101 research outputs found

    Genotoxicity assessment of a pharmaceutical effluent using four bioassays

    Get PDF
    Pharmaceutical industries are among the major contributors to industrial waste. Their effluents when wrongly handled and disposed of endanger both human and environmental health. In this study, we investigated the potential genotoxicity of a pharmaceutical effluent, by using the Allium cepa, mouse- sperm morphology, bone marrow chromosome aberration (CA) and micronucleus (MN) assays. Some of the physico-chemical properties of the effluent were also determined. The A. cepa and the animal assays were respectively carried out at concentrations of 0.5, 1, 2.5, 5 and 10%; and 1, 5, 10, 25 and 50% of the effluent. There was a statistically different (p < 0.05), concentration-dependent inhibition of onion root growth and mitotic index, and induction of chromosomal aberrations in the onion and mouse CA test. Assessment of sperm shape showed that the fraction of the sperm that was abnormal in shape was significantly (p < 0.05) greater than the negative control value. MN analysis showed a dose-dependent induction of micronucleated polychromatic erythrocytes across the treatment groups. These observations were provoked by the toxic and genotoxic constituents present in test samples. The tested pharmaceutical effluent is a potentially genotoxic agent and germ cell mutagen, and may induce adverse health effects in exposed individuals

    Modulation of Sn concentration in ZnO nanorod array: intensification on the conductivity and humidity sensing properties

    Get PDF
    Tin (Sn)-doped zinc oxide (ZnO) nanorod arrays (TZO) were synthesized onto aluminum-doped ZnO-coated glass substrate via a facile sonicated sol–gel immersion method for humidity sensor applications. These nanorod arrays were grown at different Sn concentrations ranging from 0.6 to 3 at.%. X-ray diffraction patterns showed that the deposited TZO arrays exhibited a wurtzite structure. The stress/strain condition of the ZnO film metamorphosed from tensile strain/compressive stress to compressive strain/tensile stress when the Sn concentrations increased. Results indicated that 1 at.% Sn doping of TZO, which has the lowest tensile stress of 0.14 GPa, generated the highest conductivity of 1.31 S cm− 1. In addition, 1 at.% Sn doping of TZO possessed superior sensitivity to a humidity of 3.36. These results revealed that the optimum performance of a humidity-sensing device can be obtained mainly by controlling the amount of extrinsic element in a ZnO film

    Comparison of the marginal adaptation of direct and indirect composite inlay restorations with optical coherence tomography

    Get PDF
    OBJECTIVE: The purpose of the study was to use the photonic imaging modality of optical coherence tomography (OCT) to compare the marginal adaptation of composite inlays fabricated by direct and indirect techniques. MATERIAL AND METHODS: Class II cavities were prepared on 34 extracted human molar teeth. The cavities were randomly divided into two groups according to the inlay fabrication technique. The first group was directly restored on cavities with a composite (Esthet X HD, Dentsply, Germany) after isolating. The second group was indirectly restored with the same composite material. Marginal adaptations were scanned before cementation with an invisible infrared light beam of OCT (Thorlabs), allowing measurement in 200 µm intervals. Restorations were cemented with a self-adhesive cement resin (SmartCem2, Dentsply), and then marginal adaptations were again measured with OCT. Mean values were statistically compared by using independent-samples t-test and paired samples t-test (p<0.05), before and after cementation. RESULTS: Direct inlays presented statistically smaller marginal discrepancy values than indirect inlays, before (p=0.00001442) and after (p=0.00001466) cementation. Marginal discrepancy values were increased for all restorations after cementation (p=0.00008839, p=0.000000952 for direct and indirect inlays, respectively). The mean marginal discrepancy value of the direct group increased from 56.88±20.04 µm to 91.88±31.7 µm, whereas the indirect group increased from 107.54±35.63 µm to 170.29±54.83 µm. Different techniques are available to detect marginal adaptation of restorations, but the OCT system can give quantitative information about resin cement thickness and its interaction between tooth and restoration in a nondestructive manner. CONCLUSIONS: Direct inlays presented smaller marginal discrepancy than indirect inlays. The marginal discrepancy values were increased for all restorations that refer to cement thickness after cementation

    Genotyping and drug resistance patterns of M. tuberculosis strains in Pakistan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The incidence of tuberculosis in Pakistan is 181/100,000 population. However, information about transmission and geographical prevalence of <it>Mycobacterium tuberculosis </it>strains and their evolutionary genetics as well as drug resistance remains limited. Our objective was to determine the clonal composition, evolutionary genetics and drug resistance of <it>M. tuberculosis </it>isolates from different regions of the country.</p> <p>Methods</p> <p><it>M. tuberculosis </it>strains isolated (2003–2005) from specimens submitted to the laboratory through collection units nationwide were included. Drug susceptibility was performed and strains were spoligotyped.</p> <p>Results</p> <p>Of 926 <it>M. tuberculosis </it>strains studied, 721(78%) were grouped into 59 "shared types", while 205 (22%) were identified as "Orphan" spoligotypes. Amongst the predominant genotypes 61% were Central Asian strains (CAS ; including CAS1, CAS sub-families and Orphan Pak clusters), 4% East African-Indian (EAI), 3% Beijing, 2% poorly defined TB strains (T), 2% Haarlem and LAM (0.2). Also TbD1 analysis (<it>M. tuberculosis </it>specific deletion 1) confirmed that CAS1 was of "modern" origin while EAI isolates belonged to "ancestral" strain types.</p> <p>Prevalence of CAS1 clade was significantly higher in Punjab (P < 0.01, Pearsons Chi-square test) as compared with Sindh, North West Frontier Province and Balochistan provinces. Forty six percent of isolates were sensitive to five first line antibiotics tested, 45% were Rifampicin resistant, 50% isoniazid resistant. MDR was significantly associated with Beijing strains (P = 0.01, Pearsons Chi-square test) and EAI (P = 0.001, Pearsons Chi-square test), but not with CAS family.</p> <p>Conclusion</p> <p>Our results show variation of prevalent <it>M. tuberculosis </it>strain with greater association of CAS1 with the Punjab province. The fact that the prevalent CAS genotype was not associated with drug resistance is encouraging. It further suggests a more effective treatment and control programme should be successful in reducing the tuberculosis burden in Pakistan.</p

    SalK/SalR, a Two-Component Signal Transduction System, Is Essential for Full Virulence of Highly Invasive Streptococcus suis Serotype 2

    Get PDF
    BACKGROUND: Streptococcus suis serotype 2 (S. suis 2, SS2) has evolved into a highly infectious entity, which caused the two recent large-scale outbreaks of human SS2 epidemic in China, and is characterized by a toxic shock-like syndrome. However, the molecular pathogenesis of this new emerging pathogen is still poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: 89K is a newly predicted pathogenicity island (PAI) which is specific to Chinese epidemic strains isolated from these two SS2 outbreaks. Further bioinformatics analysis revealed a unique two-component signal transduction system (TCSTS) located in the candidate 89K PAI, which is orthologous to the SalK/SalR regulatory system of Streptococcus salivarius. Knockout of salKR eliminated the lethality of SS2 in experimental infection of piglets. Functional complementation of salKR into the isogenic mutant DeltasalKR restored its soaring pathogenicity. Colonization experiments showed that the DeltasalKR mutant could not colonize any susceptible tissue of piglets when administered alone. Bactericidal assays demonstrated that resistance of the mutant to polymorphonuclear leukocyte (PMN)-mediated killing was greatly decreased. Expression microarray analysis exhibited a transcription profile alteration of 26 various genes down-regulated in the DeltasalKR mutant. CONCLUSIONS/SIGNIFICANCE: These findings suggest that SalK/SalR is requisite for the full virulence of ethnic Chinese isolates of highly pathogenic SS2, thus providing experimental evidence for the validity of this bioinformatically predicted PAI

    Correlating Global Gene Regulation to Angiogenesis in the Developing Chick Extra-Embryonic Vascular System

    Get PDF
    International audienceBACKGROUND: Formation of blood vessels requires the concerted regulation of an unknown number of genes in a spatial-, time- and dosage-dependent manner. Determining genes, which drive vascular maturation is crucial for the identification of new therapeutic targets against pathological angiogenesis. METHOLOGY/PRINCIPAL FINDINGS: We accessed global gene regulation throughout maturation of the chick chorio-allantoic membrane (CAM), a highly vascularized tissue, using pan genomic microarrays. Seven percent of analyzed genes showed a significant change in expression (>2-fold, FDR<5%) with a peak occurring from E7 to E10, when key morphogenetic and angiogenic genes such as BMP4, SMO, HOXA3, EPAS1 and FGFR2 were upregulated, reflecting the state of an activated endothelium. At later stages, a general decrease in gene expression occurs, including genes encoding mitotic factors or angiogenic mediators such as CYR61, EPAS1, MDK and MYC. We identified putative human orthologs for 77% of significantly regulated genes and determined endothelial cell enrichment for 20% of the orthologs in silico. Vascular expression of several genes including ENC1, FSTL1, JAM2, LDB2, LIMS1, PARVB, PDE3A, PRCP, PTRF and ST6GAL1 was demonstrated by in situ hybridization. Up to 9% of the CAM genes were also overexpressed in human organs with related functions, such as placenta and lung or the thyroid. 21-66% of CAM genes enriched in endothelial cells were deregulated in several human cancer types (P<.0001). Interfering with PARVB (encoding parvin, beta) function profoundly changed human endothelial cell shape, motility and tubulogenesis, suggesting an important role of this gene in the angiogenic process. CONCLUSIONS/SIGNIFICANCE: Our study underlines the complexity of gene regulation in a highly vascularized organ during development. We identified a restricted number of novel genes enriched in the endothelium of different species and tissues, which may play crucial roles in normal and pathological angiogenesis

    H2S biosynthesis and catabolism: new insights from molecular studies

    Get PDF
    Hydrogen sulfide (H2S) has profound biological effects within living organisms and is now increasingly being considered alongside other gaseous signalling molecules, such as nitric oxide (NO) and carbon monoxide (CO). Conventional use of pharmacological and molecular approaches has spawned a rapidly growing research field that has identified H2S as playing a functional role in cell-signalling and post-translational modifications. Recently, a number of laboratories have reported the use of siRNA methodologies and genetic mouse models to mimic the loss of function of genes involved in the biosynthesis and degradation of H2S within tissues. Studies utilising these systems are revealing new insights into the biology of H2S within the cardiovascular system, inflammatory disease, and in cell signalling. In light of this work, the current review will describe recent advances in H2S research made possible by the use of molecular approaches and genetic mouse models with perturbed capacities to generate or detoxify physiological levels of H2S gas within tissue

    Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer.

    Get PDF
    To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC
    corecore