935 research outputs found

    High-resolution UV spectrum of the benzene—N2 van der Waals complex

    Get PDF
    The rotationally resolved spectrum of the 610 band of the S1 ← S0 electronic transition of the benzene—N2 van der Waals complex has been recorded and 119 transitions assigned. The C6H6·N2 complex, produced in a pulsed molecular beam, was detected by mass-selected two-photon two-colour ionization employing a high-resolution (ΔνUV = 100 MHz, fwhm) pulsed-amplified cw laser for the resonant intermediate excitation. The observed rotational structure is that of a rigid symmetric top with weaker additional rotational transitions most likely arising from the free internal rotation of the N2 in the plane parallel to the benzene ring. The N2 is located parallel to the benzene ring at a distance of 3.50 Å; this decreases by 45 mÅ in the excited electronic state

    High intensity tapping regime in a frustrated lattice gas model of granular compaction

    Full text link
    In the frame of a well established lattice gas model for granular compaction, we investigate the high intensity tapping regime where a pile expands significantly during external excitation. We find that this model shows the same general trends as more sophisticated models based on molecular dynamic type simulations. In particular, a minimum in packing fraction as a function of tapping strength is observed in the reversible branch of an annealed tapping protocol.Comment: 5 pages, 4 figure

    Pseudo-Schwarzschild Spherical Accretion as a Classical Black Hole Analogue

    Full text link
    We demonstrate that a spherical accretion onto astrophysical black holes, under the influence of Newtonian or various post-Newtonian pseudo-Schwarzschild gravitational potentials, may constitute a concrete example of classical analogue gravity naturally found in the Universe. We analytically calculate the corresponding analogue Hawking temperature as a function of the minimum number of physical parameters governing the accretion flow. We study both the polytropic and the isothermal accretion. We show that unlike in a general relativistic spherical accretion, analogue white hole solutions can never be obtained in such post-Newtonian systems. We also show that an isothermal spherical accretion is a remarkably simple example in which the only one information--the temperature of the fluid, is sufficient to completely describe an analogue gravity system. For both types of accretion, the analogue Hawking temperature may become higher than the usual Hawking temperature. However, the analogue Hawking temperature for accreting astrophysical black holes is considerably lower compared with the temperature of the accreting fluid.Comment: Final Version to appear in the journal General Relativity & Gravitation, Volume 27, Issue 11, 2005. 17 pages, Two colour and one black and white figures. Typos corrected. Recent reference on analogue effect in relativistic accretion disc adde

    A continuous time random walk model for financial distributions

    Get PDF
    We apply the formalism of the continuous time random walk to the study of financial data. The entire distribution of prices can be obtained once two auxiliary densities are known. These are the probability densities for the pausing time between successive jumps and the corresponding probability density for the magnitude of a jump. We have applied the formalism to data on the US dollar/Deutsche Mark future exchange, finding good agreement between theory and the observed data.Comment: 14 pages, 5 figures, revtex4, submitted for publicatio

    Tumor infiltrating effector memory Antigen-Specific CD8+ T Cells predict response to immune checkpoint therapy

    Get PDF
    Immune checkpoint therapy (ICT) results in durable responses in individuals with some cancers, but not all patients respond to treatment. ICT improves CD8+ cytotoxic T lymphocyte (CTL) function, but changes in tumor antigen-specific CTLs post-ICT that correlate with successful responses have not been well characterized. Here, we studied murine tumor models with dichotomous responses to ICT. We tracked tumor antigen-specific CTL frequencies and phenotype before and after ICT in responding and non-responding animals. Tumor antigen-specific CTLs increased within tumor and draining lymph nodes after ICT, and exhibited an effector memory-like phenotype, expressing IL-7R (CD127), KLRG1, T-bet, and granzyme B. Responding tumors exhibited higher infiltration of effector memory tumor antigen-specific CTLs, but lower frequencies of regulatory T cells compared to non-responders. Tumor antigen-specific CTLs persisted in responding animals and formed memory responses against tumor antigens. Our results suggest that increased effector memory tumor antigen-specific CTLs, in the presence of reduced immunosuppression within tumors is part of a successful ICT response. Temporal and nuanced analysis of T cell subsets provides a potential new source of immune based biomarkers for response to ICT

    Helicity Amplitudes of the Lambda(1670) and two Lambda(1405) as dynamically generated resonances

    Full text link
    We determine the helicity amplitudes A_1/2 and radiative decay widths in the transition Lambda(1670) to gamma Y (Y=Lambda or Sigma^0). The Lambda(1670) is treated as a dynamically generated resonance in meson-baryon chiral dynamics. We obtain the radiative decay widths of the Lambda(1670) to gamma Lambda as 3 \pm 2 keV and to gamma Sigma^0 as 120 \pm 50 keV. Also, the Q^2 dependence of the helicity amplitudes A_1/2 is calculated. We find that the K Xi component in the Lambda(1670) structure, mainly responsible for the dynamical generation of this resonance, is also responsible for the significant suppression of the decay ratio Gamma_{gamma Lambda}/Gamma_{gamma Sigma^0}. A measurement of the ratio would, thus, provide direct access to the nature of the Lambda(1670). To compare the result for the Lambda(1670), we calculate the helicity amplitudes A_1/2 for the two states of the Lambda(1405). Also, the analytic continuation of Feynman parameterized integrals of more complicated loop amplitudes to the complex plane is developed which allows for an internally consistent evaluation of A_1/2.Comment: 15 pages, 8 figure

    Modelling spectral and timing properties of accreting black holes: the hybrid hot flow paradigm

    Full text link
    The general picture that emerged by the end of 1990s from a large set of optical and X-ray, spectral and timing data was that the X-rays are produced in the innermost hot part of the accretion flow, while the optical/infrared (OIR) emission is mainly produced by the irradiated outer thin accretion disc. Recent multiwavelength observations of Galactic black hole transients show that the situation is not so simple. Fast variability in the OIR band, OIR excesses above the thermal emission and a complicated interplay between the X-ray and the OIR light curves imply that the OIR emitting region is much more compact. One of the popular hypotheses is that the jet contributes to the OIR emission and even is responsible for the bulk of the X-rays. However, this scenario is largely ad hoc and is in contradiction with many previously established facts. Alternatively, the hot accretion flow, known to be consistent with the X-ray spectral and timing data, is also a viable candidate to produce the OIR radiation. The hot-flow scenario naturally explains the power-law like OIR spectra, fast OIR variability and its complex relation to the X-rays if the hot flow contains non-thermal electrons (even in energetically negligible quantities), which are required by the presence of the MeV tail in Cyg X-1. The presence of non-thermal electrons also lowers the equilibrium electron temperature in the hot flow model to <100 keV, making it more consistent with observations. Here we argue that any viable model should simultaneously explain a large set of spectral and timing data and show that the hybrid (thermal/non-thermal) hot flow model satisfies most of the constraints.Comment: 26 pages, 13 figures. To be published in the Space Science Reviews and as hard cover in the Space Sciences Series of ISSI - The Physics of Accretion on to Black Holes (Springer Publisher

    DN interaction from meson exchange

    Get PDF
    A model of the DN interaction is presented which is developed in close analogy to the meson-exchange KbarN potential of the Juelich group utilizing SU(4) symmetry constraints. The main ingredients of the interaction are provided by vector meson (rho, omega) exchange and higher-order box diagrams involving D*N, D\Delta, and D*\Delta intermediate states. The coupling of DN to the pi-Lambda_c and pi-Sigma_c channels is taken into account. The interaction model generates the Lambda_c(2595) resonance dynamically as a DN quasi-bound state. Results for DN total and differential cross sections are presented and compared with predictions of an interaction model that is based on the leading-order Weinberg-Tomozawa term. Some features of the Lambda_c(2595) resonance are discussed and the role of the near-by pi-Sigma_c threshold is emphasized. Selected predictions of the orginal KbarN model are reported too. Specifically, it is pointed out that the model generates two poles in the partial wave corresponding to the Lambda(1405) resonance.Comment: 14 pages, 8 figure
    corecore