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Abstract. The application of ACO-based algorithms in data mining
is growing over the last few years and several supervised and unsuper-
vised learning algorithms have been developed using this bio-inspired ap-
proach. Most recent works concerning unsupervised learning have been
focused on clustering, showing great potential of ACO-based techniques.
This work presents an ACO-based clustering algorithm inspired by the
ACO Clustering (ACOC) algorithm. The proposed approach restructures
ACOC from a centroid-based technique to a medoid-based technique,
where the properties of the search space are not necessarily known. In-
stead, it only relies on the information about the distances amongst
data. The new algorithm, called MACOC, has been compared against
well-known algorithms (K-means and Partition Around Medoids) and
with ACOC. The experiments measure the accuracy of the algorithm for
both synthetic datasets and real-world datasets extracted from the UCI
Machine Learning Repository.

Keywords: Ant Colony Optimization, Clustering, Data Mining, Ma-
chine Learning, Medoid

1 Introduction

Ant Colony Optimization (ACO) algorithms have been widely used in several
research fields. One of the most successful application field of ACO algorithms
is data mining [14, 17, 3, 4, 18]. Data mining techniques are based on knowledge
extraction or pattern identification inside an information source (dataset). They
usually are focused on supervised or unsupervised learning techniques. Super-
vised techniques use the information of a class (target) attribute in order to
identify predictive patterns in the data, while unsupervised techniques identify
patterns that can group similar data points into categories. The advantage of
applying ACO algorithm in these problems is that ACO algorithms perform a
global search in the solution space, which in turn has the potential to find more
accurate solutions, and they are less likely to get trap in a local minima.

The work presented in this paper is focused on the application of ACO in
the unsupervised learning task of clustering, where the goal is to group (cluster)
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similar data points in the same group and, at the same time, maximise the
difference between different clusters. It has been inspired by a previous algorithm,
called ACO-based Clustering algorithm (ACOC), proposed by Kao and Cheng
[10]. ACOC is a centroid-based clustering algorithm, which tries to optimize the
centroid (central point) position of each cluster. Following this idea, we focused
the proposed algorithm on addressing the centroid-based approaches problems:
they need to know the properties of the search space in order to determine the
central point, and they are sensitive to noise effects. Inspired by other clustering
algorithms [15, 16], we reformulated the original ACOC algorithm in a different
way to create a medoid-based algorithm. Medoid-based clustering algorithms
are usually more robust to noise effects, and do not need the properties of the
search space to find a solution—they usually have the distance amongst the data
instances, which can be obtained as a Gram matrix of a kernel or a distance
measure, and they try to choose those data instances to define the best clusters.
These selected instances are called medoids.

In order to check the performance of the proposed algorithm, we have com-
pared it against the original ACOC algorithm using synthetic and real-world
datasets and also included the well-known clustering algorithms PAM (Partition
Around Medoids) [11] and K-means [13] in the comparisons.

The rest of the paper is structured as follows: Section 2 introduces the related
work, Section 3 presents the new algorithm, Section 4 shows the experiments on
synthetic and real-world datasets, and, finally, last section explains the conclu-
sions and the future work.

2 Related Work

Ant Colony Optimization (ACO) has become a promising field for data min-
ing problems. ACO algorithms combine the ants foraging behaviour to generate
patterns that describe the data according to a supervised or unsupervised learn-
ing criteria—depending on the type of algorithm, classification or clustering,
respectively.

On the one hand, classification [12] approaches are based on the class in-
formation of the data. These classes form part of the data instances and are
considered by the algorithm in order to generate a general predictive model that
describe (classify) the data. Different classification models have been designed
in machine learning. The most common models are based on [12]: decision trees
(C4.5), classification rules (RIPPER), artificial neural networks, random deci-
sion forest, support vector machines, näıve Bayes, k-nearest neighbours, amongst
others. From the ACO point of view, there are several adaptations of these
algorithms—e.g., Parpinelli et al. [19] present an ACO to create classification
rules; Otero et al. introduce an ACO algorithm for decision tree induction [17];
Blum and Socha introduce a neural network ACO model [3] and Borrotti and
Poli focused their work on the näıve Bayes model [4].

There are also approaches that combine ACO with classical classification al-
gorithms in order to improve their results. Some of these techniques, for example,
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optimize the parameter selection for the classifier (e.g., for SVMs [22]), other are
focused on the feature selection process for the data preprocessing phase [6]. On
the other hand, clustering [12] is based on a blind search within the data. Clus-
tering techniques try to join similar data points into groups (clusters) according
to a cost or objective function, which is usually minimized or maximized, making
this clusters different from each other at the same time. There is a large num-
ber of clustering approaches, similar to classification, depending of the goal the
algorithm should achieve. These techniques are usually divided in three types
of clustering [8]: partitional (each instances belongs to a single cluster), overlap-
ping (each instance belongs to one or more clusters) and hierarchical (partitional
solutions are nested to generate a tree of clusters). Depending on the clustering
algorithm, there are several models focus on the solutions. These models are also
divided in parametric [13] or non-parametric model [20], where the former has
an statistical estimator that is adapted to the data while the latter separates the
data using different topologies or techniques.

The most classical algorithms are K-means [13] and EM [5]. Both K-means
and EM are parametrical partitional clustering algorithms, which usually try to
optimize an estimator parameters. From a similar perspective, medoid-based al-
gorithms try to find the solution within the data [11]. Medoid-based algorithms,
as was mentioned before, do not need the features of the search space in order to
find a solution—they can deal with the information extracted from the data dis-
tances. This special property makes medoid-based algorithms a good choice for
problems where the search space is not well defined, such as time series clustering.
There are also bio-inspired algorithms that deal with the clustering problem, sev-
eral of them focused on genetic algorithms. Hruschka et al. [8] presents a survey of
clustering algorithms from different genetic approaches. From other bio-inspired
perspectives, ACO algorithms have also produced promising results. Kao and
Cheng [10] introduced a centroid-based ACO clustering algorithm; França et al.
[7] introduce a bi-clustering algorithm; and Ashok and Messinger focused their
work on graph-based clustering [1]; several other approaches are discussed in [9].

3 Medoid-based ACO Clustering Algorithm (MACOC)

This section presents the Medoid-based ACO Clustering Algorithm (MACOC).
The MACOC algorithm is similar to Partition Around Medoids (PAM) algo-
rithm, where the goal of the algorithm is to choose the best M medoids (data
instances) based only on distance information. This kind of algorithms usually
use a dissimilarity/similarity matrix that measures the distances between the
data points. The medoid-based approach is a generalization of the centroid-
based approach, but in the medoid case, the properties of the search space are
not required—only the distances between the data points.

As an ACO algorithm, MACOC algorithm is based on ACOC algorithm
[10]. They have a similar search graph, where the ants try to define the optimal
cluster assignment for each of the instances (data points). This graph is based
on instances and clusters (Fig. 1). It has an associated NxM matrix, where N
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Fig. 1. Representation of the ant travelling around the search graph. Ant visit each
instance in order to assign them to a medoid based on the heuristic information and
pheromone levels.

is the number of instances and M is the number of clusters (medoids). While
in the case of ACOC the construction graph is full-connected, MACOC uses a
graph divided in levels, where each instance defines a level (Fig. 1). The nodes
are visited following the sequence of instance, therefore the graph is not full-
connected, reducing significantly the memory usage and the complexity of the
solution space. It should be noted that this does not incorporate any bias in the
search, since the order of the instances is not relevant.

The algorithm is based on several ants looking for the best path in the con-
struction graph. Each ant (k) has the following features:

– set of chosen medoids Mk (which are randomly selected).
– weight matrix W k (based on the distance between the instances and the

ant’s medoids). This is similar to ACOC W k matrix.

The ant has two possible search strategies, exploration and exploitation, similar
to the ACOC algorithm. MACOC chooses the strategy for the cluster assignation
j according to the ACOC equation:

j =

{

argmaxu∈Ni
{[τ(i, j)][η(i, j)]β} , if q ≤ q0

S , otherwise
, (1)

where Ni is the set of nodes associated to instance i (see Fig. 1), j is the chosen
cluster, τ(i, j) is the pheromone value between i and j, q0 is the user-defined
exploitation probability, q is a random number for strategy selection, η(i, j) is the
heuristic information between i and j, and S is the ACO-based search strategy.
The heuristic information between an instance i and a candidate medoid j is
defined by the formula:

η(i, j) =
1

d(i, j)
, (2)

and the ACO-based exploration strategy S—in the same way than ACOC, is
defined by:
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S = P (i, j) =
[τ(i, j)] · [η(i, j)]β

∑m

l=1
[τ(i, l)] · [η(i, l)]β

. (3)

One of the main differences between ACOC and MACOC is that MACOC
keeps more information about the ants movements in the pheromone matrix. In
the case of ACOC, the pheromone matrix is a relationship between the instance
and the centroid-label (i.e., the index of the cluster), which is not the centroid
itself. In the case of MACOC, the pheromone matrix is a relationship between
the instance and the medoid (another data instance), which means that if/when
the medoid-label changes as a result of the random selection process, the previous
pheromone value is still available. In other words, in the ACOC algorithm, if the
centroid value that was previously used as the centroid c1 is used as the centroid
c2, the previous pheromone values are lost, since they are associated with the
label (position) c1; in the MACOC algorithm, if the medoid instance that was
previously used as medoid m1 is used as the medoid m2, the previous pheromone
values are still used, since the pheromone is associated with the data instance
and not with the medoid label.

The MACOC algorithm is structured in the same way than ACOC and can
be described as follows:

1. Initialize the pheromone matrix (τ0), which is global for all ants
2. Initialize ants: choose n random medoids forMk (n is the number of clusters)

and set the matrixW k to 0. For each ant, until all instances have been visited:
(a) Select the next data object i
(b) Select a cluster j: i) Choose a strategy; ii) Calculate neighbouring nodes

probability and iii) Visit the node
(c) Update W k

3. Choose the best solution:
(a) Calculate the objective function for each ant:

Jk =

n
∑

i=1

m
∑

j=1

wk
ij · d(xi,m

k
j ) , (4)

where wk
ij ∈ W k and d is a distance function

(b) Rank the ants solutions
(c) Choose the best ant (iteration-best solution)
(d) Compare it with the best-so-far solution and update this value with the

maximum between them
4. Update the pheromone trails (global updating rule): only the r best ants are

able to add pheromones:

τij(t+ 1) = (1− ρ)τij(t) +

r
∑

h=1

wh
ij ·∆τhij , (5)

where ρ is the pheromone evaporation rate, (0 < ρ < 1), wh
ij ∈ Wh, t the

iteration number, r is the number of elitism ants and ∆τhij = 1/Jk is the
quality of the solution created by ant h
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5. Check termination condition:

(a) If the number of iterations is greater than the total iterations: re-centrali-
se the instances assigning each data point to its closest medoid and finish

(b) Otherwise, go to step 2

4 Experiments

This section presents the experiments which have been carried out to measure
the quality of the proposed MACOC algorithm. The comparisons have been
carried out against K-means, PAM and ACOC algorithms.

4.1 Datasets Description

For the synthetic experiments we have created the following datasets:

– Synthetic Data 1 : This dataset is formed by 9 two-dimensional gaussian
models and in this case, there are 3 gaussians which are closer than the rest.

– Synthetic Data 2 : This second dataset is also formed by 9 two-dimensional
gaussian models, however, in this case, there are noisy data in the back-
ground.

For the real-world experiments, we have chosen four datasets extracted from
UCI Machine Learning Repository [2], which are commonly used as benchmark
for classification and clustering:

– Iris : Contains 50 instances distributed over 3 classes, with 4 attributes each.
– Wine: Contains 178 instances distributed over 3 classes, with 13 attributes

each.
– Vertebral Column (Ver. Col.): Contains 310 instances distributed over 3

classes, with 6 attributes each.
– Breast Tissue (Bre. Tis.): Contains 106 instances distributes over 6 classes,

with 10 attributes each.

4.2 Experimental Setup and Evaluation Methods

We selected three algorithms to measure the MACOC quality, namely K-means,
PAM and ACOC.

K-means [13] is an iterative algorithm based on centroids, which are randomly
selected at the beginning. The goal of the algorithm is to find the best centroid
positions. It is executed in two steps: in the first step, it assigns the data to the
closest centroid (cluster); and in the second, it calculates the new position of the
centroid as a centroid of the data which has been assigned to it.

PAM [11] is similar to K-means, but it used medoids instead of centroids.
PAM can works with a dissimilarity/similarity matrix, which is used to calculate
the cost of each medoid belonging to a cluster.
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ACOC [10] is the algorithm which our algorithm is inspired. It work with
centroids and ants. The main different, apart of the algorithm centroid nature,
is that ACOC uses a pheromone matrix from the data instances to the centroid-
labels, while our algorithm use a pheromone matrix between all the data to
remember the previous medoid assignation. The parameters of ACOC and MA-
COC algorithms have been set in a similar way to the original work [10]: the
number on ants is 10, the number of elitism is 1, the exploration probability
is 0.0001, the initial pheromone values follow an uniform distribution [0.7, 0.8],
β = 2.0, ρ = 0.1, and the maximum number of iterations is 1000. The only dif-
ference is that the MACOC initial pheromone values have been set as 1

n
(where

n is the number of clusters).
All the experiments have been carried out 50 times—except for K-means,

which was carried out 100 times since this algorithm tends to converge to local
minima—using the Euclidean distance as the metric, defined by:

d(xi, xj) = ||xi − xj || =

√

∑

q

(xq
i − xq

j)
2 , (6)

where xi, xj represent two data instances and q represents each attribute of the
data instance. Additionally, all algorithms need the number of cluster as an
initial parameter.

The evaluation of the experiments has been focused on two different ideas:
the synthetic dataset has been evaluated according to the cluster discrimination
and the performance of the algorithm to discriminate the original clusters in the
noisy case; the real-world datasets have been evaluated using the accuracy.

4.3 Synthetic Experiments

The first synthetic dataset is generally easy for all the algorithms (Fig. 2 and
1). The discrimination of the clusters is clearer in this case, resulting in a clear
separation of the clusters. The only algorithm that has several problems in iden-
tifying the clusters is K-means (see Fig. 2 and Table 1)—probably a result of
an early convergence to local minimal solution. PAM provides a good solution
of the cluster discrimination and also provides a stable solution (its standard
deviation is 0). It means that the algorithm is able to find the medoids with no
problems. In the case of ACOC, the solution discriminates the cluster kernels,
however, the boundaries are not well-defined (see Fig. 2). MACOC obtains good
results for both cluster identification and boundary definition, and also accuracy
results (see Table 1).

The second dataset introduces noise and the noise significantly modifies the
behaviour of the algorithms (Fig. 3 and Table 1). K-means is not able to identify
the cluster kernels and it joins several clusters together, generating a cluster
with noisy data. ACOC is also able to find the kernels and discriminate them,
however, the boundaries are not well-defined and several instances overlap with
other clusters. Finally, PAM and MACOC achieve similar results. In the case
of PAM, there are some boundary problems in the central clusters while in the
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Fig. 2. Results for the synthetic 9 gaussian distribution.

case of MACOC the boundaries are clearer, except for one instance (see Fig. 3,
at the right of the MACOC image).

These results suggest the following conclusions regarding the comparison with
ACOC: while ACOC has boundary problems, which are increased when there is
noisy information, MACOC obtains good results for cluster boundary definition
and it is more robust to the presence of noise.

4.4 Real-World Experiments

Table 2 shows the results of the algorithms applied to real-world datasets ex-
tracted from UCI Machine Learning repository [2].

In the Iris case, K-means and PAM obtains similar results according to the
median. K-means obtains the worst minimum accuracy results (58%) and it is
the less robust algorithm (its standard deviation is 0.1313). PAM is the most
robust algorithm in this case (0 standard deviation), while ACOC and MACOC
obtain similar robustness results. The highest minimum value is achieved by both
ACOC and PAM. The highest maximum, mean and median values are achieved
by MACOC (95.33%, 90.67% and 90.65%, respectively). While MACOC shows
better results than ACOC, these results can not be considered different because
the null hypothesis can not be refused according to Wilcoxon Test [21].

The application of the algorithms on Wine dataset has shown that K-means
also obtains the worst results according to the accuracy and robustness. PAM
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Fig. 3. Results for synthetic 9 gaussian distribution.

obtains the highest minimum value and it is again the most robust algorithm.
According to the maximum, mean and median values, MACOC achieves the
best results (72.47%, 71.47% and 71.91%, respectively). In this case the null
hypothesis is refused with a good significance level, therefore, MACOC results
are statistically significantly better than ACOC.

Vertebral column (Ver. Col.) dataset shows different results than the rest
of the datasets. In this case, the best algorithm is K-means, which achieves the
maximum value for all the metrics. MACOC is the second algorithm according to
median, mean and max (52.58%, 53.26% and 65.48%). Again, the Wilcoxon test
shows that the null hypothesis can be refused with a high significance level (3e-
05), therefore, MACOC results are statistically significantly better than ACOC.

Finally, Breast Tissue dataset shows that MACOC achieves the best results
according to mean, median and max (35.55%, 34.91% and 40.57%). In this case,
ACOC and PAM achieves similar results, specially according to the median
(33.96 %). The null hypothesis can be refused with a significance level of 0.05
(in this case, Wilcoxon test is 0.023), therefore, MACOC results are statistically
significantly better than ACOC.

These results show that MACOC improves the performance over ACOC,
given that that the solutions obtained by MACOC and ACOC are usually sta-
tistically different according to Wilcoxon test in favour of MACOC. Overall,
this results are promising regarding the use of medoids instead of centroid, since
this is the main difference between MACOC and ACOC. In a similar way that
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Table 1. Results of the application of the algorithms to the synthetic datasets. The
p-values for the Wilcoxon test applied to ACOC and MACOC results are: Synthetic 1
(2.394e-13) and Synthetic 2 (7.734e-10)—statistical significant improvements are indi-
cated by a N symbol.

MACOC Min Max Median Mean SD

Synthetic 1 99.11% 100.0% 99.78% 99.75% N ± 0.0028
Synthetic 2 96.73% 100.0% 98.18% 98.75% N ± 0.0121

ACOC Min Max Median Mean SD

Synthetic 1 92.67% 100.0% 98.89% 98.57% ± 0.0128
Synthetic 2 82.91% 92.27% 95.27% 94.40% ± 0.0314

K-means Min Max Median Mean SD

Synthetic 1 56.67% 99.78% 83.42% 79.47% ± 0.1152
Synthetic 2 65.72% 98.00% 76.73% 79.92% ± 0.0792

PAM Min Max Median Mean SD

Synthetic 1 99.78% 99.78% 99.78% 99.78% ± 0.0000
Synthetic 2 98.00% 98.00% 98.00% 98.00% ± 0.0000

median is more stable than mean, medoids are usually more stable to outliers
in the data than centroids. Future studies will be focused on how the algorithm
responds to worse conditions, such as large data, more outliers and extremely
noisy data.

5 Conclusions and Future Work

This work presented a new ACO-based clustering algorithm, called MACOC,
which is focused on a medoid-based approach. MACOC is an adaptation from
a previously proposed centroid-based ACOC algorithm to a medoid-based ap-
proach. From the ACO perspective, the new algorithm has also improved the
use of the pheromone, extending the pheromone matrix to keep the information
from different candidate medoid instances across iterations.

The application of the algorithm to synthetic and real-world datasets has
shown that MACOC is more robust to noisy information and it defines better
cluster boundaries than ACOC. It also showed that MACOC has good general
results compared with well-known clustering algorithms.

The future work will be focused on improving the results of MACOC by
incorporating a medoid recalculation process. It would be interesting to explore
the addition of the medoid selection to the construction graph, allowing ants to
share information of the best performing medoid instances.
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Table 2. Results of the application of the algorithms to the different datasets extracted
from the UCI database. The p-values for the Wilcoxon test applied to ACOC and
MACOC solutions are: Iris (0.4439), Wine (4.117e-07), Ver. Col. (3e-05), Bre. Tis.
(0.02349)—statistical significant improvements are indicated by a N symbol.

MACOC Min Max Median Mean SD

Iris 87.33% 95.33% 90.65% 90.67% ± 0.0187
Wine 69.10% 72.47% 71.91% 71.47% N ± 0.0075
Ver. Col. 46.13% 65.48% 52.58% 53.26% N ± 0.0488
Bre. Tis. 28.30% 40.57% 34.91% 35.55% N ± 0.0328

ACOC Min Max Median Mean SD

Iris 89.33% 93.33% 90.00% 90.13% ± 0.0080
Wine 70.22% 71.35% 70.79% 70.78% ± 0.0026
Ver. Col. 47.74% 54.19% 49.35% 49.43% ± 0.0095
Bre. Tis. 31.13% 40.57% 33.96% 34.47% ± 0.0229

K-means Min Max Median Mean SD

Iris 58.00% 89.33% 89.33% 82.46% ± 0.1313
Wine 56.74% 69.33% 70.22% 67.26% ± 0.0632
Ver. Col. 56.13% 65.48% 56.13% 57.81% ± 0.0339
Bre. Tis. 33.02% 33.96% 33.21% 33.04% ± 0.0025

PAM Min Max Median Mean SD

Iris 89.33% 89.33% 89.33% 89.33% ± 0.0000
Wine 70.79% 70.79% 70.79% 70.79% ± 0.0000
Ver. Col. 48.71% 48.71% 48.71% 48.71% ± 0.0000
Bre. Tis. 33.96% 33.96% 33.96% 33.96% ± 0.0000
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