648 research outputs found

    Chemical incorporation of copper into indium selenide thin-films for processing of CuInSe2 solar cells

    Get PDF
    A chemical method of incorporating copper into indium selenide thin-films has been investigated, with the goal of creating a precursor structure for conversion into CuInSe2 layers suitable for solar cell processing. The precursor and converted layers have been investigated with scanning electron microscopy, x-ray diffraction, Raman spectroscopy and x-ray photoelectron spectroscopy. From these measurements, the incorporation of copper into the indium selenide layers is concluded to proceed by an ion-exchange reaction. This reaction results in the formation of a precursor layer with a graded compositional depth-profile containing the crystalline phases In2Se3 and Cu2-xSe. Selenization of the precursor layer homogenises the composition and forms chalcopyrite CuInSe2. These CuInSe2 layers exhibit a dense microstructure with rough surface morphology, which is ascribed to a non-optimal selenization process. Solar cells with the structure ZnO:Al/i-ZnO/CdS/CuInSe2/Mo/Glass have been processed from the selenized layers and have exhibited efficiencies of up to 4% under simulated AM1.5 illumination

    Evolution equation for the structure function g_2(x,Q^2)

    Full text link
    We perform an extensive study of the scale dependence of flavor-singlet contributions to the structure function g_2(x,Q^2) in polarized deep-inelastic scattering. We find that the mixing between quark-antiquark-gluon and three-gluon twist-3 operators only involves the three-gluon operator with the lowest anomalous dimension and is weak in other cases. This means, effectively, that only those three-gluon operators with the lowest anomalous dimension for each moment are important, and allows to formulate a simple two-component parton-like description of g_2(x,Q^2) in analogy with the conventional description of twist-2 parton distributions. The similar simplification was observed earlier for the nonsinglet distributions, although the reason is in our case different.Comment: 53 pages, 10 figures, LaTeX styl

    Gluon contribution to the structure function g_2(x,Q^2)

    Full text link
    We calculate the one-loop twist-3 gluon contribution to the flavor-singlet structure function g_2(x,Q^2) in polarized deep-inelastic scattering and find that it is dominated by the contribution of the three-gluon operator with the lowest anomalous dimension (for each moment N). The similar property was observed earlier for the nonsinglet distributions, although the reason is in our case different. The result is encouraging and suggests a simple evolution pattern of g_2(x,Q^2) in analogy with the conventional description of twist-2 parton distributions.Comment: 26 pages, Latex style, 4 figures (two references added, a few typos corrected

    Interaction of Reggeized Gluons in the Baxter-Sklyanin Representation

    Full text link
    We investigate the Baxter equation for the Heisenberg spin model corresponding to a generalized BFKL equation describing composite states of n Reggeized gluons in the multi-color limit of QCD. The Sklyanin approach is used to find an unitary transformation from the impact parameter representation to the representation in which the wave function factorizes as a product of Baxter functions and a pseudo-vacuum state. We show that the solution of the Baxter equation is a meromorphic function with poles (lambda - i r)^{-(n-1)} (r= 0, 1,...) and that the intercept for the composite Reggeon states is expressed through the behavior of the Baxter function around the pole at lambda = i . The absence of pole singularities in the two complex dimensional lambda-plane for the bilinear combination of holomorphic and anti-holomorphic Baxter functions leads to the quantization of the integrals of motion because the holomorphic energy should be the same for all independent Baxter functions.Comment: LaTex, 48 pages, 1 .ps figure, to appear in Phys. Rev.

    On two-dimensionalization of three-dimensional turbulence in shell models

    Full text link
    Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model, the signatures of so-called two-dimensionalization effect of three-dimensional incompressible, homogeneous, isotropic fully developed unforced turbulence have been studied and reproduced. Within the framework of shell models we have obtained the following results: (i) progressive steepening of the energy spectrum with increased strength of the rotation, and, (ii) depletion in the energy flux of the forward forward cascade, sometimes leading to an inverse cascade. The presence of extended self-similarity and self-similar PDFs for longitudinal velocity differences are also presented for the rotating 3D turbulence case

    Advances in MASELTOV – Serious Games in a Mobile Ecology of Services for Social Inclusion and Empowerment of Recent Immigrants

    Get PDF
    Immigration imposes a range of challenges with the risk of social exclusion from the information society (Halfman 1998), such as, getting into communication with the local society and understanding the culture of their host nation. Failure to address these challenges can lead to difficulties in the frame of integrating into the society of the host country, leading to fragmented communities and a range of social issues. As part of a comprehensive suite of services for immigrants, the European project seeks to provide both practical tools and learning services via mobile devices, providing a readily usable resource for immigrants. We introduce recent results, such as the game-based learning aspect of the MASELTOV project is introduced, with the rationale behind its design presented. In doing so, the benefits and implications of mobile platforms and emergent data capture techniques for game-based learning are discussed, as are methods for putting engaging gameplay at the forefront of the experience whilst relying on rich data capture and analysis to provide an effective learning solution

    Symbolic Backwards-Reachability Analysis for Higher-Order Pushdown Systems

    Full text link
    Higher-order pushdown systems (PDSs) generalise pushdown systems through the use of higher-order stacks, that is, a nested "stack of stacks" structure. These systems may be used to model higher-order programs and are closely related to the Caucal hierarchy of infinite graphs and safe higher-order recursion schemes. We consider the backwards-reachability problem over higher-order Alternating PDSs (APDSs), a generalisation of higher-order PDSs. This builds on and extends previous work on pushdown systems and context-free higher-order processes in a non-trivial manner. In particular, we show that the set of configurations from which a regular set of higher-order APDS configurations is reachable is regular and computable in n-EXPTIME. In fact, the problem is n-EXPTIME-complete. We show that this work has several applications in the verification of higher-order PDSs, such as linear-time model-checking, alternation-free mu-calculus model-checking and the computation of winning regions of reachability games

    Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider

    Get PDF
    This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→μ+μ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→μ+μ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physiquedes Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter
    corecore