11 research outputs found
Condensation of the roots of real random polynomials on the real axis
We introduce a family of real random polynomials of degree n whose
coefficients a_k are symmetric independent Gaussian variables with variance
= e^{-k^\alpha}, indexed by a real \alpha \geq 0. We compute exactly
the mean number of real roots for large n. As \alpha is varied, one finds
three different phases. First, for 0 \leq \alpha \sim
(\frac{2}{\pi}) \log{n}. For 1 < \alpha < 2, there is an intermediate phase
where grows algebraically with a continuously varying exponent,
\sim \frac{2}{\pi} \sqrt{\frac{\alpha-1}{\alpha}} n^{\alpha/2}. And finally for
\alpha > 2, one finds a third phase where \sim n. This family of real
random polynomials thus exhibits a condensation of their roots on the real line
in the sense that, for large n, a finite fraction of their roots /n are
real. This condensation occurs via a localization of the real roots around the
values \pm \exp{[\frac{\alpha}{2}(k+{1/2})^{\alpha-1} ]}, 1 \ll k \leq n.Comment: 13 pages, 2 figure
Critical properties of superconducting Ba1-xKxFe2As2
Magnetisation and magnetoresistance measurements have been carried out on
superconducting Ba1-xKxFe2As2 samples with x=0.40 and 0.50. From low field
magnetization data carried out at different temperatures below TC, HC1 has been
extracted. The plot of HC1 versus temperature shows an anomalous increase at
low temperatures. From high field magnetization hysterisis measurements carried
out in fields up to 16 T at 4.2 K and 20 K, the critical current density has
been evaluated using the Bean critical state model. The JC determined from the
high field data is >104A/cm2 at 4.2 K and 5 T. The superconducting transitions
were also measured resistively in increasing applied magnetic fields up to 12
Tesla. From the variation of the TC onset with applied field, dHC2/dT at TC was
obtained to be -7.708 T/K and -5.57 T/K in the samples with x=0.40 and 0.50.Comment: 14 pages; 7 figure
Exact Minimum Eigenvalue Distribution of an Entangled Random Pure State
A recent conjecture regarding the average of the minimum eigenvalue of the
reduced density matrix of a random complex state is proved. In fact, the full
distribution of the minimum eigenvalue is derived exactly for both the cases of
a random real and a random complex state. Our results are relevant to the
entanglement properties of eigenvectors of the orthogonal and unitary ensembles
of random matrix theory and quantum chaotic systems. They also provide a rare
exactly solvable case for the distribution of the minimum of a set of N {\em
strongly correlated} random variables for all values of N (and not just for
large N).Comment: 13 pages, 2 figures included; typos corrected; to appear in J. Stat.
Phy
Statistical distribution of quantum entanglement for a random bipartite state
We compute analytically the statistics of the Renyi and von Neumann entropies
(standard measures of entanglement), for a random pure state in a large
bipartite quantum system. The full probability distribution is computed by
first mapping the problem to a random matrix model and then using a Coulomb gas
method. We identify three different regimes in the entropy distribution, which
correspond to two phase transitions in the associated Coulomb gas. The two
critical points correspond to sudden changes in the shape of the Coulomb charge
density: the appearance of an integrable singularity at the origin for the
first critical point, and the detachement of the rightmost charge (largest
eigenvalue) from the sea of the other charges at the second critical point.
Analytical results are verified by Monte Carlo numerical simulations. A short
account of some of these results appeared recently in Phys. Rev. Lett. {\bf
104}, 110501 (2010).Comment: 7 figure
Real Roots of Random Polynomials and Zero Crossing Properties of Diffusion Equation
We study various statistical properties of real roots of three different
classes of random polynomials which recently attracted a vivid interest in the
context of probability theory and quantum chaos. We first focus on gap
probabilities on the real axis, i.e. the probability that these polynomials
have no real root in a given interval. For generalized Kac polynomials, indexed
by an integer d, of large degree n, one finds that the probability of no real
root in the interval [0,1] decays as a power law n^{-\theta(d)} where \theta(d)
> 0 is the persistence exponent of the diffusion equation with random initial
conditions in spatial dimension d. For n \gg 1 even, the probability that they
have no real root on the full real axis decays like
n^{-2(\theta(2)+\theta(d))}. For Weyl polynomials and Binomial polynomials,
this probability decays respectively like \exp{(-2\theta_{\infty}} \sqrt{n})
and \exp{(-\pi \theta_{\infty} \sqrt{n})} where \theta_{\infty} is such that
\theta(d) = 2^{-3/2} \theta_{\infty} \sqrt{d} in large dimension d. We also
show that the probability that such polynomials have exactly k roots on a given
interval [a,b] has a scaling form given by \exp{(-N_{ab} \tilde
\phi(k/N_{ab}))} where N_{ab} is the mean number of real roots in [a,b] and
\tilde \phi(x) a universal scaling function. We develop a simple Mean Field
(MF) theory reproducing qualitatively these scaling behaviors, and improve
systematically this MF approach using the method of persistence with partial
survival, which in some cases yields exact results. Finally, we show that the
probability density function of the largest absolute value of the real roots
has a universal algebraic tail with exponent {-2}. These analytical results are
confirmed by detailed numerical computations.Comment: 32 pages, 16 figure
Intricacies of Strain and Magnetic Field Induced Charge Order Melting in Pr0.5Ca0.5MnO3 Thin Films
Thin films of the half doped manganite Pr0.5Ca0.5MnO3 were grown on (100)
oriented MgO substrates by pulsed laser deposition technique. In order to study
the effect of strain on the magnetic field induced charge order melting, films
of different thicknesses were prepared and their properties were studied by
x-ray diffraction, electrical resistivity and magnetoresistance measurements. A
field induced charge order melting is observed for films with very small
thicknesses. The charge order transition temperature and the magnetic filed
induced charge order melting are observed to depend on the nature of strain
that is experienced by the film.Comment: 18 pages, (including 6 figures