We introduce a family of real random polynomials of degree n whose
coefficients a_k are symmetric independent Gaussian variables with variance
= e^{-k^\alpha}, indexed by a real \alpha \geq 0. We compute exactly
the mean number of real roots for large n. As \alpha is varied, one finds
three different phases. First, for 0 \leq \alpha \sim
(\frac{2}{\pi}) \log{n}. For 1 < \alpha < 2, there is an intermediate phase
where grows algebraically with a continuously varying exponent,
\sim \frac{2}{\pi} \sqrt{\frac{\alpha-1}{\alpha}} n^{\alpha/2}. And finally for
\alpha > 2, one finds a third phase where \sim n. This family of real
random polynomials thus exhibits a condensation of their roots on the real line
in the sense that, for large n, a finite fraction of their roots /n are
real. This condensation occurs via a localization of the real roots around the
values \pm \exp{[\frac{\alpha}{2}(k+{1/2})^{\alpha-1} ]}, 1 \ll k \leq n.Comment: 13 pages, 2 figure