3,496 research outputs found

    Event-Related Potentials Reveal Differential Brain Regions Implicated in Discounting in Two Tasks

    Get PDF
    The way people make decisions about future benefits termed discounting - has important implications for both financial planning and health behaviour. Several theories assume that, when delaying gratification, the lower weight given to future benefits (the discount rate) declines exponentially. However there is considerable evidence that it declines hyperbolically with the rate of discount being proportionate to the delay distance. There is relatively little evidence as to whether neural areas mediating timedependent discounting processes differ according to the nature of the task. The present study investigates the potential neurological mechanisms underpinning domain-specific discounting processes. We present high-density event-related potentials (ERPs) data from a task in which participants were asked to make decisions about financial rewards or their health over short and long time-horizons. Participants (n=17) made a button-press response to their preference for an immediate or delayed gain (in the case of finance) or loss (in the case of health), with the discrepancy in the size of benefits/losses varying between alternatives. Waveform components elicited during the task were similar for both domains and included posterior N1, frontal P2 and posterior P3 components. We provide source dipole evidence that differential brain activation does occur across domains with results suggesting the possible involvement of the right cingulate gyrus and left claustrum for the health domain and the left medial and right superior frontal gyri for the finance domain. However, little evidence for differential activation across time horizons is found.

    Selection rules for J^PC Exotic Hybrid Meson Decay in Large-N_c

    Full text link
    The coupling of a neutral hybrid {1,3,5...}^-+ exotic particle (or current) to two neutral (hybrid) meson particles with the same J^PC and J=0 is proved to be sub-leading to the usual large-N_c QCD counting. The coupling of the same exotic particle to certain two - (hybrid) meson currents with the same J^PC and J=0 is also sub-leading. The decay of a {1,3,5...}^-+ hybrid to eta pi^0, eta' pi^0, eta' eta, eta(1295) pi^0, pi(1300)^0 pi0, eta(1440) pi^0, a_0(980)^0 sigma or f_0(980) sigma is sub-leading, assuming that these final state particles are (hybrid) mesons in the limit of large N_c.Comment: 16 pages, LaTeX. Main paper shortened/rewritten and appendices expanded. Implications for phenomenology of exotic hybrid mesons clarifie

    Heavy-traffic approximations for a layered network with limited resources

    Get PDF
    Motivated by a web-server model, we present a queueing network consisting of two layers. The first layer incorporates the arrival of customers at a network of two single-server nodes. We assume that the inter-arrival and the service times have general distributions. Customers are served according to their arrival order at each node and after finishing their service they can re-enter at nodes several times (as new customers) for new services. At the second layer, active servers act as jobs which are served by a single server working at speed one in a Processor-Sharing fashion. We further assume that the degree of resource sharing is limited by choice, leading to a Limited Processor-Sharing discipline. Our main result is a diffusion approximation for the process describing the number of customers in the system. Assuming a single bottleneck node and studying the system as it approaches heavy traffic, we prove a state-space collapse property. The key to derive this property is to study the model at the second layer and to prove a diffusion limit theorem, which yields an explicit approximation for the customers in the system

    MACOC: a medoid-based ACO clustering algorithm

    Get PDF
    The application of ACO-based algorithms in data mining is growing over the last few years and several supervised and unsupervised learning algorithms have been developed using this bio-inspired approach. Most recent works concerning unsupervised learning have been focused on clustering, showing great potential of ACO-based techniques. This work presents an ACO-based clustering algorithm inspired by the ACO Clustering (ACOC) algorithm. The proposed approach restructures ACOC from a centroid-based technique to a medoid-based technique, where the properties of the search space are not necessarily known. Instead, it only relies on the information about the distances amongst data. The new algorithm, called MACOC, has been compared against well-known algorithms (K-means and Partition Around Medoids) and with ACOC. The experiments measure the accuracy of the algorithm for both synthetic datasets and real-world datasets extracted from the UCI Machine Learning Repository

    New selective dissolution process to quantify reaction extent and product stability in metakaolin-based geopolymers

    Get PDF
    A selective dissolution process is developed that can quantify the amount of soluble material, geopolymer gel and remnant unreacted precursor in metakaolin-based geopolymer systems and determine the nanostructural features of the raw materials and geopolymer gel components. The susceptibility of alkalis leachability from the alkaline aluminosilicate hydrate-type gel (N-A-S-H) produced during the geopolymerization is not fully understood. This phenomenon led to deleterious processes from a microstructural, aesthetic and performance point of view. Geopolymers were synthesised using different contents and types of alkalis (M/Al = 0.50–0.83, where M represents Na or K), different contents of soluble silica in the activator (expressed as SiO2/M2O ratio of 1.0, 0.5 and 0.0), and curing temperatures (25 and 50 °C). The selective dissolution process is based on neutral dissolution at pH 7 to extract the soluble materials and acid dissolution using a strong acid at pH 0 to dissolve the geopolymer gel, which provides for the first time a method to quantify the (i) soluble material, (ii) geopolymer gel and (iii) unreacted material in geopolymers. The soluble material provides a reliable indication of the materials that can be removed from the geopolymers in a neutral pH environment and hence the potential for leaching and efflorescence, which is useful for durability prediction and service life. Quantification of remnant unreacted metakaolin determines the reactivity of the precursor and assesses the suitability of different synthesis conditions for varied applications. This work therefore provides a novel and widely applicable approach to determine the susceptibility of geopolymer materials to leaching

    Low complexity and efficient dynamic spectrum learning and tunable bandwidth access for heterogeneous decentralized cognitive radio networks

    Get PDF
    International audienceThis paper deals with the design of the low complexity and efficient dynamic spectrum learning and access (DSLA) scheme for next-generation heterogeneous decentralized Cognitive Radio Networks (CRNs) such as Long Term Evolution-Advanced and 5G. Existing DSLA schemes for decentralized CRNs are focused predominantly on the decision making policies which perform the task of orthogonalization of secondary users to optimum vacant subbands of fixed bandwidth. The focus of this paper is the design of DSLA scheme for decentralized CRNs to support the tunable vacant bandwidth requirements of the secondary users while minimizing the computationally intensive subband switchings. We first propose a new low complexity VDF which is designed by modifying second order frequency transformation and subsequently combining it with the interpolation technique. It is referred to as Interpolation and Modified Frequency Transformation based VDF (IMFT-VDF) and it provides tunable bandpass responses anywhere over Nyquist band with complete control over the bandwidth as well as the center frequency. Second, we propose a tunable decision making policy, ρt_randρt_rand, consisting of learning and access unit, and is designed to take full advantage of exclusive frequency response control offered by IMFT-VDF. The simulation results verify the superiority of the proposed DSLA scheme over the existing DSLA schemes while complexity comparisons indicate total gate count savings from 11% to as high as 87% over various existing schemes. Also, lower number of subband switchings make the proposed scheme power-efficient and suitable for battery-operated cognitive radio terminals

    Candidates for a possible third-generation gravitational wave detector: comparison of ring-Sagnac and sloshing-Sagnac speedmeter interferometers

    Get PDF
    Speedmeters are known to be quantum non-demolition devices and, by potentially providing sensitivity beyond the standard quantum limit, become interesting for third generation gravitational wave detectors. Here we introduce a new configuration, the sloshing-Sagnac interferometer, and compare it to the more established ring-Sagnac interferometer. The sloshing-Sagnac interferometer is designed to provide improved quantum noise limited sensitivity and lower coating thermal noise than standard position meter interferometers employed in current gravitational wave detectors. We compare the quantum noise limited sensitivity of the ring-Sagnac and the sloshing-Sagnac interferometers, in the frequency range, from 5 Hz to 100 Hz, where they provide the greatest potential benefit. We evaluate the improvement in terms of the unweighted noise reduction below the standard quantum limit, and by finding the range up to which binary black hole inspirals may be observed. The sloshing-Sagnac was found to give approximately similar or better sensitivity than the ring-Sagnac in all cases. We also show that by eliminating the requirement for maximally-reflecting cavity end mirrors with correspondingly-thick multi-layer coatings, coating noise can be reduced by a factor of approximately 2.2 compared to conventional interferometers

    The Structure of the [Zn_In - V_P] Defect Complex in Zn Doped InP

    Get PDF
    We study the structure, the formation and binding energies and the transfer levels of the zinc-phosphorus vacancy complex [Zn_In - V_P] in Zn doped p-type InP, as a function of the charge, using plane wave ab initio DFT-LDA calculations in a 64 atom supercell. We find a binding energy of 0.39 eV for the complex, which is neutral in p-type material, the 0/-1 transfer level lying 0.50 eV above the valence band edge, all in agreement with recent positron annihilation experiments. This indicates that, whilst the formation of phosphorus vacancies (V_P) may be involved in carrier compensation in heavily Zn doped material, the formation of Zn-vacancy complexes is not. Regarding the structure: for charge states Q=+6 to -4 the Zn atom is in an sp^2 bonded DX position and electrons added/removed go to/come from the remaining dangling bonds on the triangle of In atoms. This reduces the effective vacancy volume monatonically as electrons are added to the complex, also in agreement with experiment. The reduction occurs through a combination of increased In-In bonding and increased Zn-In electrostatic attraction. In addition, for certain charge states we find complex Jahn-Teller behaviour in which up to three different structures, (with the In triangle dimerised, antidimerised or symmetric) are stable and are close to degenerate. We are able to predict and successfully explain the structural behaviour of this complex using a simple tight binding model.Comment: 10 pages text (postscript) plus 8 figures (jpeg). Submitted to Phys. Rev.
    corecore