74 research outputs found

    Boundaries can steer active Janus spheres

    Get PDF
    The advent of autonomous self-propulsion has instigated research towards making colloidal machines that can deliver mechanical work in the form of transport, and other functions such as sensing and cleaning. While much progress has been made in the last 10 years on various mechanisms to generate self-propulsion, the ability to steer self-propelled colloidal devices has so far been much more limited. A critical barrier in increasing the impact of such motors is in directing their motion against the Brownian rotation, which randomizes particle orientations. In this context, here we report directed motion of a specific class of catalytic motors when moving in close proximity to solid surfaces. This is achieved through active quenching of their Brownian rotation by constraining it in a rotational well, caused not by equilibrium, but by hydrodynamic effects. We demonstrate how combining these geometric constraints can be utilized to steer these active colloids along arbitrary trajectories

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Observation of Two New Excited Ξb0 States Decaying to Λb0 K-π+

    Get PDF
    Two narrow resonant states are observed in the Λb0K-π+ mass spectrum using a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the LHCb experiment and corresponding to an integrated luminosity of 6 fb-1. The minimal quark content of the Λb0K-π+ system indicates that these are excited Ξb0 baryons. The masses of the Ξb(6327)0 and Ξb(6333)0 states are m[Ξb(6327)0]=6327.28-0.21+0.23±0.12±0.24 and m[Ξb(6333)0]=6332.69-0.18+0.17±0.03±0.22 MeV, respectively, with a mass splitting of Δm=5.41-0.27+0.26±0.12 MeV, where the uncertainties are statistical, systematic, and due to the Λb0 mass measurement. The measured natural widths of these states are consistent with zero, with upper limits of Γ[Ξb(6327)0]<2.20(2.56) and Γ[Ξb(6333)0]<1.60(1.92) MeV at a 90% (95%) credibility level. The significance of the two-peak hypothesis is larger than nine (five) Gaussian standard deviations compared to the no-peak (one-peak) hypothesis. The masses, widths, and resonant structure of the new states are in good agreement with the expectations for a doublet of 1D Ξb0 resonances

    Direct CP violation in charmless three-body decays of B± mesons

    Get PDF
    Measurements of C P asymmetries in charmless three-body decays of B ± mesons are reported using proton-proton collision data collected by the LHCb detector, corresponding to an integrated luminosity of 5.9     fb − 1 . The previously observed C P asymmetry in B ± → π ± K + K − decays is confirmed, and C P asymmetries are observed with a significance of more than five standard deviations in the B ± → π ± π + π − and B ± → K ± K + K − decays, while the C P asymmetry of B ± → K ± π + π − decays is confirmed to be compatible with zero. The distributions of these asymmetries are also studied as a function of the three-body phase space and suggest contributions from rescattering and resonance interference processes. An indication of the presence of the decays B ± → π ± χ c 0 ( 1 P ) in both B ± → π ± π + π − and B ± → π ± K + K − decays is observed, as is C P violation involving these amplitudes

    Measurement of antiproton production from antihyperon decays in p He collisions at √sNN = 110 GeV

    Get PDF
    The interpretation of cosmic antiproton flux measurements from space-borne experiments is currently limited by the knowledge of the antiproton production cross-section in collisions between primary cosmic rays and the interstellar medium. Using collisions of protons with an energy of 6.5TeV incident on helium nuclei at rest in the proximity of the interaction region of the LHCb experiment, the ratio of antiprotons originating from antihyperon decays to prompt production is measured for antiproton momenta between 12 and 110GeV. The dominant antihyperon contribution, namely Λ¯→p¯π+ decays from promptly produced Λ¯ particles, is also exclusively measured. The results complement the measurement of prompt antiproton production obtained from the same data sample. At the energy scale of this measurement, the antihyperon contributions to antiproton production are observed to be significantly larger than predictions of commonly used hadronic production models

    Measurement of J/ψ -pair production in pp collisions at √s = 13 TeV and study of gluon transverse-momentum dependent PDFs

    Get PDF
    The production cross-section of J/ψ pairs in proton-proton collisions at a centre-of-mass energy of √s = 13 TeV is measured using a data sample corresponding to an integrated luminosity of 4.2 fb−1 collected by the LHCb experiment. The measurement is performed with both J/ψ mesons in the transverse momentum range 0 < pT< 14 GeV/c and rapidity range 2.0 < y < 4.5. The cross-section of this process is measured to be 16.36 ± 0.28 (stat) ± 0.88 (syst) nb. The contributions from single-parton scattering and double-parton scattering are separated based on the dependence of the cross-section on the absolute rapidity difference ∆y between the two J/ψ mesons. The effective cross-section of double-parton scattering is measured to be σeff = 13.1 ± 1.8 (stat) ± 2.3 (syst) mb. The distribution of the azimuthal angle ϕCS of one of the J/ψ mesons in the Collins-Soper frame and the pT-spectrum of the J/ψ pairs are also measured for the study of the gluon transverse-momentum dependent distributions inside protons. The extracted values of ⟨cos 2ϕCS⟩ and ⟨cos 4ϕCS⟩ are consistent with zero, but the presence of azimuthal asymmetry at a few percent level is allowed

    Fluidic Assembly

    No full text
    Fluid-assisted assembly refers to a number of processes that utilize a fluid medium or fluidic forces to assemble components. Fluid-assisted assembly processes often use a fluidic medium to overcome the challenges with grasping and releasing microscale components using traditional methods. These processes can utilize capillary, viscous, magnetic, electrical, and gravitational forces. This category encompasses both stochastic self-assembly processes and directed processes

    Carbonate-based Janus micromotors moving in ultra-light acidic environment generated by HeLa cells in situ

    Get PDF
    Novel approaches to develop naturally-induced drug delivery in tumor environments in a deterministic and controlled manner have become of growing interest in recent years. Different polymeric-based microstructures and other biocompatible substances have been studied taking advantage of lactic acidosis phenomena in tumor cells, which decrease the tumor extracellular pH down to 6.8. Micromotors have recently demonstrated a high performance in living systems, revealing autonomous movement in the acidic environment of the stomach or moving inside living cells by using acoustic waves, opening the doors for implementation of such smart microengines into living entities. The need to develop biocompatible motors which are driven by natural fuel sources inherently created in biological systems has thus become of crucial importance. As a proof of principle, we here demonstrate calcium carbonate Janus particles moving in extremely light acidic environments (pH 6.5), whose motion is induced in conditioned acidic medium generated by HeLa cells in situ. Our system not only obviates the need for an external fuel, but also presents a selective activation of the micromotors which promotes their motion and consequent dissolution in presence of a quickly propagating cell source (i.e. tumor cells), therefore inspiring new micromotor configurations for potential drug delivery systems
    corecore