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1 Abstract 
A chemical method of incorporating copper into indium selenide thin-films has been 

investigated, with the goal of creating a precursor structure for conversion into 

CuInSe2 layers suitable for solar cell processing.  The precursor and converted layers 

have been investigated with scanning electron microscopy, x-ray diffraction, Raman 

spectroscopy and x-ray photoelectron spectroscopy.  From these measurements, the 

incorporation of copper into the indium selenide layers is concluded to proceed by an 

ion-exchange reaction.  This reaction results in the formation of a precursor layer with 

a graded compositional depth-profile containing the crystalline phases In2Se3 and 

Cu2-xSe.  Selenization of the precursor layer homogenises the composition and forms 

chalcopyrite CuInSe2.  These CuInSe2 layers exhibit a dense microstructure with 

rough surface morphology, which is ascribed to a non-optimal selenization process.  

Solar cells with the structure ZnO:Al/i-ZnO/CdS/CuInSe2/Mo/Glass have been 

processed from the selenized layers and have exhibited efficiencies of up to 4% under 

simulated AM1.5 illumination. 

2 Introduction 
CuInSe2 (CIS) and its alloys with Ga and S are suitable materials for absorber layers 

in high-efficiency thin-film solar cells.  The highest efficiency cells reported to date 

(19.5%) were made from copper-poor Cu(In, Ga)Se2 (CIGS) deposited by the three-

stage process [1].  In this vacuum co-evaporation process an (In, Ga)2Se3 layer is 

deposited and then converted into a Cu-rich CIGS layer by exposure to Cu and Se 

fluxes at high  temperature before further evaporation of In, Ga and Se turn the layer 

Cu-poor [2]. 

A simpler approach might be advantageous for large-scale production of CIGS solar 

cells and so methods have been investigated that terminate the second stage before the 

CIGS layer composition turns Cu-rich [3-6].  In methods where the material 

deposition is performed at relatively low temperatures, a high temperature anneal is 

employed to react the resulting bilayer structures [7-10].  Se vapour is often supplied 

during this annealing stage, in which case it may be referred to as selenization. 

Substrate temperature during the material deposition has been shown to have a strong 

effect on the efficiency of the solar cells produced using two-stage deposition 

methods [5, 10].  Sequential deposition of In-Se and Cu-Se at room temperature was 

reported to result in delamination of the precursor during annealing for CIGS layers, 

however deposition at 100°C was already sufficient to give cells of 13.3% efficiency 

following selenization at over 500°C.  For the depositions performed at 100°C 

substrate temperature the In-Se and Cu-Se layers were found to have begun to 

inter-diffuse, whereas room temperature deposition produced a sharp interface 



between the layers.  Higher deposition temperatures were reported to lead to 

improved efficiencies, up to 15.5% at 350°C (with selenization at >500°C) and 16.6% 

at 550°C (without selenization) [5, 10].  For Ga-free CIS devices, when Cu and Se 

were supplied to an indium selenide precursor layer at 200°C solar cells of 13.7% 

were reported [8].  These results show that even at low temperatures Cu-Se supply to 

In(Ga)-Se precursors can result in >10% efficiency CIS-based solar cells, so long as a 

high temperature selenization treatment is provided. 

All of the above-mentioned methods utilized vacuum evaporation, however the 

deposition temperatures employed in some cases are accessible to chemical methods, 

such as ion-exchange processes.  Ion-exchange reactions, where ions in a thin film 

exchange places with ions in a solution or gas, are attractive from a technological 

point of view: they require only simple, low-cost equipment, can proceed at high rates 

and require relatively low temperatures.  In the case of solution-based techniques, 

since the reaction only occurs at the substrates the baths can used for an extended 

period and be easily regenerated.  Cation-exchange reactions have been used to create 

graded structures for thin-film solar cells, including Cu2S-CdS [11], CuxTe-CdTe [12] 

and (Cu2-x,Cdx)(In,Ga)Se2-Cu(In,Ga)Se [13].  In addition to creating graded 

structures, ion-exchange reactions can be used to create ternary compounds.  For 

example CuInS2 has been produced by a low-temperature, gas-based anion-exchange 

reaction involving metal chloride layers adsorbed from solution [14].  CuInS2 has also 

been created in a solution-based cation-exchange reaction by first creating mixed 

In2S3-CuxS nanorods from In2S3 nanorods and then annealing them in H2S to produce 

CuInS2 nanorods [15].  Ion-exchange reactions are found to proceed faster at areas 

where the crystal structure is disorganized, such as at grain boundaries and in 

materials with a crystal structure incorporating a high density of defects or vacancies.  

For polycrystalline substrate layers this leads to penetration of the new layer into the 

substrate layer and the creation of an interpenetrating structure [11].  Such 

interpenetrating layers formed by ion-exchange methods have similarities in structure 

to the inter-diffused layers formed by the sequential-deposition vacuum techniques 

described above. 

In this work we used an ion-exchange reaction to incorporate Cu ions from aqueous 

solution into indium selenide thin-films.  It is shown that these precursor layers have a 

graded composition (Cu/In ratio) throughout the layer thickness that can be 

homogenised by annealing at high temperature in the presence of selenium vapour.  

This annealing leads to the formation of chalcopyrite CuInSe2 suitable for solar cell 

processing. 

3 Experiment 
The deposition of indium selenide layers has been demonstrated by several methods, 

including coevaporation of the elements [16], single-source evaporation of In2Se3 [8], 

sequential electrodeposition of the elements followed by annealing [17], simultaneous 

electrodeposition of the elements [18], modified chemical bath deposition [19] and 

spray pyrolysis [20].  In order to provide a high level of control and reproducibility in 

the indium selenide layers and hence allow the focus of this early-stage work to be 

maintained on the copper-incorporation process, co-evaporation of elemental indium 

and selenium was employed in the work reported here.  However, any other process, 

e.g. a non-vacuum chemical deposition process, could equally be applied.  The indium 

selenide layers were deposited onto 25cm
2
 molybdenum-coated soda lime glass 

substrates by co-evaporation, due to the design of the sample holder an uncoated 

border of Mo was left around the edge of each substrate.   



Copper was incorporated into the indium selenide layers by suspending them in a 

covered, boiling, aqueous solution of CuSO4 (0.1M) and acetic acid (0.2M).  The 

acetic acid was required to prevent the formation of Cu(OH)2 in the solution due to 

hydrolysis of the Cu ions.  After immersion, the precursor layers were rinsed 

thoroughly in deionised water and dried.  Precursor layers were selenized with Se 

vapour in a two-temperature-zone quartz tube furnace under flowing N2.  The two 

zones allowed the temperature of the Se source and hence the Se flux to be controlled 

separately from the temperature of the substrate.  Typically the substrate temperature 

was ramped in stages to 575°C whilst the Se source was maintained at 400°C.  The 

selenization of some samples was interrupted at 250°C to investigate behaviour of the 

precursor layers during selenization. 

To investigate the role of substrate-coating on Cu incorporation, indium selenide 

layers grown on Mo/glass, ITO/glass, SnOx:F/glass were employed. Precursor and 

selenized layers were characterised by stylus profilometry, Scanning Electron 

Microscopy (SEM), Energy Dispersive X-ray analysis (EDX), X-Ray Diffraction 

(XRD), Raman spectroscopy and X-ray Photoelectron Spectroscopy (XPS).  XRD 

measurements were made using Cu Kα radiation (λ=0.15418nm), Raman 

spectroscopy measurements were made using a He-Ne laser (λ=632.817nm) with x10 

objective lens and XPS measurements used Al Kα radiation (hν=1486.6eV) with a 

4kV Ar-ion sputter gun to enable depth profile measurements to be performed. 

After completion of the absorber formation by selenization some layers were 

processed into solar cells.  These layers were first etched in aqueous potassium 

cyanide solution (10% w/w) for 30 seconds before deposition of a CdS buffer layer by 

chemical bath deposition and a ZnO:Al/i-ZnO bilayer-window by RF sputtering.  I-V 

measurements were performed under 1kW/m
2
 simulated AM1.5 illumination. 

4 Results and Discussion 
Indium selenide precursor layers were immersed in the CuSO4 solution and removed 

after a time predetermined to give the desired Cu content.  For the indium selenide 

layers used in this work, reaction times of around 1 hour were required to produce 

precursors with the correct Cu/In ratio for Cu-poor CuInSe2.  No deposition was 

observed on the beaker containing the CuSO4 solution or on the PTFE sample holder 

and no precipitations were observed in the solution, even after heating and cooling.  

After the indium selenide precursor layers were removed from the CuSO4 solution it 

was observed that their appearance had turned lighter in colour and EDX 

measurements indicated that Cu had been incorporated into them.  At this stage the 

composition of the precursor layers was non-uniform throughout the EDX electron-

beam interaction volume, hence accurate, quantitative composition measurements 

could not be made with this technique.  During immersion in the CuSO4 solution the 

Mo exposed around the border of the samples was removed from the substrate and 

some under-cutting of the edge of the indium selenide layers was observed.  This is 

due to oxidation of the Mo into soluble molybdenum oxide.  The appearance and 

composition of indium selenide layers deposited upon glass, fluorine-doped tin oxide 

and tin-doped indium oxide substrates remained unchanged after immersion in the 

CuSO4 solution.  When a small piece of Mo coated glass was suspended in the CuSO4 

solution, limited incorporation of Cu into indium selenide layers deposited on glass 

substrates was observed.  It seems therefore that the presence of Mo activates the Cu-

incorporation into the precursor layers. Further investigation is necessary to explain 

the kinetics of Cu ion migration. 



XRD diffractograms are displayed in Figure 1 for precursor layers and selenized 

samples.  All peaks in the diffractogram measured from the as deposited In-Se layer 

were indexed to hexagonal γ-In2Se3 (JCPDS files 40-1407 and  71-0250) and Mo 

(JCPDS file 42-1120).  Following Cu-incorporation into an indium selenide layer, all 

but one of the In2Se3 peaks in the diffractogram weakened in intensity (relative to the 

Mo (110) peak).  The exception is the peak at 27.6°, identified as the (006) peak.  

Two additional peaks are present in the diffractogram at this stage, one at 26.8° and 

the other at 44.5°.  These peaks are identified as the (111) and (220) peaks of fcc β-

Cu2-xSe (JCPDS file 06-0680).  The formation of copper selenide with Cu in its 

monovalent state requires that another species in the bath is oxidised.  Since it was 

observed that the ion-exchange process did not proceed in the absence of Mo it is 

thought that the reduction of Cu
2+

 ions to Cu
+
 is performed by oxidation of either Mo 

or a Mo oxide, however this has not been confirmed.  For the sample selenized to 

575°C, all peaks in the diffractogram were indexed to α-CuInSe2 (JCPDS file 40-

1487) and Mo.  The chalcopyrite peaks (101), (103), (211) and (105/213) are all 

observed.  No significant preferred orientation is calculated for the diffractogram of 

this sample and there is no evidence of secondary oxide or binary-selenide phases.  

When the selenization process was interrupted at 250°C, the measured diffractogram 

shows a very strong peak at 31.08°, identified as the (006) peak of hexagonal CuSe 

(JCPDS 49-1457).  This indicates that that selenization reaction already begins below 

250°C with the reaction of copper selenide and selenium vapour. 
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Figure 1: XRD Diffractograms for: an indium selenide layer; an indium selenide layer 

following Cu-incorporation by ion-exchange; a precursor selenized at 250°C and a 

precursor selenized at 575°C.  All peaks in the diffractogram from the sample 

selenized at 575°C have been indexed to α-CuInSe2 and Mo. 

 

Raman scattering measurements were performed for identification of the chemical 

phases in various layers.  Raman spectra measured from samples at the same stages of 



processing as analysed by XRD are displayed in Figure 2.  The Raman spectrum from 

the as-deposited indium selenide sample exhibits peaks at 151, 205, 228cm
-1

, in good 

agreement with values reported for γ-In2Se3 [21].  The Raman spectrum of the indium 

selenide layer following Cu-incorporation retains the γ-In2Se3 peak at 151cm
-1

 and 

exhibits an additional peak at 260cm
-1

, which is characteristic of copper selenide 

compounds [22].  This confirms that copper-selenium bonds are being formed during 

immersion of the indium selenide layers in the CuSO4 solution.  In the Raman 

spectrum of the sample selenized to 575°C peaks are observed at 175, 214 and 

227cm
-1

.  The peak at 175cm
-1

 is identified as the A1 peak of chalcopyrite CuInSe2 

whilst both of the other two peaks are identified with B2 or E modes [23].  No copper 

selenide peaks are observed in this spectrum, however, a broad peak was present in 

the region 153-155cm
-1

.  The defect chalcopyrite compound CuIn3Se5 exhibits an A1 

vibrational mode in this frequency range and is identified as a secondary phase in the 

selenized layers [24].  When the selenization was interrupted at 250°C, no indium 

selenide peaks were observed in the Raman spectrum, however two new peaks were 

present at 263 and 275cm
-1

.  The peak at 263cm
-1

 has been associated with CuSe [25], 

however no reports of an accompanying peak at 275cm
-1

 could be found in the 

literature.  The diffractogram measured from a sample with similarly interrupted 

selenization (displayed in Figure 1) indicates the presence of both CuSe and In2Se3 

phases, therefore the absence of the indium selenide peaks in the Raman spectrum is 

attributed to a phase separation through the depth of the layer, leading to the Raman 

signal being generated solely within the copper selenide surface layer. 
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Figure 2: Raman spectra for: an indium selenide layer; an indium selenide layer 

following Cu-incorporation by ion-exchange; a precursor selenized at 250°C and a 

precursor selenized at 575°C.  The Raman spectrum for the sample selenized at 575°C 

contains three peaks characteristic of CuInSe2 and a broad peak around 154cm
-1

 that 

indicates the presence of CuIn3Se5. 

 



Depth-profile XPS measurements displayed in Figure 3 for an indium selenide layer 

following Cu-incorporation show that it has a graded composition, with peak copper 

concentration corresponding to minimum In concentration.  The Se concentration 

decreases within the copper containing region of the layer, relative to its value in 

copper-free region.  This is consistent with the formation of Cu2-xSe as it has a higher 

metal-to-chalcogen ratio than In2Se3.  The depth-profile of the selenized sample is 

broadly homogenised compared to the un-selenized sample.  However, an increase in 

the concentration of indium throughout the depth of the sample is observed, as is a 

possible accumulation of Cu at the back-contact interface.  EDX measurements on 

this selenized sample indicated a Cu:In:Se composition of 21.3:30.9:47.8 at%.  

Oxygen impurities were not detected in either sample beyond the first points 

measured at the surface . 
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Figure 3: XPS depth-profiles of an indium selenide layer following copper 

incorporation by ion-exchange (left) and a selenized copper-poor layer (right).  Data 

are not quantitative and indicate only the distribution of the elements throughout the 

depth of the layers. 

 

The secondary electron images displayed in Figure 4 for indium selenide layers before 

(left) and after (middle) Cu-incorporation show no significant change in layer 

morphology, which  is consistent with morphology transfer observed in ion-exchange 

processes [15].  No cracks are observed to form during Cu-incorporation.  The 

secondary electron image displayed in Figure 4 for a selenized layer (right) shows that 

the layer has re-crystallised with a rough surface.  Cross-section secondary electron 

images displayed in Figure 5 for an indium selenide layer following Cu-incorporation 

(left) and a selenized Cu-poor layer (right) show that pronounced changes in 

morphology and grain structure occur during selenization.  The selenized copper-poor 

CuInSe2 layers exhibits a dense microstructure and the rough surface morphology is 

again apparent.  No change in the thickness of the layers after Cu-incorporation could 

be measured by stylus profilometry, in this case limiting changes in thickness to less 

than 30nm.  After selenization an average thickness increase of approximately 12% 

was measured. 

 



 
Figure 4: Secondary electron images of as-deposited indium selenide (left), indium 

selenide following Cu-incorporation by ion-exchange (middle) and a selenized layer 

(right). 

 

 
Figure 5: Secondary electron cross-section images of an indium selenide layer 

following copper incorporation by ion-exchange (left) and a selenized layer (right). 

 

We believe structural properties and crystal structure of indium selenide layers play 

an important role in the ion exchange process. γ-In2Se3 possesses a defect-wurtzite 

structure wherein one third of the cation sites are vacant [16].  This crystal structure 

presents three possible locations for the incorporation of Cu ions into a γ-In2Se3 layer: 

as interstitials, on vacant cation sites or on In sites.  Incorporation onto an In site 

requires the removal of the In ion, either to one of the other sites or to the solution.  

Whilst the precise reaction steps involved in the incorporation of copper into the 

indium selenide layers remain unclear, from consideration of the data reported here 

the proposed net mechanism is an ion-exchange reaction according to: 

 

(6-3x)Cu
+

(aq) + In2Se3 → 3Cu2-xSe + 2In
3+

(aq) 

 

This reaction proceeds from the surface of the indium selenide layer and therefore 

results in a layer of β-Cu2-xSe over the γ-In2Se3, with the Cu2-xSe most probably 

penetrating more rapidly into the In2Se3 layer along grain boundaries, as has been 

observed for other ion-exchange reactions involving polycrystalline layers [11].  Cu2-

xSe exhibits high cationic conductivity and high In diffusion coefficients have been 

specifically observed in Cu2-xSe [26], allowing the ion-exchange reaction to continue 

after the In2Se3 surface is covered with Cu2-xSe.  Removal of the precursor layer from 

the hot CuSO4 solution quenches the ion-exchange reaction, hence the Cu2-xSe surface 

layer should contain a graded concentration of indium ions that were diffusing 

towards the surface.  The diffuse boundary between the copper and indium selenide 

layers that is observed in the XPS data is attributed in part to these In atoms and in 

part to interpenetration of the layers along grain boundaries. 

β-Cu2-xSe and γ-In2Se3 have been observed to react directly to form CuInSe2 at 

temperatures >425°C in investigations of stacked selenide thin-films and diffusion 



couples [26, 27].  However, the Raman spectra and XRD diffractograms reported here 

for partially selenized samples indicate a change in the copper selenide phase from 

Cu2-xSe to CuSe during selenization of our samples.  EDX measurements on Cu2-xSe 

layers heated to around 250°C in our tube furnace and then cooled to room 

temperature confirmed that the Cu:Se ratio decreases from 1.7:1 to 1:1.  Based on 

these observations it is concluded that the copper selenide layer formed by ion-

exchange reacts with elemental Se during heating according to the reaction: 

 

Cu2-xSe + (1-x)Se(vapour) → (2-x)CuSe 

 

Therefore, the actual CuInSe2 formation reaction that occurs is considered to be: 

 

2CuSe + In2Se3 → 2CuInSe2 + Se(evaporated) 

 

This reaction has been observed directly by high temperature in situ XRD 

measurements during annealing studies of evaporated bilayers [28].  The 

incorporation and subsequent loss of selenium during these two reactions should 

result in first an increase and then a decrease in the volume of the layer.  Indeed, 

stylus profilometry measurements on a sample for which selenization was interrupted 

at 250°C show a thickness increase of approximately 30% (c.f. 12% for layers 

selenized to 575°C).  The decrease in thickness that must therefore occur as the 

selenization proceeds to higher temperatures is identified as a cause of the roughness 

of the selenized layers [29]. 

Solar cells processed from selenized precursor layers have exhibited efficiencies of up 

to 4% and the J-V curve of such a solar cell is shown in Figure 6.  This cell is typical 

of solar cells processed during this work in having low open circuit voltage and low 

shunt resistance.  The relatively low device efficiency that has been achieved is 

considered to arise in large part from the rough morphology of the absorber layers 

produced so far by this process.  Since the morphology of the absorber layer is 

determined during the selenization process, optimisation of this stage is required to 

improve the performance of the devices processed from these absorbers.  The use of 

rapid thermal processing (RTP) in place of tube-furnace annealing has been shown to 

lead to improvements in the morphology of CuInSe2 produced from stacked elemental 

layers of Cu, In and Se [30].  Similar benefits might be found for the precursors 

developed in this work, resulting in better quality layers and solar cells. 

 

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
-40

-20

0

20

40

60

80

100

C
ur

re
nt

 d
en

si
ty

 / 
m

A
.c

m
-2

Voltage / V

Eff=4.1%
FF=51.1%
Jsc=28.5 mA/cm2

Voc=284 mV
Area=0.6cm2

 
Figure 6: J-V curve for a CuInSe2 solar cell processed from a precursor layer 

produced by ion-exchange incorporation of Cu into an indium selenide layer. 



5 Conclusion and prospects 
The chemical incorporation of Cu into In2Se3 layers by ion-exchange from aqueous 

solution is reported.  This process results in thin films with a graded compositional 

depth-profile containing the crystalline phases β-Cu2-xSe and γ-In2Se3.  Annealing 

these layers in the presence of Se vapour is shown to homogenise the compositional 

depth-profile of the layers and to form chalcopyrite CuInSe2.  The ion-exchange 

solution that was employed was found to be destructive to the exposed areas of the 

Mo back-contact, however attempts to use alternative back-contact materials resulted 

in no incorporation of Cu into the In2Se3 layers, indicating that Mo activates the 

Cu-incorporation process.   

Solar cells processed from CuInSe2 layers produced in this early-stage work showed 

encouraging characteristics, with efficiencies of up to 4% under 1kW/m
2
 simulated 

AM1.5 illumination.  However, the devices were characterised by low open circuit 

voltages and low shunt resistances, attributed to the rough morphology of the layers.  

Optimization of the selenization process is required to improve the morphology of the 

absorber layers and this optimization may require the application of rapid thermal 

processing.  The suitability of the absorber layers for use in solar cells could also be 

increased by incorporation of Ga into the precursor and work to investigate the 

behaviour of (In, Ga)2Se3 precursor layers during the ion-exchange process is 

required. 

These results demonstrate a potential simple, low-temperature route to the formation 

of a precursor structure suitable for conversion into CuInSe2 thin-films for solar cell 

processing.  Co-evaporated indium selenide layers were used during this work in the 

interest of control, however, to fully realise a simple production method for CuInSe2-

based solar cells it is desirable to employ an alternative deposition method.  Several 

non-vacuum methods have been demonstrated in the literature for the deposition of 

indium selenide and so long as sufficient homogeneity can be achieved there is no 

reason why they could not be used with the ion-exchange process reported here. 

Higher rates of Cu incorporation might be possible with changes to the solution 

composition, which would be attractive for high-speed processing of layers. Results 

of further studies on this subject will be reported elsewhere in future.  
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