sites. In
addition, deviations from HWE can result from inbreeding or the Wahlund effect (the reduc-
tion of heterozygosity due to population subdivision). To be cautious, we ran all the analyses
without the three loci and the results showed a similar pattern to that of the full 14 locus data
set. For this reason, we did not apply a correction for null alleles and retained the three loci for
the analyses presented here.

Numbers of alleles per locus ranged from 3 (Ioo6, Ioo16, B20-5, and B38-1) to 10 (Ioo4,
Ioo5, and B15-1) with an average of 6.1. At each site, mean observed heterozygosity across loci
ranged from 0.381 (site BNPS) to 0.709 (site SCC) and expected heterozygosity ranged from
0.400 (BNPS) to 0.627 (SCD) (see Table 1 for site codes and heterozygosity values). FIS values
ranged from -0.354 in SCC to 0.352 in SC (Table 1). Allelic diversity (the average number of
alleles per locus, A) was lowest in BNPS (2.29) and highest in QUD (4.14), with a mean of 3.23
(Table 1). Allelic richness ranged from 1.620 (BNPS) to 2.347 (SCD) (Table 1). Statistical tests
showed no evidence of variation inHO, HE and AR among all sites (ANOVA, F (14, 195) =
1.616, 1.796, and 1.464, P = 0.077, 0.071 and 0.128 respectively). Internal relatedness (IR) was
highest in BNPS (0.472) and lowest in SCC (-0.116) (Table 1). Post hoc tests showed that ban-
dicoots in BNPS had significantly higher values of IR than those from ten other sites (see S1
Table for details). IR in SCC was significantly lower than ten other sites (S1 Table).

Genetic population structure and gene flow
Pairwise FST values were significant for 96 of the 105 comparisons (Table 2). The highest pair-
wise FST was between BNPS and MtBS (FST = 0.422, P< 0.05), and the lowest was between
SCC and SCD (FST = 0.005, P = 0.265). Pairwise DEST values were generally higher than FST,
with the highest value between BNPS and MHS (DEST = 0.473, P< 0.05) and the lowest
between SCC and SCD (DEST = 0.024, P = 0.587). Mantel tests showed a significant association
between genetic distance and geographical distance (measured as logarithm of (1 + geographi-
cal distance)) at both individual and site level (individual level: â statistic, P< 0.05; site level:
FST, P< 0.05, DEST, P< 0.05).

Using the program STRUCTURE, four clusters (K = 4) were identified (S1 Fig). Samples
from BNPS grouped in one cluster (hereafter ‘BNPS cluster’), samples fromMHS were distinct
and grouped in a separate cluster (hereafter ‘MHS cluster’), PRS, WBL, IRC, MOC, MOD and
MtBC in a third cluster (hereafter ‘northern cluster’), and QUD, MtBS, SCS, SC, SCC, SCD,
and MtBD in a fourth cluster (hereafter ‘southern cluster’) (Fig 2A). Seventy-two percent of the
individuals were assigned with a probability> 80% to one of the four clusters.

In the Bayesian clustering analysis computed by the program TESS, five clusters (K = 5)
were identified, with four clusters being identical to that found using STRUCTURE (Fig 2B).
The fifth cluster detected in TESS contained only two individuals and was not specific to any

Population Genetic Structure of Isoodon obesulus

PLOSONE | DOI:10.1371/journal.pone.0152850 April 20, 2016 7 / 20



site, so was disregarded. We thus referred to K = 4 as the most likely number of genetic clusters
in our dataset: the BNPS cluster, the MHS cluster, the northern cluster (PRS, WBL, IRC, MOC,
MOD and MtBC) and the southern cluster (QUD, MtBS, SCS, SC, SCC, SCD, and MtBD)
(Fig 2).

RDA analysis with the full model showed a significant association between genetic variance
and geographic location (P = 0.010, Fig 3A, showing the longest vector along each RDA axis).
This relationship was also significant when the analysis was controlled for DN and DI
(P = 0.005, Fig 3B). Partitioning of the variance components (comparing the full model with
the partial models) indicated that geographic location explained 72.6% of the total explainable
genetic variance when controlled for other variables; DN and DI explained 11.0% and 13.2%
respectively; and all three variables taken together had a joint effect of 3.2% on genetic
variance.

For the whole data set (males and females together), spatial autocorrelation analysis revealed
a significant and positive correlation for individuals up to 1 km and the genetic similarities (r)
then stabilized at a value around zero (Fig 4A). When analysed separately, the results for males
and females were very similar (Fig 4B and 4C).

Bayesian estimation of migration rates from BayesAss indicated that total migration among
STRUCTURE clusters was low and approximately equal in each direction, averaging
0.011 ± 0.007 (S2 Table). We found symmetric gene flow for most of the site pairs, with an
average migration rate of 0.016 ± 0.016 (S3 Table). Migration for four site pairs were direction-
ally biased: 0.142 from PRS to MOC and 0.009 fromMOC to PRS; 0.116 from MOD to MOC
and 0.018 from MOC to MOD; 0.042 from QUD to MtBS and 0.081 fromMtBS to QUD; 0.021
fromMtBS to SC and 0.100 from SC to MtBS (S3 Table).

A total of 22 individuals were identified as potential migrants (16 by STRUCTURE and 14
by GENECLASS, Table 3). Eight individuals were identified as migrants by both methods and
were thus classified as such (Table 3). Of the remaining 14 individuals, three had a probability
of>80% of belonging to their sampled sites in STRUCTURE and were thus classified as

Table 2. Pairwise FST values (below diagonal) and pairwiseDEST values (above diagonal) estimated for the 15 sites sampled for I. obesulus (follow-
ing Sequential Bonferroni correction).

DEST BNPS MHS PRS WBL IRC MOD MOC QUD MtBS SCS SC SCC SCD MtBC MtBD

BNPS - 0.473* 0.315* 0.193* 0.433* 0.373* 0.350* 0.415* 0.446* 0.309* 0.400* 0.357* 0.354* 0.378* 0.356*

MHS 0.410* - 0.184* 0.347* 0.229* 0.194* 0.141* 0.221* 0.352* 0.288* 0.329* 0.300* 0.192* 0.249* 0.378*

PRS 0.361* 0.095* - 0.153* 0.187* 0.191* 0.117* 0.328* 0.399* 0.316* 0.322* 0.357* 0.289NA 0.159* 0.318*

WBL 0.267* 0.211* 0.109* - 0.163* 0.215* 0.211* 0.330* 0.346* 0.262* 0.266* 0.346* 0.306* 0.260* 0.355*

IRC 0.413* 0.174* 0.107* 0.092* - 0.160NA 0.190* 0.247* 0.319* 0.441NA 0.318* 0.318* 0.305NA 0.257* 0.429*

MOD 0.326* 0.166* 0.108* 0.085* 0.130* - 0.076* 0.251* 0.326* 0.261NA 0.361* 0.294* 0.232NA 0.238* 0.275*

MOC 0.339* 0.115* 0.065* 0.123* 0.155* 0.055* - 0.307* 0.364* 0.260* 0.354* 0.317* 0.239NA 0.213* 0.300*

QUD 0.359* 0.167* 0.198* 0.190* 0.184* 0.151* 0.210* - 0.109* 0.184* 0.154* 0.133* 0.056 0.237* 0.230*

MtBS 0.422* 0.244* 0.266* 0.210* 0.229* 0.194* 0.256* 0.059* - 0.229* 0.114* 0.129* 0.127NA 0.282* 0.289*

SCS 0.361* 0.214* 0.204* 0.192* 0.284* 0.125* 0.159* 0.132* 0.217* - 0.181* 0.161* 0.041NA 0.225* 0.172*

SC 0.395* 0.178* 0.207* 0.173* 0.188* 0.178* 0.216* 0.041 0.044 0.127* - 0.154* 0.083 0.228* 0.307*

SCC 0.319* 0.203* 0.215* 0.173* 0.233* 0.164* 0.182* 0.081* 0.098* 0.105* 0.060 - 0.024 0.289* 0.180*

SCD 0.325* 0.130* 0.156* 0.124* 0.167* 0.082 0.123* 0.016 0.100* 0.054 0.029 0.005 - 0.254* 0.121*

MtBC 0.407* 0.141* 0.094* 0.205* 0.183* 0.148* 0.126* 0.150* 0.212* 0.160* 0.140* 0.176* 0.152* - 0.274*

MtBD 0.301* 0.194* 0.172* 0.200* 0.258* 0.114* 0.135* 0.143* 0.219* 0.083* 0.187* 0.120* 0.077 0.152* -

*0.05 significance level

NA = not available

doi:10.1371/journal.pone.0152850.t002
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residents (Table 3). The remaining 11 individuals had q-values less than 0.8 and were thus clas-
sified as individuals with potentially mixed ancestry (Table 3) [60–63]. Seven of the eight
migration events purportedly occurred between adjacent sites and one appeared to be an exam-
ple of longer distance dispersal (indicative ~7 km).

Fig 2. Genetic structure of bandicoots from 15 sites. Proportional membership (q) of each bandicoot individual to a genetic cluster for the whole data set,
identified by: (a) STRUCTURE, (b) TESS. Each vertical bar represents a bandicoot, and the length of each bar represents the probability of membership in
each cluster (cluster 1 in yellow, cluster 2 in green, cluster 3 in red and cluster 4 in blue). Relevant parts of the STRUCTURE plot are also shown on the map
for better visualisation of locality information.

doi:10.1371/journal.pone.0152850.g002
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Discussion
In the current study, we used 14 microsatellite markers to investigate the population structure
and level of dispersal of I. obesulus in the central Mount Lofty Ranges. We found significant
genetic structure in a relatively small geographic region that is fragmented and highly modified.
Overall, these analyses are consistent with the hypothesis that gene flow is severely limited to
the extent that significant population genetic structure is evident at a fine spatial scale. They
are also consistent with results obtained for a similar study from the south-east region of South
Australia [26] (see Fig 1), although the current study provides evidence for an even finer level
of population differentiation.

Bayesian clustering analyses revealed that the 15 Mount Lofty Ranges sites formed four dis-
tinct genetic clusters or populations. Analyses of migration rates also indicated an absence of
recent migration between clusters and between most sites. In agreement with this, the eight
first generation migrants detected were restricted to moving between neighbouring sites of the
same population cluster, with one putative longer-distance dispersal which may have occurred
via intermediate sites in a stepping-stone manner. Evidence for short distance dispersal and a
tendency of dispersing only between proximate sites was also observed for I. obesulus in the
Mount Burr (south-east South Australia) fragmented forest system [26] and for the common
ringtail possum in the same region, where the pine matrix and cleared agricultural land were
found to strongly influence dispersal of this arboreal species [17,64]. Short distance dispersal
was also observed for a close relative of I. obesulus, the northern brown bandicoot (I.macro-
urus), in urban habitat fragments in Brisbane [65]. It is also a common feature of many other
mammal (e.g. pikas, Ochotona princeps [66], cross river gorillas, Gorilla gorilla diehli [60], the
edible dormouse Glis glis [67]) and vertebrate [68] species in fragmented landscapes, where dis-
persal is often limited to neighbouring patches and is strongly influenced by urban structures
such as roads [68].

Scott Creek Conservation Park (712 ha, sites SCC, SC and SCD are located within this park)
is one of the three national/conservation parks in our study area, but much larger than Mark
Oliphant (189 ha, containing sites MOC and MOD). Compared to other sites, the three within
Scott Creek Conservation Park showed non-significant pairwise FST (compared to other sites
separated by equivalent geographic distances), lower individual relatedness, evidence for more
migration events and directional migration to adjacent sites. These findings may reflect a larger
population of bandicoots at each site, compared to other sites that we studied, hence genetic
drift would occur more slowly, or it may suggest more extensive gene flow among each of the
sites. Although we did not consider that Scott Creek CP was a continuous forest, because it
contains areas of relatively open land, the park does contain extensive areas of thick vegetation
that may have aided dispersal among sites and provided protection against predators. Large
patches are considered important and critical in fragmented landscapes because they can
reduce extinction proneness of populations of individual species, and increase species richness,
vegetation diversity and immigration rates [12, 69]. Our results suggest that Scott Creek Con-
servation Park may be a source population for dispersal, although the importance of other
smaller sites should not be underestimated since they are potential stepping stones between
populations in fragmented systems. An ideal population genetic connectivity study would
include a thorough comparison between continuous and fragmented habitat (e.g. [67, 70–71]).

Fig 3. Biplots of redundancy analysis (RDA) results showing the contribution of environmental
components to genetic structure in I. obesulus, for (a) the full model and (b) the partial model. The
black (open) circles are allele frequencies of each site displayed in RDA space and the vectors show how
explainable variables fall along that RDA space. DN = minimum distance to neighbouring patch; DI = degree
of isolation.

doi:10.1371/journal.pone.0152850.g003
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Fig 4. Correlograms showing genetic correlation (r) as a function of distance (0.5 km distance classes). The 95% confidence intervals (dashed lines)
were determined by 1 000 permutations. Error bars of each estimate of r bound the 95% confidence intervals were determined by 1 000 bootstraps. (a)
Whole data set; (b) Males only (n = 140) and (c) Females only (n = 105).

doi:10.1371/journal.pone.0152850.g004
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Unfortunately, information from a completely undisturbed habitat was not possible to obtain
in the current study. However, the analyses of sites within Scott Creek CP highlights that the
fine-scale population structure within I. obesulus evident from other sites in the Mount Lofty
Ranges is most likely to have resulted from habitat fragmentation and the poor permeability of
the matrix, rather than a natural feature of I. obesulus such as a poor dispersal ability. Further
comparison of I. obesulus between isolated patches and relatively larger continuous forest
would be beneficial and may be possible in other regions of Australia where continuous forest
systems still occur (e.g Victoria, [72]).

Comparison of our results to those from south-east South Australia 400 km away [26],
showed populations in the central Mount Lofty Ranges to be genetically structured over a
much smaller spatial scale (~ 80 km2) than the south-east populations (~520 km2). We had
predicted that the scale of genetic differentiation at Mount Lofty Ranges would be similar or
even lower than that of Mount Burr since the former system is seemingly less fragmented. Yet,
we observed that Mount Lofty Ranges sites appear to be genetically differentiated to a greater
degree than the Mount Burr population at a similar spatial scale. This finding is consistent with
the hypothesis that gene flow was limited to a higher degree in the Mount Lofty Ranges com-
pared to Mount Burr, although we cannot rule out the possibility that the patterns resulted
from differences in the effective population sizes of each study area. The landscape of the
Mount Lofty Ranges has been heavily modified, with a matrix mixture of urban constructs and

Table 3. Results of migrants identified by STRUCTURE and GENECLASS analyses.

Sample
ID

Sampled
site

Sex STRUCTURE
probability to
sampled site

GENECLASS P
value

Final migrant/
admixture/resident
classification

Likely origin site in
STRUCTURE/
GENECLASS

Distance between
origin site and
sampled site* (km)

550 MHS M 0.140 0.186 AD - -

564 MHS M 0.075 0.102 AD - -

565 MHS M 0.308 0.176 AD - -

595 WBL M 0.117 <0.001 MG MOC 2.1

501 IRC M 0.229 0.065 AD - -

504 IRC F 0.732 0.020 AD - -

833 MOD F 0.947 0.023 RD - -

624 MOC M 0.030 0.008 MG PRS 1.1

736 MOC M 0.413 0.706 AD - -

737 MOC M 0.004 0.284 AD - -

742 MOC M 0.004 0.016 MG WBL 1.1

601 QUD M 0.877 0.023 RD - -

675 QUD F 0.235 0.004 MG SC 1.4

645 MtBS F 0.010 0.018 MG SCC 2.4

648 MtBS M 0.003 0.028 MG SC 1.4

661 MtBS M <0.001 0.001 MG SC 1.4

340 SC M 0.304 0.051 AD - -

748 SCC F 0.615 0.006 AD - -

757 SCD M 0.025 0.961 AD - -

635 MtBC M 0.800 0.023 RD - -

794 MtBC F <0.001 <0.001 MG MtBS 6.6

785 MtBD M 0.740 0.024 AD - -

MG = Migrant; AD = Admixture individual; RD = Resident

* The “distance between origin site and sampled site” was measured in ArcGIS 10 as straight-line distance.

doi:10.1371/journal.pone.0152850.t003
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agricultural land and heterogeneous native vegetation with various level of degradation. The
habitat within native forest fragments at Mount Burr is generally less disturbed and relatively
more homogenous, with Pinus radiata plantations being the dominant matrix surrounding the
fragments. The Mount Burr study suggested that bandicoot movement between proximate
patches through pine plantations of a couple of km distance was possible. Hence, it is possible
that bandicoots can utilise the pine forest better to move among native forest fragments, com-
pared to the heterogeneous matrix mixture of the Mount Lofty Ranges. There are four potential
reasons for this difference. First, pine plantations can be used as habitat by a range of inverte-
brate taxa, since they provide shelter and moist microhabitats due to plantation practices such
as windrowing, mound ploughing, pruning and thinning [73, 74]. In particular, beetle species,
a major dietary food for I. obesulus [75–77], have been found in pine plantations at greater lev-
els of taxon diversity than in the native eucalypt forests [78]. Hence, bandicoots may occasion-
ally enter pine plantations from adjacent patches for foraging. In a similar fashion, other
insectivorous mammals may also forage in pine plantations from their home patch (e.g. Ante-
chinus agilis, [79]). Second, accumulated fallen debris such as tree stumps and bark may pro-
vide better shelter for I. obesulus when dispersing in pine plantations, compared to open
agricultural land. Third, the central Mount Lofty Ranges have greater vehicle traffic volumes
than that in the Mount Burr Range (assessed based on Annual Average Daily Traffic estimates,
produced by Road Asset Management Section, Government of South Australia), potentially
leading to higher mortalities of I. obesulus. Deceased bandicoots along roads in the Mount
Lofty Ranges have often been observed by local residents and staff of Department of Environ-
ment, Water, and Natural Resources (DEWNR). Another possible factor that could affect the
dispersal of bandicoots in the two landscapes is predation by introduced animals (red fox,
Vulpes vulpes, and feral cat, Felis catus). Studies have shown that the introduction of feral cats
caused substantial wildlife mortality [80] and can extinguish an entire subspecies [81]. To date,
it is not known whether the central Mount Lofty Ranges have more predators than the Mount
Burr Range, though cats, in particular, are likely to be more prevalent given the higher number
of dwellings and human population density in the Mount Lofty Ranges compared to the
Mount Burr Range. More sophisticated analyses on the same dataset (i.e. using landscape
genetic approaches, [82]) are needed to further investigate how different features of the matri-
ces affect genetic connectivity of I. obesulus populations.

The apparent poor permeability of the matrix in the Mount Lofty Ranges may also explain
the strong differentiation of the most genetically isolated site—BNPS. This site also had the
highest pairwise FST and DEST and the highest internal relatedness, suggesting that inbreeding
may be occurring. Major roads to the south and north with high traffic volumes are adjacent to
BNPS and may also impact dispersal. Road effects on increased genetic differentiation and
decreased genetic connectivity have been reported in an increasing array of species, including
mammals, amphibians, reptiles and invertebrates (e.g. [4, 20, 83–88], and see also reviews of
[89–92]). Notably, adjacent sites (e.g. WBL and PRS) did show some evidence of admixture
with BNPS, but there is no evidence of admixture within BNPS itself (see Fig 2). In agreement
with this, migration rates from BNPS to WBL and PRS were 0.012 and 0.025, respectively, and
0.006 fromWBL/PRS to BNPS (S3 Table). These results suggest that gene flow may be occur-
ring in only one direction (from BNPS to adjacent sites). While these results may have been
influenced by the related individuals at BNPS, excluding related individuals did not alter the
results showing the uni-directional gene flow. One possible reason for the above pattern is that
there is now a failure of recruitment of young animals into the Belair NP population (e.g. by
predation of young by cats) or a recent reduction in suitable habitat leading to a smaller effec-
tive population size within the park and/or migration out of the park. Further ecological and
genetic studies of the BNPS population are needed to investigate these possibilities.
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Implications for conservation
Comparisons among populations of the same species can help assess the levels of permeability
of different matrices (e.g. [20, 21, 93]), which may provide valuable information for conservation
management (e.g. developing strategies to improve gene flow in the landscape). The construction
of habitat corridors is one widely used approach to promote population connectivity in frag-
mented landscapes and it is the primary conservation management action plan for the Mount
Burr population [94]. It may also benefit connectivity between sites in the Mount Lofty Ranges,
but this approach may be impractical in some areas in the latter system due to the embedded
human constructs. Retention and restoration of native vegetation to improve and extend suitable
bandicoot habitat is therefore recommended as a complementary way to deal with habitat frag-
mentation in this region. Thick exotic vegetation, such as blackberries (Rubus fruticosus agg),
along creek lines may also assist dispersal of bandicoots, and its removal, without replacement of
a dense understory vegetation is likely to further fragment bandicoot populations [95].

In order to reduce the effects of inbreeding and increase long-term persistence of the
numerous genetically distinct populations, the management of these populations may benefit
from augmentation of gene flow between populations. Such genetic rescue and/or genetic res-
toration could be accomplished by moving individuals between disparate populations (e.g.
moving individuals into BNPS and MHS from their adjacent sites). If translocations were con-
sidered, we suggest managers should first evaluate the risks associated with translocations and
consider potential mitigation strategies, as recommended by Weeks et al. [96]. If bandicoots
were sourced from other regions of the Mount Lofty Ranges, we would predict that outbreed-
ing depression would be unlikely (given evidence for admixture in adjacent sites to BNPS).
However, our recent phylogeographic analyses [97] suggest that the population in the south-
east of SA represents a distinct Evolutionarily Significant Unit compared to the Mount Lofty
Ranges population, so use of south-east SA populations as a source of bandicoots for transloca-
tion should probably be avoided. Our results indicate that site BNPS is more vulnerable to local
extinction and therefore should be managed with a specific strategy that enhances genetic vari-
ation. To further ameliorate the effects of the major road on site BNPS, mitigation measures
such as wildlife crossing structures (e.g. land bridge, ledges in culvert, underground tunnel or
pipe) could also be implemented. Such structures are known to be utilised by animals for cross-
ing roads, but their effectiveness in mitigating the influence of roads on gene flow, population
structure and ultimately population viability remains to be determined [98] (but see [99]).
However, our study provides valuable base-line genetic data which can be used in an optimal
before-after study design for assessing the effectiveness of mitigation strategies in the future
[100].

Supporting Information
S1 Fig. Plot of the number of likely clusters (K) versus estimated Ln of probability of data.
(DOCX)

S1 Table. Results for post hoc tests (Tukey HSD) of IR for I. obesulus at 15 sites within the
Mount Lofty Ranges. Significant values were denoted in bold (P< 0.05).
(DOCX)

S2 Table. Bayesian estimates of migration rates in BayesAss among genetic clusters.Migra-
tion rates greater than 2% are shown in bold, and self-migration rates shown in italics. Stan-
dard deviation of migration rates averaged 0.010 and did not exceed 0.022 (BNPS cluster-
BNPS cluster).
(DOCX)

Population Genetic Structure of Isoodon obesulus

PLOSONE | DOI:10.1371/journal.pone.0152850 April 20, 2016 15 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0152850.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0152850.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0152850.s003


S3 Table. Bayesian estimates of migration rates in BayesAss among 15 sites.Migration rates
greater than 2% are shown in bold, and self-migration rates shown in italics. Standard devia-
tion of migration rates averaged 0.014 and did not exceed 0.053 (SCC-SCS).
(DOCX)

Acknowledgments
We would like to thank L. Price, K. Long, and J. Bentley from DEWNR for providing bandicoot
samples and thank L. Price for his assistance with creating maps. We also thank Nicholas Fuller
for his assistance with data processing. Also, many thanks to Ms. K. Saint from the SA museum
for her laboratory support. We also thank two anonymous reviewers for their comments that
greatly improved the quality of the manuscript.

Author Contributions
Conceived and designed the experiments: SJBC SMC. Performed the experiments: YL. Ana-
lyzed the data: YL. Contributed reagents/materials/analysis tools: JP. Wrote the paper: YL.
Reviewing and editing the manuscript: SJBC SMCML JP.

References
1. Lindenmayer DB, Fischer J. Habitat fragmentation and landscape change: an ecological and conser-

vation synthesis. Washington: Island Press; 2006.

2. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J. Biodiversity hotspots for conser-
vation priorities. Nature. 2000; 403(6772): 853–858. doi: 10.1038/35002501 PMID: 10706275

3. Prevedello JA, Vieira MV. Does the type of matrix matter? A quantitative review of the evidence. Biodi-
versity and Conservation. 2010; 19(5): 1205–1223. doi: 10.1007/s10531-009-9750-z

4. Clark RW, BrownWS, Stechert R, Zamudio KR. Roads, interrupted dispersal, and genetic diversity in
timber rattlesnakes. Conservation Biology. 2010; 24(4): 1059–1069. doi: 10.1111/j.1523-1739.2009.
01439.x PMID: 20151984

5. Levy E, KenningtonWJ, Tomkins JL, Lebas NR. Land clearing reduces gene flow in the granite out-
crop-dwelling lizard, Ctenophorus ornatus. Molecular Ecology. 2010; 19(19): 4192–4203. doi: 10.
1111/j.1365-294X.2010.04810.x PMID: 20831643

6. Quemere E, Crouau-Roy B, Rabarivola C, Louis EE Jr, Chikhi L. Landscape genetics of an endan-
gered lemur (Propithecus tattersalli) within its entire fragmented range. Molecular Ecology. 2010; 19
(8): 1606–1621. doi: 10.1111/j.1365-294X.2010.04581.x PMID: 20345682

7. Frankham R, Ballou JD, Briscoe DA. Introduction to conservation genetics. Cambridge, U.K.: Cam-
bridge University Press; 2002.

8. Johansson M, Primmer CR, Merilae J. Does habitat fragmentation reduce fitness and adaptability? A
case study of the common frog (Rana temporaria). Molecular Ecology. 2007; 16(13): 2693–2700. doi:
10.1111/j.1365-294X.2007.03357.x PMID: 17594440

9. Cushman SA. Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Bio-
logical Conservation. 2006; 128(2): 231–240. doi: 10.1016/j.biocon.2005.09.031

10. Fahrig L. Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol S. 2003; 34: 487–515.
doi: 10.1146/annurev.ecolsys.34.011802.132419

11. Lindenmayer DB, Hobbs RJ, Montague-Drake R, Alexandra J, Bennett A, BurgmanM, et al. A check-
list for ecological management of landscapes for conservation. Ecology Letters. 2008; 11(1): 78–91.
doi: 10.1111/j.1461-0248.2007.01114.x PMID: 17927771

12. Lindenmayer DB, Fischer J. Tackling the habitat fragmentation panchreston. Trends in Ecology &
Evolution. 2007; 22(3): 127–132. doi: 10.1016/j.tree.2006.11.006

13. Martin PR, McKay JK. Latitudinal variation in genetic divergence of populations and the potential for
future speciation. Evolution. 2004; 58(5): 938–945. PMID: 15212375

14. Jensen H, Moe R, Hagen IJ, Holand AM, Kekkonen J, Tufto J, et al. Genetic variation and structure of
house sparrow populations: is there an island effect? Molecular Ecology. 2013; 22(7): 1792–1805.
doi: 10.1111/mec.12226 PMID: 23379682

Population Genetic Structure of Isoodon obesulus

PLOSONE | DOI:10.1371/journal.pone.0152850 April 20, 2016 16 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0152850.s004
http://dx.doi.org/10.1038/35002501
http://www.ncbi.nlm.nih.gov/pubmed/10706275
http://dx.doi.org/10.1007/s10531-009-9750-z
http://dx.doi.org/10.1111/j.1523-1739.2009.01439.x
http://dx.doi.org/10.1111/j.1523-1739.2009.01439.x
http://www.ncbi.nlm.nih.gov/pubmed/20151984
http://dx.doi.org/10.1111/j.1365-294X.2010.04810.x
http://dx.doi.org/10.1111/j.1365-294X.2010.04810.x
http://www.ncbi.nlm.nih.gov/pubmed/20831643
http://dx.doi.org/10.1111/j.1365-294X.2010.04581.x
http://www.ncbi.nlm.nih.gov/pubmed/20345682
http://dx.doi.org/10.1111/j.1365-294X.2007.03357.x
http://www.ncbi.nlm.nih.gov/pubmed/17594440
http://dx.doi.org/10.1016/j.biocon.2005.09.031
http://dx.doi.org/10.1146/annurev.ecolsys.34.011802.132419
http://dx.doi.org/10.1111/j.1461-0248.2007.01114.x
http://www.ncbi.nlm.nih.gov/pubmed/17927771
http://dx.doi.org/10.1016/j.tree.2006.11.006
http://www.ncbi.nlm.nih.gov/pubmed/15212375
http://dx.doi.org/10.1111/mec.12226
http://www.ncbi.nlm.nih.gov/pubmed/23379682


15. Banks SC, Lindenmayer DB, Ward SJ, Taylor AC. The effects of habitat fragmentation via forestry
plantation establishment on spatial genotypic structure in the small marsupial carnivore, Antechinus
agilis. Molecular Ecology. 2005; 14(6): 1667–1680. doi: 10.1111/j.1365-294X.2005.02525.x PMID:
15836641

16. Dixo M, Metzger JP, Morgante JS, Zamudio KR. Habitat fragmentation reduces genetic diversity and
connectivity among toad populations in the Brazilian Atlantic Coastal Forest. Biological Conservation.
2009; 142(8): 1560–1569. doi: 10.1016/j.biocon.2008.11.016

17. Lancaster ML, Taylor AC, Cooper SJB, Carthew SM. Limited ecological connectivity of an arboreal
marsupial across a forest/plantation landscape despite apparent resilience to fragmentation. Molecu-
lar Ecology. 2011; 20(11): 2258–2271. doi: 10.1111/j.1365-294X.2011.05072.x PMID: 21507094

18. Moore JA, Tallmon DA, Nielsen J, Pyare S. Effects of the landscape on boreal toad gene flow: does
the pattern-process relationship hold true across distinct landscapes at the northern range margin?
Molecular Ecology. 2011; 20(23): 4858–4869. doi: 10.1111/j.1365-294X.2011.05313.x PMID:
22035421

19. Taylor AC, Tyndale-Biscoe H, Lindenmayer DB. Unexpected persistence on habitat islands: genetic
signatures reveal dispersal of a eucalypt-dependent marsupial through a hostile pine matrix. Molecu-
lar Ecology. 2007; 16(13): 2655–2666. doi: 10.1111/j.1365-294X.2007.03331.x PMID: 17594437

20. Arens P, van der Sluis T, van't WestendeWPC, Vosman B, Vos CC, Smulders MJM. Genetic popula-
tion differentiation and connectivity among fragmented Moor frog (Rana arvalis) populations in The
Netherlands. Landsc Ecol. 2007; 22(10): 1489–1500. doi: 10.1007/s10980-007-9132-4

21. Berry O, Tocher MD, Gleeson DM, Sarre SD. Effect of vegetation matrix on animal dispersal: genetic
evidence from a study of endangered skinks. Conservation Biology. 2005; 19(3): 855–864. doi: 10.
1111/j.1523-1739.2005.00161.x

22. Coates T, Nicholls D, Willig R. The distribution of the southern brown bandicoot Isoodon Obesulus in
south central Victoria. The Victorian Naturalist. 2008; 125(5): 128–139.

23. Department of Environment and Conservation (DEC). Recovery plan for the southern brown bandi-
coot (Isoodon obesulus). Hurstville NSW: NSWDEC; 2006.

24. Paull DJ. The distribution of the southern brown bandicoot (Isoodon obesulus obesulus) in South Aus-
tralia. Wildlife Research. 1995; 22(5): 585–600. doi: 10.1071/wr9950585

25. Paull DJ. The distribution, ecology and conservation status of the Southern Brown Bandicoot (Isoo-
don obesulus obesulus) in South Australia. M.Sc. Thesis, The University of Adelaide. 1993.

26. Li Y, Lancaster M, Cooper SB, Taylor A, Carthew S. Population structure and gene flow in the endan-
gered southern brown bandicoot (Isoodon obesulus obesulus) across a fragmented landscape. Con-
servation Genetics. 2015; 16(2): 331–345. doi: 10.1007/s10592-014-0661-5

27. Department for Environment and Heritage. Informing biodiversity conservation for the Adelaide and
Mount Lofty Ranges region, South Australia: priorities, strategies and targets. Adelaide: Department
for Environment and Heritage; 2009.

28. Paull DJ. Habitat fragmentation and the southern brown bandicoot Isoodon obesulus at multiple spa-
tial scales. PhD Thesis, University of New South Wales. 2003.

29. Haby NA, Conran JG, Carthew SM. Microhabitat and vegetation structure preference: an example
using southern brown bandicoots (Isoodon obesulus obesulus). Journal of Mammalogy. 2013; 94(4):
801–812. doi: 10.1644/12-mamm-a-220.1

30. Zenger KR, Johnston PG. Isolation and characterization of microsatellite loci in the southern brown
bandicoot (Isoodon obesulus), and their applicability to other marsupial species. Molecular Ecology
Notes. 2001; 1(3):149–151. doi: 10.1046/j.1471-8278.2001.00055.x

31. Li Y, Lancaster ML, Cooper SJB, Packer JG, Carthew SM. Characterization of nine microsatellite loci
from the endangered southern brown bandicoot (Isoodon obesulus) using 454 pyrosequencing. Con-
servation Genetics Resources. 2013; 5(1): 105–107. doi: 10.1007/s12686-012-9743-1

32. Hoffman JI, AmosW. Microsatellite genotyping errors: detection approaches, common sources and
consequences for paternal exclusion. Molecular Ecology. 2005; 14(2): 599–612. doi: 10.1111/j.1365-
294X.2004.02419.x PMID: 15660949

33. Fisher RA. Statistical methods for research workers. New York: Macmillan Pub. Co.; 1925.

34. Wang J. COANCESTRY: a program for simulating, estimating and analysing relatedness and
inbreeding coefficients. Molecular Ecology Resources. 2011; 11(1): 141–145. doi: 10.1111/j.1755-
0998.2010.02885.x PMID: 21429111

35. Wang J. Triadic IBD coefficients and applications to estimating pairwise relatedness. Genetics
Research. 2007; 89(3): 135–153. doi: 10.1017/s0016672307008798

36. Raymond M, Rousset F. An exact test for population differentiation. Evolution. 1995; 49(6): 1280–
1283.

Population Genetic Structure of Isoodon obesulus

PLOSONE | DOI:10.1371/journal.pone.0152850 April 20, 2016 17 / 20

http://dx.doi.org/10.1111/j.1365-294X.2005.02525.x
http://www.ncbi.nlm.nih.gov/pubmed/15836641
http://dx.doi.org/10.1016/j.biocon.2008.11.016
http://dx.doi.org/10.1111/j.1365-294X.2011.05072.x
http://www.ncbi.nlm.nih.gov/pubmed/21507094
http://dx.doi.org/10.1111/j.1365-294X.2011.05313.x
http://www.ncbi.nlm.nih.gov/pubmed/22035421
http://dx.doi.org/10.1111/j.1365-294X.2007.03331.x
http://www.ncbi.nlm.nih.gov/pubmed/17594437
http://dx.doi.org/10.1007/s10980-007-9132-4
http://dx.doi.org/10.1111/j.1523-1739.2005.00161.x
http://dx.doi.org/10.1111/j.1523-1739.2005.00161.x
http://dx.doi.org/10.1071/wr9950585
http://dx.doi.org/10.1007/s10592-014-0661-5
http://dx.doi.org/10.1644/12-mamm-a-220.1
http://dx.doi.org/10.1046/j.1471-8278.2001.00055.x
http://dx.doi.org/10.1007/s12686-012-9743-1
http://dx.doi.org/10.1111/j.1365-294X.2004.02419.x
http://dx.doi.org/10.1111/j.1365-294X.2004.02419.x
http://www.ncbi.nlm.nih.gov/pubmed/15660949
http://dx.doi.org/10.1111/j.1755-0998.2010.02885.x
http://dx.doi.org/10.1111/j.1755-0998.2010.02885.x
http://www.ncbi.nlm.nih.gov/pubmed/21429111
http://dx.doi.org/10.1017/s0016672307008798


37. Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genet-
ics analyses under Linux andWindows. Molecular Ecology Resources. 2010; 10(3): 564–567. doi:
10.1111/j.1755-0998.2010.02847.x PMID: 21565059

38. Van Oosterhout C, HutchinsonWF,Wills DPM, Shipley P. MICRO-CHECKER: software for identifying
and correcting genotyping errors in microsatellite data. Molecular Ecology Notes. 2004; 4(3): 535–
538. doi: 10.1111/j.1471-8286.2004.00684.x

39. RiceWR. Analyzing tables of statistical tests. Evolution. 1989; 43(1): 223–225. doi: 10.2307/2409177

40. Goudet J. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3).
2001. Available: http://www.unil.ch/izea/softwares/fstat.html.

41. AmosW,Wilmer JW, Fullard K, Burg TM, Croxall JP, Bloch D, et al. The influence of parental related-
ness on reproductive success. Proceedings of the Royal Society B-Biological Sciences. 2001; 268
(1480): 2021–2027. doi: 10.1098/rspb.2001.1751

42. Alho JS, Valimaki K, Merila J. Rhh: an R extension for estimating multilocus heterozygosity and het-
erozygosity-heterozygosity correlation. Molecular Ecology Resources. 2010; 10(4): 720–722. doi: 10.
1111/j.1755-0998.2010.02830.x PMID: 21565077

43. Gerlach G, Jueterbock A, Kraemer P, Deppermann J, Harmand P. Calculations of population differen-
tiation based on G(ST) and D: forget G(ST) but not all of statistics! Molecular Ecology. 2010; 19(18):
3845–3852. doi: 10.1111/j.1365-294X.2010.04784.x PMID: 20735737

44. Meirmans PG, Hedrick PW. Assessing population structure: F-ST and related measures. Molecular
Ecology Resources. 2011; 11(1): 5–18. doi: 10.1111/j.1755-0998.2010.02927.x PMID: 21429096

45. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype
data. Genetics. 2000; 155(2): 945–959. PMID: 10835412

46. Chen C, Durand E, Forbes F, Francois O. Bayesian clustering algorithms ascertaining spatial popula-
tion structure: a new computer program and a comparison study. Molecular Ecology Notes. 2007; 7
(5): 747–756. doi: 10.1111/j.1471-8286.2007.01769.x

47. Francois O, Ancelet S, Guillot G. Bayesian clustering using hidden Markov random fields in spatial
population genetics. Genetics. 2006; 174(2): 805–816. doi: 10.1534/genetics.106.059923 PMID:
16888334

48. Corander J, Siren J, Arjas E. Bayesian spatial modeling of genetic population structure. Computa-
tional Statistics. 2008; 23(1): 111–129. doi: 10.1007/s00180-007-0072-x

49. Pritchard JK, Wen X, Falush D. Documentation for structure software: Version 2.3. Accessed 21 April
2009. Available: http://pritch.bsd.uchicago.edu/structure.html.

50. Jakobsson M, Rosenberg NA. CLUMPP: a cluster matching and permutation program for dealing with
label switching and multimodality in analysis of population structure. Bioinformatics. 2007; 23(14):
1801–1806. doi: 10.1093/bioinformatics/btm233 PMID: 17485429

51. Rosenberg NA. DISTRUCT: a program for the graphical display of population structure. Molecular
Ecology Notes. 2004; 4(1): 137–138. doi: 10.1046/j.1471-8286.2003.00566.x

52. Legendre P, Fortin MJ. Comparison of the Mantel test and alternative approaches for detecting com-
plex multivariate relationships in the spatial analysis of genetic data. Molecular Ecology Resources.
2010; 10(5): 831–844. doi: 10.1111/j.1755-0998.2010.02866.x PMID: 21565094

53. Gugger P. Redundancy analysis tutorial: landscape genetics. Available: http://www.tc.umn.edu/~
gugg0030/Redundancy%20Analysis%20for%20Landscape%20Genetics.pdf. 2012.

54. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, et al. vegan: Community
Ecology Package. R package version 2.0–10. Available: http://CRAN.R-project.org/package=vegan
2013.

55. Peakall R, Smouse PE. GENALEX 6: genetic analysis in Excel. Population genetic software for teach-
ing and research. Molecular Ecology Notes. 2006; 6(1): 288–295. doi: 10.1111/j.1471-8286.2005.
01155.x

56. Wilson GA, Rannala B. Bayesian inference of recent migration rates using multilocus genotypes.
Genetics. 2003; 163(3): 1177–1191. PMID: 12663554

57. Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A. GENECLASS2: A software for
genetic assignment and first-generation migrant detection. Journal of Heredity. 2004; 95(6): 536–539.
doi: 10.1093/jhered/esh074 PMID: 15475402

58. Rannala B, Mountain JL. Detecting immigration by using multilocus genotypes. Proceedings of the
National Academy of Sciences of the United States of America. 1997; 94(17): 9197–9201. doi: 10.
1073/pnas.94.17.9197 PMID: 9256459

Population Genetic Structure of Isoodon obesulus

PLOSONE | DOI:10.1371/journal.pone.0152850 April 20, 2016 18 / 20

http://dx.doi.org/10.1111/j.1755-0998.2010.02847.x
http://www.ncbi.nlm.nih.gov/pubmed/21565059
http://dx.doi.org/10.1111/j.1471-8286.2004.00684.x
http://dx.doi.org/10.2307/2409177
http://www.unil.ch/izea/softwares/fstat.html
http://dx.doi.org/10.1098/rspb.2001.1751
http://dx.doi.org/10.1111/j.1755-0998.2010.02830.x
http://dx.doi.org/10.1111/j.1755-0998.2010.02830.x
http://www.ncbi.nlm.nih.gov/pubmed/21565077
http://dx.doi.org/10.1111/j.1365-294X.2010.04784.x
http://www.ncbi.nlm.nih.gov/pubmed/20735737
http://dx.doi.org/10.1111/j.1755-0998.2010.02927.x
http://www.ncbi.nlm.nih.gov/pubmed/21429096
http://www.ncbi.nlm.nih.gov/pubmed/10835412
http://dx.doi.org/10.1111/j.1471-8286.2007.01769.x
http://dx.doi.org/10.1534/genetics.106.059923
http://www.ncbi.nlm.nih.gov/pubmed/16888334
http://dx.doi.org/10.1007/s00180-007-0072-x
http://pritch.bsd.uchicago.edu/structure.html
http://dx.doi.org/10.1093/bioinformatics/btm233
http://www.ncbi.nlm.nih.gov/pubmed/17485429
http://dx.doi.org/10.1046/j.1471-8286.2003.00566.x
http://dx.doi.org/10.1111/j.1755-0998.2010.02866.x
http://www.ncbi.nlm.nih.gov/pubmed/21565094
http://www.tc.umn.edu/~gugg0030/Redundancy%20Analysis%20for%20Landscape%20Genetics.pdf
http://www.tc.umn.edu/~gugg0030/Redundancy%20Analysis%20for%20Landscape%20Genetics.pdf
http://CRAN.R-project.org/package=vegan
http://dx.doi.org/10.1111/j.1471-8286.2005.01155.x
http://dx.doi.org/10.1111/j.1471-8286.2005.01155.x
http://www.ncbi.nlm.nih.gov/pubmed/12663554
http://dx.doi.org/10.1093/jhered/esh074
http://www.ncbi.nlm.nih.gov/pubmed/15475402
http://dx.doi.org/10.1073/pnas.94.17.9197
http://dx.doi.org/10.1073/pnas.94.17.9197
http://www.ncbi.nlm.nih.gov/pubmed/9256459


59. Paetkau D, Slade R, Burden M, Estoup A. Genetic assignment methods for the direct, real-time esti-
mation of migration rate: a simulation-based exploration of accuracy and power. Molecular Ecology.
2004; 13(1): 55–65. doi: 10.1046/j.1365-294X.2004.02008.x PMID: 14653788

60. Bergl RA, Vigilant L. Genetic analysis reveals population structure and recent migration within the
highly fragmented range of the Cross River gorilla (Gorilla gorilla diehli). Molecular Ecology. 2007; 16
(3): 501–516. doi: 10.1111/j.1365-294X.2006.03159.x PMID: 17257109

61. Lecis R, Pierpaoli M, Biro ZS, Szemethy L, Ragni B, Vercillo F, et al. Bayesian analyses of admixture
in wild and domestic cats (Felis silvestris) using linked microsatellite loci. Molecular Ecology. 2006; 15
(1): 119–131. doi: 10.1111/j.1365-294X.2005.02812.x PMID: 16367835

62. Reddy PA, Gour DS, Bhavanishankar M, Jaggi K, Hussain SM, Harika K, et al. Genetic evidence of
tiger population structure and migration within an isolated and fragmented landscape in northwest
India. Plos One. 2012; 7(1): e29827. doi: 10.1371/journal.pone.0029827 PMID: 22253791

63. Vaha JP, Primmer CR. Efficiency of model-based Bayesian methods for detecting hybrid individuals
under different hybridization scenarios and with different numbers of loci. Molecular Ecology. 2006; 15
(1): 63–72. doi: 10.1111/j.1365-294X.2005.02773.x PMID: 16367830

64. Lancaster ML, Cooper SJB, Carthew SM. Genetic consequences of forest fragmentation by agricul-
tural land in an arboreal marsupial. Landscape Ecol. 2015; 30(9): 31: 655–667. doi: 10.1007/s10980-
015-0271-8

65. Fitzgibbon SI, Wilson RS, Goldizen AW. The behavioural ecology and population dynamics of a cryp-
tic ground-dwelling mammal in an urban Australian landscape. Austral Ecology. 2011; 36(6): 722–
732. doi: 10.1111/j.1442-9993.2010.02209.x

66. Peacock MM, Smith AT. The effect of habitat fragmentation on dispersal patterns, mating behavior,
and genetic variation in a pika (Ochotona princeps) metapopulation. Oecologia. 1997; 112(4): 524–
533. doi: 10.1007/s004420050341

67. Fietz J, Tomiuk J, Loeschcke V, Weis-Dootz T, Segelbacher G. Genetic consequences of forest frag-
mentation for a highly specialized arboreal mammal—the Edible Dormouse. Plos One. 2014; 9(2):
e88092. doi: 10.1371/journal.pone.0088092 PMID: 24505390

68. Delaney KS, Riley SPD, Fisher RN (2010) A Rapid, Strong, and Convergent Genetic Response to
Urban Habitat Fragmentation in Four Divergent andWidespread Vertebrates. PLoS ONE 5(9):
e12767. doi: 10.1371/journal.pone.0012767 PMID: 20862274

69. Simberloff D. The contribution of population and community biology to conservation science. Annual
review of ecology and systematics. 1988; 19: 473–511.

70. McCulloch ES, Sebastian Tello J, Whitehead A, Rolon-Mendoza CMJ, Maldonado-Rodriguez MCD,
Stevens RD. Fragmentation of Atlantic Forest has not affected gene flow of a widespread seed-dis-
persing bat. Molecular Ecology. 2013; 22(18): 4619–4633. doi: 10.1111/mec.12418 PMID: 23909879

71. Taylor AC, Walker FM, Goldingay RL, Ball T, van der Ree R. Degree of landscape fragmentation influ-
ences genetic isolation among populations of a gliding mammal. Plos One. 2011; 6(10):e26651. doi:
10.1371/journal.pone.0026651 PMID: 22053200

72. Rees M, Paull D. Distribution of the southern brown bandicoot (Isoodon obesulus) in the Portland
region of south-western Victoria. Wildlife Research. 2000; 27(5): 539–545. doi: 10.1071/wr99045

73. Bonham KJ, Mesibov R, Bashford R. Diversity and abundance of some ground-dwelling invertebrates
in plantation vs. native forests in Tasmania, Australia. Forest Ecology and Management. 2002; 158
(1–3): 237–247.

74. Lindenmayer DB, Hobbs RJ. Fauna conservation in Australian plantation forests—a review. Biological
Conservation. 2004; 119(2): 151–168. doi: 10.1016/j.biocon.2003.10.028

75. JonesW. The Bandicoots and the Herbivorous Marsupials. In: The Mammals of South Australia. Part
II. Adelaide: Government Printer; 1924.

76. Opie A. Habitat selection and the diet of Isoodon obesulus. Australian Mammalian Society Bulletin.
1980;6–56.

77. Quin DG. Observations on the diet of the southern brown bandicoot, Isoodon obesulus (Marsupialia:
Peramelidae), in southern Tasmania. Australian Mammalogy. 1988; 11: 15–25.

78. Neumann FG. Beetle communities in eucalypt and pine forests in north-eastern Victoria. Australian
Forest Research. 1979; 9(4): 277–293.

79. Banks SC, Finlayson GR, Lawson SJ, Lindenmayer DB, Paetkau D, Ward SJ, et al. The effects of
habitat fragmentation due to forestry plantation establishment on the demography and genetic varia-
tion of a marsupial carnivore, Antechinus agilis. Biological Conservation. 2005; 122(4): 581–597. doi:
10.1016/j.biocon.2004.09.013

80. Loss SR, Will T, Marra PP. The impact of free-ranging domestic cats on wildlife of the United States.
Nature Communications. 2013; 4: 1396. 2961 doi: 10.1038/ncomms3961 PMID: 23360987

Population Genetic Structure of Isoodon obesulus

PLOSONE | DOI:10.1371/journal.pone.0152850 April 20, 2016 19 / 20

http://dx.doi.org/10.1046/j.1365-294X.2004.02008.x
http://www.ncbi.nlm.nih.gov/pubmed/14653788
http://dx.doi.org/10.1111/j.1365-294X.2006.03159.x
http://www.ncbi.nlm.nih.gov/pubmed/17257109
http://dx.doi.org/10.1111/j.1365-294X.2005.02812.x
http://www.ncbi.nlm.nih.gov/pubmed/16367835
http://dx.doi.org/10.1371/journal.pone.0029827
http://www.ncbi.nlm.nih.gov/pubmed/22253791
http://dx.doi.org/10.1111/j.1365-294X.2005.02773.x
http://www.ncbi.nlm.nih.gov/pubmed/16367830
http://dx.doi.org/10.1007/s10980-015-0271-8
http://dx.doi.org/10.1007/s10980-015-0271-8
http://dx.doi.org/10.1111/j.1442-9993.2010.02209.x
http://dx.doi.org/10.1007/s004420050341
http://dx.doi.org/10.1371/journal.pone.0088092
http://www.ncbi.nlm.nih.gov/pubmed/24505390
http://dx.doi.org/10.1371/journal.pone.0012767
http://www.ncbi.nlm.nih.gov/pubmed/20862274
http://dx.doi.org/10.1111/mec.12418
http://www.ncbi.nlm.nih.gov/pubmed/23909879
http://dx.doi.org/10.1371/journal.pone.0026651
http://www.ncbi.nlm.nih.gov/pubmed/22053200
http://dx.doi.org/10.1071/wr99045
http://dx.doi.org/10.1016/j.biocon.2003.10.028
http://dx.doi.org/10.1016/j.biocon.2004.09.013
http://dx.doi.org/10.1038/ncomms3961
http://www.ncbi.nlm.nih.gov/pubmed/23360987


81. Vazquez-Dominguez E, Ceballos G, Cruzado J. Extirpation of an insular subspecies by a single intro-
duced cat: the case of the endemic deer mouse Peromyscus guardia on Estanque Island, Mexico.
Oryx. 2004; 38(3): 347–50. doi: 10.1017/s0030605304000602

82. Mcrae BH, Dickson BG, Keitt TH, Shah VB. Using circuit theory to model connectivity in ecology, evo-
lution, and conservation. Ecology. 2008; 89(10): 2712–2724. doi: 10.1890/07-1861.1 PMID:
18959309

83. Coulon A, Guillot G, Cosson JF, Angibault JMA, Aulagnier S, Cargnelutti B, et al. Genetic structure is
influenced by landscape features: empirical evidence from a roe deer population. Molecular Ecology.
2006; 15(6): 1669–1679. doi: 10.1111/j.1365-294X.2006.02861.x PMID: 16629819

84. Cushman SA, Lewis JS. Movement behavior explains genetic differentiation in American black bears.
Landscape Ecology. 2010; 25(10): 1613–1625. doi: 10.1007/s10980-010-9534-6

85. Johansson M, Primmer CR, Sahlsten J, Merila J. The influence of landscape structure on occurrence,
abundance and genetic diversity of the common frog, Rana temporaria. Global Change Biology. 2005;
11(10): 1664–1679. doi: 10.1111/j.1365-2486.2005.01005.x

86. Keller I, Nentwig W, Largiader CR. Recent habitat fragmentation due to roads can lead to significant
genetic differentiation in an abundant flightless ground beetle. Molecular Ecology. 2004; 13(10):
2983–2994. doi: 10.1111/j.1365-294X.2004.02310.x PMID: 15367114

87. Lesbarreres D, Primmer CR, Lode T, Merila J. The effects of 20 years of highway presence on the
genetic structure of Rana dalmatina populations. Ecoscience. 2006; 13(4): 531–538. doi: 10.2980/
1195-6860(2006)13[531:teoyoh]2.0.co;2

88. Zhu L, Zhang S, Gu X, Wei F. Significant genetic boundaries and spatial dynamics of giant pandas
occupying fragmented habitat across southwest China. Molecular Ecology. 2011; 20(6): 1122–1132.
doi: 10.1111/j.1365-294X.2011.04999.x PMID: 21251112

89. Balkenhol N, Waits LP. Molecular road ecology: exploring the potential of genetics for investigating
transportation impacts on wildlife. Molecular Ecology. 2009; 18(20): 4151–4164. doi: 10.1111/j.1365-
294X.2009.04322.x PMID: 19732335

90. Corlatti L, Hacklaender K, Frey-Roos F. Ability of wildlife overpasses to provide connectivity and pre-
vent genetic isolation. Conservation Biology. 2009; 23(3): 548–556. doi: 10.1111/j.1523-1739.2008.
01162.x PMID: 19210301

91. Holderegger R, Di Giulio M. The genetic effects of roads: A review of empirical evidence. Basic and
Applied Ecology. 2010; 11(6): 522–531. http://dx.doi.org/10.1016/j.baae.2010.06.006

92. Jackson ND, Fahrig L. Relative effects of road mortality and decreased connectivity on population
genetic diversity. Biological Conservation. 2011; 144(12): 3143–8. http://dx.doi.org/10.1016/j.biocon.
2011.09.010

93. Heidinger IMM, Hein S, Feldhaar H, Poethke H- J. The genetic structure of populations ofMetrioptera
bicolor in a spatially structured landscape: effects of dispersal barriers and geographic distance. Con-
servation Genetics. 2013; 14(2): 299–311. doi: 10.1007/s10592-013-0449-z

94. Horn T. South East Biodiversity Corridors Strategy. Adelaide: ForestrySA; 2003.

95. Packer JG, Delean S, Kueffer C, Prider J, Abley K, Facelli JM, Carthew SM. Native faunal communi-
ties depend on habitat from non-native plants in novel but not in natural ecosystems. Biodiversity and
Conservation. 2016; in press.

96. Weeks AR, Sgro CM, Young AG, Frankham R, Mitchell NJ, Miller KA, et al. Assessing the benefits
and risks of translocations in changing environments: a genetic perspective. Evolutionary Applica-
tions. 2011; 4(6): 709–725. doi: 10.1111/j.1752-4571.2011.00192.x PMID: 22287981

97. Li Y, Lancaster ML, Carthew SM, Packer JG, Cooper SJB. Delineation of conservation units in an
endangered marsupial, the southern brown bandicoot (Isoodon obesulus obesulus), in South Austra-
lia/western Victoria, Australia. Aust J Zool. 2014; 62(5): 345–359. doi: 10.1071/zo14038

98. van der Ree R, van der Grift EA, Mata C, Suarez F. Overcoming the barrier effect of roads—how
effective are mitigation strategies? An international review of the effectiveness of underpasses and
overpasses designed to increase the permeability of roads for wildlife. In Irwin CL, Nelson D, McDer-
mott KP, editors. International Conference on Ecology and Transportation Center for Transportation
and The Environment, North Carolina State University, Raleigh, North Carolina and Little Rock,
Arkansas, USA; 2007. Pp. 423–431.

99. van der Ree R, Heinze D, McCarthy M, Mansergh I. Wildlife tunnel enhances population viability.
Ecology and Society 2009; 14(2): 7.

100. van der Grift EA, van der Ree R, Fahrig L, Findlay S, Houlahan J, Jaeger JAG, et al. Evaluating the
effectiveness of road mitigation measures. Biodiversity and Conservation. 2013; 22(2): 425–448. doi:
10.1007/s10531-012-0421-0

Population Genetic Structure of Isoodon obesulus

PLOSONE | DOI:10.1371/journal.pone.0152850 April 20, 2016 20 / 20

http://dx.doi.org/10.1017/s0030605304000602
http://dx.doi.org/10.1890/07-1861.1
http://www.ncbi.nlm.nih.gov/pubmed/18959309
http://dx.doi.org/10.1111/j.1365-294X.2006.02861.x
http://www.ncbi.nlm.nih.gov/pubmed/16629819
http://dx.doi.org/10.1007/s10980-010-9534-6
http://dx.doi.org/10.1111/j.1365-2486.2005.01005.x
http://dx.doi.org/10.1111/j.1365-294X.2004.02310.x
http://www.ncbi.nlm.nih.gov/pubmed/15367114
http://dx.doi.org/10.2980/1195-6860(2006)13[531:teoyoh]2.0.co;2
http://dx.doi.org/10.2980/1195-6860(2006)13[531:teoyoh]2.0.co;2
http://dx.doi.org/10.1111/j.1365-294X.2011.04999.x
http://www.ncbi.nlm.nih.gov/pubmed/21251112
http://dx.doi.org/10.1111/j.1365-294X.2009.04322.x
http://dx.doi.org/10.1111/j.1365-294X.2009.04322.x
http://www.ncbi.nlm.nih.gov/pubmed/19732335
http://dx.doi.org/10.1111/j.1523-1739.2008.01162.x
http://dx.doi.org/10.1111/j.1523-1739.2008.01162.x
http://www.ncbi.nlm.nih.gov/pubmed/19210301
http://dx.doi.org/10.1016/j.baae.2010.06.006
http://dx.doi.org/10.1016/j.biocon.2011.09.010
http://dx.doi.org/10.1016/j.biocon.2011.09.010
http://dx.doi.org/10.1007/s10592-013-0449-z
http://dx.doi.org/10.1111/j.1752-4571.2011.00192.x
http://www.ncbi.nlm.nih.gov/pubmed/22287981
http://dx.doi.org/10.1071/zo14038
http://dx.doi.org/10.1007/s10531-012-0421-0

