1,301 research outputs found

    Transition Decomposition of Quantum Mechanical Evolution

    Full text link
    We show that the existence of the family of self-adjoint Lyapunov operators introduced in [J. Math. Phys. 51, 022104 (2010)] allows for the decomposition of the state of a quantum mechanical system into two parts: A past time asymptote, which is asymptotic to the state of the system at t goes to minus infinity and vanishes at t goes to plus infinity, and a future time asymptote, which is asymptotic to the state of the system at t goes to plus infinity and vanishes at t goes to minus infinity. We demonstrate the usefulness of this decomposition for the description of resonance phenomena by considering the resonance scattering of a particle off a square barrier potential. We show that the past time asymptote captures the behavior of the resonance. In particular, it exhibits the expected exponential decay law and spatial probability distribution.Comment: Accepted for publication in Int. J. Theor. Phy

    Shear viscosity of the Quark-Gluon Plasma from a virial expansion

    Full text link
    We calculate the shear viscosity η\eta in the quark-gluon plasma (QGP) phase within a virial expansion approach with particular interest in the ratio of η\eta to the entropy density ss, i.e. η/s\eta/s. The virial expansion approach allows us to include the interactions between the partons in the deconfined phase and to evaluate the corrections to a single-particle partition function. In the latter approach we start with an effective interaction with parameters fixed to reproduce thermodynamical quantities of QCD such as energy and/or entropy density. We also directly extract the effective coupling \ga_{\rm V} for the determination of η\eta. Our numerical results give a ratio η/s0.097\eta/s\approx 0.097 at the critical temperature TcT_{\rm c}, which is very close to the theoretical bound of 1/(4π)1/(4\pi). Furthermore, for temperatures T1.8TcT\leq 1.8 T_{\rm c} the ratio η/s\eta/s is in the range of the present experimental estimates 0.10.30.1-0.3 at RHIC. When combining our results for η/s\eta/s in the deconfined phase with those from chiral perturbation theory or the resonance gas model in the confined phase we observe a pronounced minimum of η/s\eta/s close to the critical temperature TcT_{\rm c}.Comment: Published in Eur. Phys. J. C, 7 pages, 2 figures, 3 tabl

    First results on light readout from the 1-ton ArDM liquid argon detector for dark matter searches

    Full text link
    ArDM-1t is the prototype for a next generation WIMP detector measuring both the scintillation light and the ionization charge from nuclear recoils in a 1-ton liquid argon target. The goal is to reach a minimum recoil energy of 30\,keVr to detect recoiling nuclei. In this paper we describe the experimental concept and present results on the light detection system, tested for the first time in ArDM on the surface at CERN. With a preliminary and incomplete set of PMTs, the light yield at zero electric field is found to be between 0.3-0.5 phe/keVee depending on the position within the detector volume, confirming our expectations based on smaller detector setups.Comment: 14 pages, 10 figures, v2 accepted for publication in JINS

    The Norm Implementation Problem in Normative Multi-Agent Systems

    Get PDF
    Abstract. The norm implementation problem consists in how to see to it that the agents in a system comply with the norms specified for that system by the system designer. It is part of the more general problem of how to synthesize or create norms for multi-agent systems, by, for example, highlighting the choice between regimentation and enforcement, or the punishment associated with a norm violation. In this paper we discuss how various ways to implement norms in a multi-agent system can be distinguished in a formal game-theoretic framework. In particular, we show how different types of norm implementation can all be uniformly specified and verified as types of transformations of extensive games. We introduce the notion of retarded preconditions to implement norms, and we illustrate the framework and the various ways to implement norms in the blocks world environment

    Search for pair production of the scalar top quark in the electron-muon final state

    Get PDF
    We report the result of a search for the pair production of the lightest supersymmetric partner of the top quark (t~1\tilde{t}_1) in ppˉp\bar{p} collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider corresponding to an integrated luminosity of 5.4 fb1^{-1}. The scalar top quarks are assumed to decay into a bb quark, a charged lepton, and a scalar neutrino (ν~\tilde{\nu}), and the search is performed in the electron plus muon final state. No significant excess of events above the standard model prediction is detected, and improved exclusion limits at the 95% C.L. are set in the the (Mt~1M_{\tilde{t}_1},Mν~M_{\tilde{\nu}}) mass plane

    Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays

    Full text link
    Average charged multiplicities have been measured separately in bb, cc and light quark (u,d,su,d,s) events from Z0Z^0 decays measured in the SLD experiment. Impact parameters of charged tracks were used to select enriched samples of bb and light quark events, and reconstructed charmed mesons were used to select cc quark events. We measured the charged multiplicities: nˉuds=20.21±0.10(stat.)±0.22(syst.)\bar{n}_{uds} = 20.21 \pm 0.10 (\rm{stat.})\pm 0.22(\rm{syst.}), nˉc=21.28±0.46(stat.)0.36+0.41(syst.)\bar{n}_{c} = 21.28 \pm 0.46(\rm{stat.}) ^{+0.41}_{-0.36}(\rm{syst.}) nˉb=23.14±0.10(stat.)0.37+0.38(syst.)\bar{n}_{b} = 23.14 \pm 0.10(\rm{stat.}) ^{+0.38}_{-0.37}(\rm{syst.}), from which we derived the differences between the total average charged multiplicities of cc or bb quark events and light quark events: Δnˉc=1.07±0.47(stat.)0.30+0.36(syst.)\Delta \bar{n}_c = 1.07 \pm 0.47(\rm{stat.})^{+0.36}_{-0.30}(\rm{syst.}) and Δnˉb=2.93±0.14(stat.)0.29+0.30(syst.)\Delta \bar{n}_b = 2.93 \pm 0.14(\rm{stat.})^{+0.30}_{-0.29}(\rm{syst.}). We compared these measurements with those at lower center-of-mass energies and with perturbative QCD predictions. These combined results are in agreement with the QCD expectations and disfavor the hypothesis of flavor-independent fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters

    Search for Higgs bosons decaying to tautau pairs in ppbar collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We present a search for the production of neutral Higgs bosons decaying into tautau pairs in ppbar collisions at a center-of-mass energy of 1.96 TeV. The data, corresponding to an integrated luminosity of 5.4 fb-1, were collected by the D0 experiment at the Fermilab Tevatron Collider. We set upper limits at the 95% C.L. on the product of production cross section and branching ratio for a scalar resonance decaying into tautau pairs, and we then interpret these limits as limits on the production of Higgs bosons in the minimal supersymmetric standard model (MSSM) and as constraints in the MSSM parameter space.Comment: 7 pages, 5 figures, submitted to PL

    Measurement of the photon+b+b-jet production differential cross section in ppˉp\bar{p} collisions at \sqrt{s}=1.96~\TeV

    Get PDF
    We present measurements of the differential cross section dsigma/dpT_gamma for the inclusive production of a photon in association with a b-quark jet for photons with rapidities |y_gamma|< 1.0 and 30<pT_gamma <300 GeV, as well as for photons with 1.5<|y_gamma|< 2.5 and 30< pT_gamma <200 GeV, where pT_gamma is the photon transverse momentum. The b-quark jets are required to have pT>15 GeV and rapidity |y_jet| < 1.5. The results are based on data corresponding to an integrated luminosity of 8.7 fb^-1, recorded with the D0 detector at the Fermilab Tevatron ppˉp\bar{p} Collider at sqrt(s)=1.96 TeV. The measured cross sections are compared with next-to-leading order perturbative QCD calculations using different sets of parton distribution functions as well as to predictions based on the kT-factorization QCD approach, and those from the Sherpa and Pythia Monte Carlo event generators.Comment: 10 pages, 9 figures, submitted to Phys. Lett.

    Limits on anomalous trilinear gauge boson couplings from WW, WZ and Wgamma production in pp-bar collisions at sqrt{s}=1.96 TeV

    Get PDF
    We present final searches of the anomalous gammaWW and ZWW trilinear gauge boson couplings from WW and WZ production using lepton plus dijet final states and a combination with results from Wgamma, WW, and WZ production with leptonic final states. The analyzed data correspond to up to 8.6/fb of integrated luminosity collected by the D0 detector in pp-bar collisions at sqrt{s}=1.96 TeV. We set the most stringent limits at a hadron collider to date assuming two different relations between the anomalous coupling parameters Delta\kappa_\gamma, lambda, and Delta g_1^Z for a cutoff energy scale Lambda=2 TeV. The combined 68% C.L. limits are -0.057<Delta\kappa_\gamma<0.154, -0.015<lambda<0.028, and -0.008<Delta g_1^Z<0.054 for the LEP parameterization, and -0.007<Delta\kappa<0.081 and -0.017<lambda<0.028 for the equal couplings parameterization. We also present the most stringent limits of the W boson magnetic dipole and electric quadrupole moments.Comment: 10 pages, 5 figures, submitted to PL

    Measurement of three-jet differential cross sections d sigma-3jet / d M-3jet in p anti-p collisions at sqrt(s)=1.96 TeV

    Full text link
    We present the first measurement of the inclusive three-jet differential cross section as a function of the invariant mass of the three jets with the largest transverse momenta in an event in p anti-p collisions at sqrt(s) = 1.96 TeV. The measurement is made in different rapidity regions and for different jet transverse momentum requirements and is based on a data set corresponding to an integrated luminosity of 0.7 fb^{-1} collected with the D0 detector at the Fermilab Tevatron Collider. The results are used to test the three-jet matrix elements in perturbative QCD calculations at next-to-leading order in the strong coupling constant. The data allow discrimination between parametrizations of the parton distribution functions of the proton.Comment: 10 pages, 4 figures, 2 tables, submitted to Phys. Lett. B, corrected chi2 values for NNPD
    corecore