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Immune checkpoint therapy (ICT) results in durable responses in individuals with some
cancers, but not all patients respond to treatment. ICT improves CD8+ cytotoxic T
lymphocyte (CTL) function, but changes in tumor antigen-specific CTLs post-ICT that
correlate with successful responses have not been well characterized. Here, we studied
murine tumor models with dichotomous responses to ICT. We tracked tumor antigen-
specific CTL frequencies and phenotype before and after ICT in responding and non-
responding animals. Tumor antigen-specific CTLs increased within tumor and draining
lymph nodes after ICT, and exhibited an effector memory-like phenotype, expressing IL-
7R (CD127), KLRG1, T-bet, and granzyme B. Responding tumors exhibited higher
infiltration of effector memory tumor antigen-specific CTLs, but lower frequencies of
regulatory T cells compared to non-responders. Tumor antigen-specific CTLs persisted in
responding animals and formed memory responses against tumor antigens. Our results
suggest that increased effector memory tumor antigen-specific CTLs, in the presence of
reduced immunosuppression within tumors is part of a successful ICT response.
Temporal and nuanced analysis of T cell subsets provides a potential new source of
immune based biomarkers for response to ICT.
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INTRODUCTION

Cancer immunotherapies that block inhibitory checkpoint
receptors on T cells, such as cytotoxic T-lymphocyte associated
protein 4 (CTLA-4) and programmed death receptor 1 (PD-1),
have resulted in remarkable, long-term tumor control in a subset
of patients (1–3). However, the majority of ICT-treated patients
do not benefit. ICT is very expensive and causes immune-related
toxicities. Accordingly, there is an urgent need for sensitive and
specific biomarkers of response. Current biomarkers include the
expression of checkpoint inhibitory ligands such as PD-L1 (4),
tumor mutation burden (5), gene expression profiles of the
tumor microenvironment (6), and the extent of tumor
infiltrating immune cells (7). Each biomarker has its own
strengths and limitations, but there is currently no accurate
predictor of responsiveness to ICT across multiple cancers.
Developing novel, complementary biomarkers associated with
successful response to ICT will guide clinical decisions and help
understand the underlying immune mechanisms of a successful
anti-tumor immune response (8).

Analysis of CD8+ cytotoxic T lymphocytes (CTL) could offer
a biomarker of response to ICT. Inhibitory checkpoint signaling
that occurs through the PD-1/PD-L1 pathway suppresses
activated CTLs within the tumor microenvironment,
preventing tumor cell killing. ICT drives dynamic changes in
CTL frequency (7, 9), phenotype (10–12), proliferation (13, 14),
and cytotoxic function (6, 15). T cell receptor (TCR) sequencing
studies further suggest that ICT causes clonal proliferation of
CTLs within the tumor (7, 16, 17) and the periphery (16, 18, 19).
As antigen-specificity is crucial for a successful anti-tumor
response, we reasoned that dynamic changes in tumor
antigen-specific CTLs could inform ICT responses. Indeed,
ICT can increase tumor antigen-specific CTLs (20, 21), but
there are limited studies on how ICT-driven phenotypic
changes in tumor antigen-specific CTLs correlate with
ICT outcomes.

The ability to study how tumor antigen-specific CTLs
contribute to ICT outcomes in clinical studies is limited
because of variability in host genetics (which includes TCR
repertoire), clinical history, tumor mutations, and antigen
expression. Furthermore, serial tumor biopsies are often not
feasible, making it difficult to assess dynamic changes within the
tumor microenvironment. Murine models are useful in this
context because variation can be controlled. We used a model in
which inbred mice bearing tumors derived from monoclonal
cancer cell lines respond dichotomously to anti-CTLA-4 and
anti-PD-L1 ICT, with some mice experiencing complete tumor
regression within days, and the others not responding to
therapy (22). We previously defined a pre-treatment ICT
responsive gene signature in the tumor microenvironment
using this model (23). In the present study, we characterized
CTLs specific for a model tumor antigen using this established
model, correlating dynamic changes in T cell frequencies,
phenotype, and clonality to ICT outcomes. We identified
effector memory CTL phenotypes that can be further tested as
immune biomarkers of ICT response.
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MATERIALS AND METHODS

Mice
BALB/c.Arc and BALB/c.AusBP mice were bred and maintained
at the Animal Resource Centre (ARC; Murdoch, WA, Australia)
or Harry Perkins Institute of Medical Research (Nedlands, WA,
Australia). Clone 4 (CL4xThy1.1) TCR transgenic mice express a
TCR that recognizes a MHC class I-restricted influenza A/PR/8
hemagglutinin (HA533-541) epitope (24). As >97% of
CD8+Thy1.1+ T cells expressed the transgenic TCR, Thy1.1
was used as a surrogate marker to track HA-specific CD8+ T
cells. CL4xThy1.1 mice were kindly provided by Prof Linda
Sherman (The Scripps Research Institute, La Jolla, CA) and bred
at the Animal Resource Centre (ARC). All mice used in these
studies were between 8 and 10 weeks of age and were maintained
under standard specific pathogen free housing conditions at the
Harry Perkins Bioresources Facility (Nedlands, WA, Australia).
All animal experiments were carried out in accordance with the
Harry Perkins Institute of Medical Research Animal Ethics
guidelines and protocols (AE140).

Transfer of TCR Transgenic Splenocytes
Spleens from CL4xThy1.1 mice were manually dissociated
through 40 μm strainers with phosphate-buffered saline (PBS)
supplemented with 2% Newborn Calf Serum (NCS; Life
Technologies). Red blood cells were lysed with Pharm Lyse
(BD Biosciences) and splenocytes were washed twice with PBS.
Mice were intravenously injected with 1 x 106 splenocytes
suspended in 100 μl of PBS 24 h prior to tumor inoculation.

Cell Lines
The murine malignant mesothelioma cell line AB1 (25) was
transfected with influenza hemagglutinin (HA) from the Mt Sinai
strain of PR8/24/H1N1 influenza virus to generate theAB1-HAcell
line (26) (CBA, Cat# CBA-1374, RRID: CVCL_G361). AB1 and
renal cell carcinoma (RENCA) cell lines were used for re-challenge
and ex-vivo co-culture experiments. RENCA was obtained from
ATCC (ATCC, Cat# CRL-2947, RRID: CVCL_2174) and AB1 was
obtained from Cell Bank Australia (CBA, Cat# CBA-0144, RRID:
CVCL_4403). Cell lines were maintained in R10; RPMI 1640
(Invitrogen) supplemented with 20 mM HEPES (Gibco), 0.05
mM 2-mercaptoethanol (Sigma Aldrich), 100 units/ml
benzylpenicillin (CSL), 50 μg/ml gentamicin (David Bull Labs),
10% NCS (Life Technologies) and 50 mg/ml of geneticin for AB1-
HA only (G418; Life Technologies). Cells were grown to 80%
confluence before passage and passaged three to five times
before inoculation.

Tumor Cell Inoculation
Cells were harvested when they reached 80% confluence. Mice
were inoculated subcutaneously (s.c.) into the shaved, right-hand
flank (for single inoculations) or both left- and right-hand flanks
(for dual-tumor inoculations) with 5 x 105 tumor cells suspended
in 100 μl of PBS using one 26-gauge needle per injection (22).
Length and width tumor measurements were monitored using
calipers to calculate tumor area (mm2).
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Immune Checkpoint Therapy
Immune checkpoint antibodies anti-CTLA4 (clone 9H10) and
anti-PD-L1 (clone MIH5) were prepared and purified by
Polpharma Biologics (Urecht, Netherlands) as previously
described (23). Mice received an intraperitoneal injection (i.p.)
of 100 μg of anti-CTLA4 and 100 μg of anti-PD-L1. 100 μg of
anti-PD-L1 was subsequently administered 2 and 4 days after the
initial dose, as previously optimized (22). Control mice received
PBS at the equivalent volume, as previous work found no
difference between control immunoglobulin G and PBS (27).
Mice were randomized before treatment. The first dose of ICT
was administered 7 to 10 days after tumor inoculation, when
tumors were between 9 and 20 mm2 in size. Mice were defined as
responders when their tumor completely regressed and remained
tumor-free for at least 4 weeks after treatment. Mice were
designated as non-responders if their tumors grew to 100 mm2

within 4 weeks after the start of therapy, similar to PBS controls.
Mice that had a delay in tumor growth or partial regression were
designated as intermediate responders and excluded from the
analysis. We only used experiments in which mice displayed a
dichotomous response, where there had to be at least one non-
responder and one responder in each cage (22, 23).

Surgical Excision of Lymph Nodes and
Complete Tumor Debulking
Complete tumor debulking and lymphadenectomy of the right-
hand flank was performed either on the day of treatment (prior
to ICT administration; day 0) or 7 days post-therapy (day 7), as
previously described (22). Briefly, mice were dosed with 0.1 mg/
kg of buprenorphine in 100 μl, 30 min before anaesthesia with
isoflurane (4% in 100% oxygen at a flow rate of 2 liters/min).
Whole tumors and draining inguinal lymph nodes (DLN) were
surgically excised. Surgical wounds were closed using Reflex
wound clips (CellPoint Scientific). Mice received subsequent
doses of 0.1 mg/kg of buprenorphine in 100 μl 6 and 24 h after
surgery for pain relief.

Preparation of Single Cell Suspensions
DLNs were manually dissociated through 40 μm strainers with
PBS + 2% NCS. Tumors were dissected into smaller pieces with a
scalpel blade and subjected to digestion with 1.5 mg/ml type IV
collagenase (Worthington Biochemical) and 0.1 mg/ml type I
DNAse (Sigma Aldrich) in PBS + 2% NCS for 45 min at 37°C on
a Microtitre Plate Shaker Incubator (Thomas Scientific) (28).
Tumors were washed twice in PBS + 2% NCS following
digestion. Cell counts were performed using a hemocytometer
with trypan blue exclusion.

T Cell: Tumor Co-Culture
Spleens from ICT responders were harvested 14 days post re-
challenge with cell line AB1-HA. Splenocytes were seeded at a
density of 1 x 106 cells/well in a 96-well plate and stimulated with
cell lines; AB1-HA, AB1 or RENCA, or the HA peptide at a 10:1
effector:target ratio for 20 h at 37°C. Brefeldin A (Biolegend) was
added into each well for the last 4 h of the culture. Cells were
washed twice with PBS + 2% NCS before antibody staining.
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Flow Cytometry
Four flow cytometry panels outlined in Table S1 were
performed. Samples were stained with Fixable Viability Dye
(FVD) eFluor™ 506 (eBioscience) or Zombie UV™

(BioLegend) to exclude dead cells. Cells were incubated with
Zombie UV™ suspended in PBS in the dark for 30 min at room
temperature (RT) prior to staining with surface antibodies.
Antibodies for surface staining (including FVD eFluor™ 506)
were suspended in PBS + 2% NCS and incubated on cells for 30
min at 4°C. PBS + 2% NCS was used to wash cells between
incubations. Samples were then fixed and permeabilised for 10
min at 4°C using the Foxp3/Transcription Factor Staining Buffer
Set (eBioscience). Cells were washed with Permeabilization
Buffer (eBioscience), subjected to intracellular staining and left
overnight at 4°C. Single stain and fluorescence minus-one
(FMO) controls were also used. Data were acquired using a
BD LSRFortessa™ SORP or BD FACSCanto II™ (BD
Biosciences) with 50,000 live events collected per sample where
possible. All flow cytometry analyses were completed using
FlowJo™ Software version 10 (BD Biosciences). Summary of
antibodies concentrations and gating strategies is outlined (Table
S1, Figure S8).

Fluorescence Activated Cell Sorting
Tumors were stained for fluorescence activated sorting using the
BD FACSMelody™ cell sorter (BD Biosciences). All samples
were stained with antibodies outlined in Table S1 for 30 min at
4°C to sort for CD8+ T cells for TCRb sequencing or
CD8+Thy1.1+ T cells for RNA sequencing. Sorted cells were
collected in 500 μl of RNAprotect cell reagent (QIAGEN) and
stored at −20°C. Sorts were run on greater than 85% efficiency.
Sorting gates are described in Figure S9.

Bulk TCRb Sequencing
TCRb libraries were made using a 5’Rapid Amplification of
cDNA Ends (5’RACE) technology optimised from R. Holt and
colleagues (29). RNAwas extracted from cell sorted samples using
the RNeasy Plus Micro Kit (QIAGEN). Total RNA was
transcribed to cDNA using a TCRb constant region primer
(Integrated DNA Technologies) and a modified SMARTerIIA
primer (Integrated DNA Technologies), adding unique molecular
identifiers (UMI) to individual TCRb cDNA sequences for
unbiased PCR amplification. The TCRb locus was amplified by
nested PCR with another TCRb constant region primer
(Integrated DNA Technologies), and a universal primer to
SMARTerIIA, with the final PCR adding sequencing adaptors
and barcodes to the TCRb libraries. PCR products were purified
using AMPure XP AgenCourt Beads (Beckman Coulter).

Paired-end (2 × 300 bp) high-throughput sequencing was
performed using the Illumina MiSeq platform (Illumina, RRID:
SCR_016379). Data processing, aggregation of UMIs and
alignment of CDR3 sequences to the IMGT/V-QUEST
reference genome (30) were performed using repertoire
analysis software based on MIGEC (31) (RRID:SCR_016337)
and MiXCR (32) (RRID:SCR_018725) pipelines. Only sequences
with UMIs were aligned. In-house analysis tools used were
November 2020 | Volume 11 | Article 584423
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provided by AC and MW (Institute for Immunology and
Infectious Diseases, Murdoch, Australia).

TCRb Repertoire Analysis
TCRb libraries were analyzed using functions in R (R Project for
Statistical Computing, RRID: SCR_001905, v3.6.0). A TCRb
clone was defined by the CDR3 amino acid sequence. Clones
that were less than 8 or greater than 20 amino acids in length,
included a stop codon or a frameshift were defined as non-
functional and were excluded from analysis. To measure TCRb
repertoire diversity, Renyi entropy was used given by Ha (X) =
1

1−a log (S
n
i=1 p

a
i ) where a is a scale of values, ranging from 0 to

infinity. The closer a gets to infinity, the more weight is given to
more abundant TCRs. a = 0 corresponds to ‘richness’, the
number of unique TCRb sequences (TCRb clones). a = 1
corresponds to Shannon’s entropy. a = 2 corresponds to
Simpson’s diversity (33). Shannon’s entropy was also
calculated by; H = 1 − (−SN

i=1 pilnpi)
n where pi is the proportion of

sequence i relative to the total N sequences (34). This index
ranges from 0 to 1; 0 being an entirely monoclonal sample, and 1
meaning each unique TCRb clone only occurs once. Networks of
the most abundant TCRb clones were constructed using the
ggraph extension (v2.0.2) of ggplot2 package in R (RRID:
SCR_014601, v3.2.1). Each node in the network represents a
unique CDR3 TCRb sequence. Each edge is defined as a single
amino acid difference (levenshtein distance of 1) between the
CDR3 TCRb sequences (35). TCRb CDR3 sequence for the CL4
clone (CASGETGTNERLFF) was determined by bulk TCRb
sequencing of sorted CD8+ splenocytes from CL4xThy1.1 mice.

Bulk RNA Sequencing
RNA was extracted from CD8+Thy1.1+ cell sorted samples using
the RNeasy Plus Micro Kit (QIAGEN). RNA quality was
confirmed on the Bioanalyzer (Agilent Technologies). Library
preparation and sequencing on the Novaseq 550 (75 base pair,
paired-end, Illumina), quality assessment using FastQC and
alignment to the GRCm38/mm10 mouse reference genome
were performed by the Institute for Immunology and
Infectious Diseases (Murdoch, Australia). The Broad Institute
Inc. Gene Set Enrichment Analysis (GSEA) Software (RRID:
SCR_003199, v4.0.2) was used to analyze 50 MSigDB hallmark
gene sets on normalized gene expression data (36). Gene sets
enriched at a nominal P < 0.05 and FDR < 0.25 were
considered significant.

Statistical Analysis
Data are presented as mean ± SD. Mann-Whitney U tests were
used for comparisons between the means of two variables.
Ordinary Two-way ANOVA with Sidak’s multi-comparisons
was used to compare the interaction between two variables.
Correlation was analyzed using Pearson correlation tests.
Kaplan-Meier method was used for survival analysis with log-
rank test (Mantel-Cox) to analyze significance. All statistics was
performed using GraphPad Prism Software (Graph Pad Software
Inc., RRD:SCR_002798, v8). Results were significant when p <
0.05 (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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RESULTS

The Frequency of Tumor Antigen-Specific
CD8+ TILs Is Highly Variable Irrespective
of Response Phenotype
To track how ICT changes the frequency and phenotype of
tumor antigen-specific CD8+ T cells, we transferred T cells
specific for a MHC-I restricted HA533-541 antigen from
CL4xThy1.1 mice (24) into BALB/c recipient mice prior to
inoculation of a HA expressing tumor cell line (26). Mice were
treated with anti-CTLA-4 and anti-PD-L1, and HA-specific
(CD8+Thy1.1+) T cells in tumors (Tum) and draining lymph
nodes (DLN) post therapy were analyzed (Figures 1A, B).

Overall, there was no significant difference in frequency of
CD8+Thy1.1+ and CD8+Thy1.1− T cells between ICT treated and
control groups. However, CD8+Thy1.1+ T cells tended to
increase in the tumors of ICT treated mice (Figures 1C, D).
Recipient and donor CD8+ T cells in DLNs expressed minimal
granzyme B (GrB), regardless of treatment (Figure 1E). The
number of CD8+Thy1.1+GrB+ TILs were significantly higher in
the ICT treated group (P = 0.013), but this difference was not
found in endogenous CD8+ T cell populations, suggesting that
our ICT regime increased the cytotoxic function of HA-
specific CTLs.

Interestingly, the number of HA-specific CTLs varied
between ICT treated animals, making up greater than 20% of
CD8+ TIL populations in some tumors, and less than 5% in
others. This suggests that although all tumors expressed HA (26),
the frequencies of HA-specific CTLs did not increase in all
animals after ICT.

A Unique Murine Bilateral Tumor Model to
Track Tumor Antigen-Specific CTLs in ICT
Outcomes
To have more certainty on the presence or absence of a
correlation between the frequency of HA-specific CTLs and
outcome to ICT, we utilized our established bilateral tumor
model where inbred, age-matched mice harboring monoclonal
tumors display dichotomous responses to ICT (22) (Figure 2A).
Importantly, the addition of CL4xThy1.1 splenocytes did not
alter ICT response rate or symmetry in the bilateral model
(Figures 2B, S1). Symmetry in tumor growth and regression
upon ICT allowed us to surgically remove one tumor and its
corresponding DLN to track HA-specific CTLs, while tracking
how this tumor would have responded to ICT, by monitoring the
contralateral tumor.

Tumors and their corresponding DLNs were resected for
analysis either prior to ICT administration (day 0) or 7 days after
(day 7; Figure 2A). At day 0, excised tumors were
indistinguishable by size, total cell count, and proportions of
CD45+ cells regardless of subsequent response outcomes (Figure
S2A). At day 7, non-responding tumors were greater in size than
responding tumors (P = 0.003), however total cell counts and
proportions of CD45+ cells were similar between groups (Figure
S2A). Dichotomous responses to ICT were observed, with
tumors reaching 100 mm2 in non-responders (NR; red), or
November 2020 | Volume 11 | Article 584423
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completely regressing to 0 mm2 in responders (R; blue) by 20
days post-treatment (Figure 2C).

ICT Responders Have More Tumor
Antigen-Specific CTLs in Tumors and
Draining Lymph Nodes, and Reduced
Intra-Tumoral Tregs Compared to Non-
Responders
In responding mice, the number of CD8+ TILs were significantly
higher after treatment (Figure 2D). In contrast, non-responding
animals had a similar amount of CD8+ TILs pre- and post-treatment
(Figure 2D; R vs NR; DLN: P > 0.05; Tum: P = 0.0011). The number
of HA-specific CD8+Thy1.1+ T cells in DLNs and tumors were
significantly higher after treatment in responding, but not in non-
responding mice (Figure 2D; R vs NR; DLN: P = 0.02; Tum: P =
0.004). Endogenous CD8+Thy1.1− T cells significantly decreased
after treatment in DLNs, but remained similar in tumors in both
responders and non-responders (Figure 2D).

The number of total CD4+ T cells, Tregs (CD4
+Foxp3+) and

helper T cells (CD4+Foxp3-) in the DLN increased after
Frontiers in Immunology | www.frontiersin.org 5
treatment in both responding and non-responding animals
(Figure 2E). Intra-tumoral CD4+ T cell frequencies decreased
post-ICT in responders, which was largely attributed to a
reduction in Tregs. This reduction was not observed in non-
responders (Figure 2E, R vs NR; DLN: P > 0.05; Tum: P = 0.002).
Intra-tumoral CD4+Foxp3+ frequencies inversely correlated to
the proportion of CD8+Thy1.1+ T cells after treatment (Figure
S3; r = −0.393; P = 0.03). Taken together, our data suggests that a
post‑treatment increase in HA-specific CD8+ T cells in DLN and
tumors, accompanied by a reduction in intra-tumoral Tregs is
associated with ICT response.

Responding Tumors Have a More Clonal
TCRb Repertoire Compared to Non-
Responders, but Each Animal Uses a
Private CD8+ TIL Repertoire
As responding animals had increased frequencies of CTLs
specific against one tumor antigen, we next examined if there
was oligoclonal expansion of other CTL specificities in the
endogenuous population. To characterize TCR repertoires of
A B

D EC

FIGURE 1 | ICT increases tumor infiltrating cytotoxic tumor antigen-specific CD8+ T cells. (A) Experimental timeline. CL4xThy1.1 splenocytes were adoptively
transferred into BALB/c mice one day prior to AB1-HA tumor inoculation. Mice were treated with ICT (aCTLA-4 and aPD-L1) or PBS when tumors reached 9 to 20
mm2 in size. Tumors (Tum) and corresponding draining lymph nodes (DLN) were harvested 7 days post-treatment. (B) Tumor growth curves of mice treated with
PBS (black) or ICT (blue). Each line represents an individual animal. Dotted lines indicate days of treatment. (C) Representative FACS plots, and (D) dot plots
representing frequencies of CD8+Thy1.1+ (HA-specific) T cells in DLN and Tum of both treatment groups. (E) Frequency of granzyme B (GrB) expressing
CD8+Thy1.1+ or Thy1.1− T cells. Data in dot plots represented as mean ± SD. Mann-Whitney U tests were used to compare groups; *P ≤ 0.05. Data represents two
independent experiments.
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A B

D

E

C

FIGURE 2 | Tumor antigen-specific CD8+ T cells increase in ICT responding DLN and tumors. (A) Experimental timeline. CL4xThy1.1 splenocytes were adoptively
transferred into BALB/c mice one day prior to bilateral AB1-HA tumor inoculation. Right-hand flank (RHF) tumor (Tum) and draining lymph node (DLN) were surgically
resected either pre- (day 0) or post-ICT (day 7). Left-hand flank (LHF) tumor was followed for ICT response. (B) Growth curves representing symmetrical growth and
regression of bilateral AB1-HA tumors treated with ICT (n = 8; color-coded per mouse) or PBS (n = 2; black), without surgery. Dotted lines indicate days of
treatment. (C) Growth curves of LHF tumors for mice that had their RHF tumors and DLNs resected at day 0 (left) or day 7 (right). Mice were characterized as
responders (R; blue) or non-responders (NR; red). Dotted lines indicate days of treatment. Pre (Day 0) and post (day 7) treatment frequencies of total CD8+,
CD8+Thy1.1+ and CD8+Thy1.1− (D); total CD4+, CD4+Foxp3+ and CD4+Foxp3- T cells (E) in resected DLNs (top) and tumors (bottom) of responding and non-
responders. Data represented as mean ± SD, summary of five independent experiments. Two-way ANOVAs were used to compare the magnitude of difference
between responders and non-responders, with Tukey’s multiple-comparisons to compare pre- and post-treatment frequencies within each group; *P ≤ 0.05, **P ≤

0.01, ***P ≤ 0.001, ****P ≤ 0.0001.
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post-treatment CD8+ TILs, we performed bulk TCRb sequencing
on sorted CD8+ TIL populations. The total number of sorted
cells significantly correlated with the total number of TCRb
sequences returned (Figure S4A; r = 0.89, P < 0.0001), and the
total number of sorted cells, unique and total TCRb sequences
were similar between responders and non-responders (Figure
S4B). The frequency of HA-specific CD8+ T cells identified by
flow cytometry also significantly correlated with the number of
CL4 TCRb CDR3 sequences (CASGETGTNERLFF) in matched
samples (Figure 3A; r = 0.87, P < 0.0001), highlighting that the
most abundant TCR clones were being captured by our
TCRseq assay.
Frontiers in Immunology | www.frontiersin.org 7
Consistent with our previous experiments, the proportion of
post-treatment CL4 TCRb sequences was significantly greater in
responders (80.5 ± 16.1%) than non-responders (26.9 ± 35.5%)
(Figure 3B; P = 0.03). We estimated the diversity of TCRb
repertoires by their Renyi entropies (Figure 3C), and found that
responders had significantly less diverse TCRb repertoires than
non-responders (Figure S4C, D; P = 0.019), suggesting that
expansion of the CL4 clone correlated with response. The CL4
clone was the most frequent TCRb clone for all responding
animals (47.9–92.3%) and the majority of non‑responding
animals (11.6–87.9%). The subsequent most abundant TCR
clonotypes (2nd to 10th) varied between animals, making up
A B

D E

F

C

FIGURE 3 | CL4 transgenic TCRb clone dominated post-treatment CD8+ TIL TCRb repertoire in responding animals. (A) Linear regression analysis between the
CL4 TCRb clone frequency in TCRb sequencing and the frequency of CD8+Thy1.1+ T cells analyzed in flow cytometry. (B) Dot plot representing the CL4 TCRb clone
frequencies in responders (R; blue) and non-responders (NR; red). (C) Graph of Renyi diversity profiles for each TCRb repertoire. The scale of Renyi order a
corresponds to calculated diversity metrics. a = 0 indicates the richness of the repertoire (number of unique TCRb clones). Shannon’s diversity index corresponds to
a = 1. Each line represents the Renyi entropy of one animal, and a steeper gradient between a = 0 and 1 represents a less diverse repertoire. (D) Bar graph
displaying proportions of the 10 most frequent TCRb clones in responders and non-responders. Each bar represents the TCRb repertoire of one animal. CL4 clone
(purple) is the most frequent clone in 11/13 animals. (E) Bar graphs representing the number of shared TCRb clones between 2 or more animals. Shared clones are
separated into overlap within only responders (blue), only non-responders (red), or all mice regardless of outcome (black). (F) Network analysis of the top 50 most
abundant TCRb clones for each animal. Each node represents a unique CDR3 TCRb sequence (TCRb clone) and each edge defines a single amino acid difference
(levenshtein distance of 1). Size of each node represents the number of mice that have the TCRb clone in their repertoire and nodes are colored by presence of
TCRb clone in only responders (blue), only non-responders (red) or both groups (purple). Data is shown as mean ± SD where appropriate; R (n = 8) and NR (n = 5)
were sampled from three independent experiments; Mann-Whitney U tests; *P ≤ 0.05.
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3.72% to 27.6% of each repertoire (Figure 3D), suggesting that
expansion within responding tumors was mostly monoclonal.

As all mice harbored a tumor that expressed a common
antigen (HA), we examined the overlap between tumor-
infiltrating CD8+ TCRb clones between animals. Excluding the
transferred CL4 clone, there was minimal sharing of TCRb
clones between all animals, regardless of response. The
majority of overlapping clones were shared between two and
three animals (Figure 3E). We next represented the top 50 most
abundant TCRb clones from each animal in a network based on
their TCRb CDR3 amino acid sequence similarities. 57 out of 560
TCRb clones formed networks, but the majority of TCRb clones
were not related to any other clone, failing to form any networks
(Figure 3F). Most TCRb CDR3 sequences were randomly
distributed throughout the networks regardless of response,
with the exception of two groups of highly similar TCRb
CDR3 sequences that were exclusively found in responding
tumors (Group 1, 2, Figure 3F). However, each clone from
these groups was present in only one to three responding mice
and comprised less than 0.6% of the TCRb repertoire.

These data suggest that apart from the clone we introduced,
each animal had a private and highly diverse tumor-infiltrating
CD8+ TCRb repertoire. Importantly, responders had a less
diverse CD8+ TCR repertoire compared to non-responders, but
this was largely attributed to the expansion of HA-specificity in
this model.

ICT Responders Have Increased Post-
Treatment Tumor Antigen-Specific
Effector Memory CTLs Compared to Non-
Responders
We next investigated CD8+ T cell phenotype in ICT responders
and non-responders. Endogenous (Thy1.1−) and transferred
(Thy1.1+) CD8+ T cells were analyzed for expression of
differentiation and memory-associated markers. We focused on
post-treatment (day 7) because pre-treatment DLN and tumors
contained <1% of CD8+Thy1.1+ T cells (Figure 2D), making it
difficult to accurately analyze their phenotype.

Post-treatment CD8+Thy1.1+ T cells were activated
(CD44hiCD62Llo) and upregulated memory and differentiation
markers IL-7Ra (CD127), killer cell lectin-like receptor subfamily
G1 (KLRG1) and transcription factor T-box (T-bet), suggesting that
the HA-specific CTLs acquired an effector memory (TEM) like
phenotype (Figures 4A, B, Figures S5A–C). More than 92% of
CD8+Thy1.1+ T cel l s displayed a naive phenotype
(CD44loCD62LhiCD127loKLRG1lo) prior to transfer, indicating
that upregulation of these markers occurred in vivo within the
tumor-bearing animal (Figure S5D). Importantly, ICT responders
displayed increased frequencies ofCD44hiCD62LloCD127hiKLRG1hi

TEM CD8+Thy1.1+ T cells compared to non-responders in both
DLNs (Figure 4C; P = 0.0002) and tumors (Figure 4D; P < 0.0001).
Endogenous CD8+Thy1.1− T cells retained a naïve phenotype
(CD44loCD62Lhi) in DLNs and an effector phenotype (TEFF;
CD44hiCD62LloCD127loKLRG1lo) in tumors (Figures 4A, B).
Endogenous CD8+Thy1.1− T cells were similar between
responding and non-responding tumors and DLNs (Figures 4C,
Frontiers in Immunology | www.frontiersin.org 8
D), suggesting that differences in TEM frequencies weremostly found
in the HA-specific CTLs.

A small proportion of non-responding mice exhibited tumor
infiltration of CD8+Thy1.1+ T cells (>10%). To determine
whether HA-specific CTLs acquired a TEM surface phenotype
in these non-responding animals, we examined the expression
profiles of CD127 and KLRG1 based on their median
fluorescence intensity (MFI). Responders had a significantly
higher CD127 MFI compared to non-responders in tumors,
but not DLNs (Figures 4E, F; DLN: P = 0.05; Tum: P = 0.02).
KLRG1 MFI was similar between responders and non-
responders for both compartments (Figures 4E, F; DLN:
P = 0.77; Tum: P = 0.08).

We questioned whether CTL function, as measured by the
release of cytotoxic effector molecules and the expression of
proliferation and activation markers, was associated with
response to ICT. Although CD8+Thy1.1+ T cells had increased
expression of Granzyme B, Ki67 and PD-1 compared to their
endogenous CD8+Thy1.1− counterparts, the frequencies for both
endogenous and HA‑specific CD8+ T cells that expressed these
markers were similar between responders and non-responders
(Figure S6). Bulk RNAseq of CD8+Thy1.1+ TILs supported this,
as we found minimal differences in immune-related gene sets
between responders and non-responders, with the exception of
genes associated with WNT/b-catenin signaling being
upregulated in non-responders (Figure S7).

Together, these data suggest that HA-specific CTLs display an
activated phenotype after ICT, and that animals with increased
frequencies of TEM HA-specific CTLs are more likely to respond
to ICT. Although non-responding animals had significantly
lower frequencies of tumor infiltrating HA-specific CTLs, they
still exhibited a memory-like phenotype and retained
cytotoxic function.

ICT Responders Maintain a Tumor-
Specific Memory T Cell Response
To determine if ICT responders formed a memory T cell response
against a broad range of tumor antigens, we re-challenged
responding animals with AB1-HA or the parental AB1 tumor cell
lines 30 days after the original tumor completely regressed. All ICT
responders were protected from re-challenge of either tumor cell
line (Figure5A).CD8+Thy1.1+Tcellsweredetected in the spleenof
these re-challenged animals, indicating that they persisted after
tumors regressed (Figure5B).CD8+Tcells fromsplenocytesof ICT
responders produced IFNg and upregulated CD137 when co-
cultured with AB1-HA tumor cells (P = 0.002) and HA peptide
(P = 0.007), but minimally with AB1 or MHC-I matched control
(RENCA) tumor cells (Figures 5C–E). These results suggest that
ICT responders successfully formed a long-lastingmemoryCD8+T
cell response against AB1-HA tumors.
DISCUSSION

Here, we studied tumor antigen (HA)-specific CTLs in ICT
responders and non-responders using an established murine
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FIGURE 4 | Tumor infiltrating tumor antigen-specific CD8+ T cells acquire an effector memory phenotype in ICT responding animals. Representative FACs plots
comparing CD8+Thy1.1+ (blue) and CD8+Thy1.1− (gray) T cell phenotype in post-treatment (A) DLNs and (B) tumors. Cells were analyzed for CD44, CD62L, CD127,
KLRG1 and T-bet expression. Gates on the FACS plot represent effector memory (TEM; CD44

hiCD62LloCD127hiKLRG1hi) and effector (TEFF;
CD44hiCD62LloCD127loKLRG1lo) T cell subsets. Graphs representing frequencies of tumor antigen-specific (CD8+Thy1.1+) and endogenous (CD8+Thy1.1−) T cells
that exhibit TEM or TEFF phenotypes in (C) DLNs and (D) tumors, grouped by response/non-response to ICT. (E) Representative histograms comparing CD127 and
KLRG1 expression on activated (CD44hiCD62Llo) CD8+Thy1.1+ T cells between responding and non-responding DLNs (top) and tumors (bottom). (F) Median
fluorescence intensity (MFI) expression of CD127 and KLRG1 on CD8+Thy1.1+ T cells in DLNs (top) and tumors (bottom) represented as dot plots. Data shown as
mean ± SD. Mann-Whitney U tests were used to compare between both responders and non-responders, and between Thy1.1+ and Thy1.1− T cells for each T cell
phenotype; *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001.
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FIGURE 5 | ICT responders develop a tumor antigen-specific memory T cell response. (A) Representative tumor growth curves of ICT responders re-challenged
with AB1-HA or AB1 tumor cells 30 days after the primary tumor regressed to 0 mm2. (B) Representative FACs plot of CD8+Thy1.1+ T cells from splenocytes from
an ICT responder, 15 days after AB1-HA tumor re-challenge. (C) Ex vivo co-culture setup to assess antigen-specific T cell responses. Splenocytes from ICT
responders or naive BALB/c mice were co-cultured with AB1-HA, AB1, RENCA tumor cells, or HA peptide. (D) Dot plots and (E) representative flow cytometry
plots, showing percentages of CD8+ T cells that co-expressed IFNg and CD137 for each culture condition. Data shown as mean ± SD, summary of two independent
experiments; ICT responders: n = 10; Naïve BALB/c: n = 4. Mann-Whitney U tests; **P ≤ 0.01.
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bilateral tumor model (22, 23, 37). We found that ICT increased
tumor infiltration of HA-specific CTLs, but this increase varied
between animals. Successful ICT responses were associated with
increased post-treatment frequencies of effector memory (TEM)
HA‑specific CTLs within tumors and draining lymph nodes, but
not with pre-treatment frequencies. Previous murine studies
demonstrated that some ICTs enhanced tumor antigen-specific
CTL responses (21, 38, 39), and increased expression of
activation and memory associated markers (20, 40). While
these reports have added to our understanding of how ICT
changes tumour antigen‑specific CTLs, the majority are limited
to comparisons between ICT-treated and untreated animals. Our
study adds to this as we relate ICT induced changes in tumor
antigen-specific CTLs to eventual outcomes in treated mice.

Our main finding is that increased frequencies of IL-7Ra
expressing HA-specific TEM CTLs correlated with ICT response.
The TEM phenotype reported in our study is similar to memory
precursor effector T cells found in chronic viral infections (41–
44). IL-7/IL-7Ra signalling pathway is crucial for memory CTL
formation. The effects of ICT are IL-7 dependent (45), and
combination IL-7 and ICT improved therapeutic benefit and
long-term memory T cell responses in murine models (46–48).
Increased frequencies of IL-7Ra expressing tumor antigen-
specific CTLs found in the present study could indicate
increased survival and persistence of memory CTLs in the
tumor microenvironment and possibly providing long-term
therapeutic benefit to ICT. A recent study by Sade-Feldman
and colleagues similarly found an effector/memory CTL gene
signature including the IL-7R gene, that was enriched in ICT
responding tumors (12). IL-7R expressing memory T cells could
be a T cell population of interest that defines ICT outcomes.

A challenge lies in identifying definitive CTL populations that
correlate with ICT outcomes. Memory CTLs exist in
heterogeneous differentiation states expressing different
combinations of surface markers CCR7, CD69, CD44, Slamf7,
PD-1, and T cell factor 1 (TCF1). However, the change in
different memory CTL subsets during ICT vary between
studies (12, 20, 40, 49, 50). In contrast to published studies, we
did not observe any difference in post-ICT PD-1 expression or
proliferation (Ki67) of HA-specific CTLs between responding
and non-responding animals (9, 13, 51). This highlights the
complexity in memory CTL differentiation and the need to
understand how these populations change during ICT,
especially in relation to treatment outcome.

HA-specific CTLs present in non-responding tumors were
enriched for genes involved in WNT/b-catenin signaling, which
could be a mechanism underlying the difference in HA-specific
CTL frequencies between responders and non-responders. Our
result is supported by studies which show that increased b-
catenin in vitro reduces CD8+ T cell proliferation, decreases
tumor antigen-specific CTL function and promotes resistance to
ICT in vivo (52–55). NeutralisingWNT signaling in vivo expands
tumor antigen–specific effector memory CTLs, which were
phenotypically similar to our study (56). However, WNT
signaling is also associated with the formation of stem-cell like
memory T cells through the upregulation of TCF1, which
Frontiers in Immunology | www.frontiersin.org 11
mediate superior anti-tumor T cell responses (57). Increased
proportions of CD8+PD-1+TCF1+ T cells associated with
improved survival for ICT treated melanoma patients (11). A
caveat with our study is that non-responding mice with HA-
specific CTLs present in tumors are rare, and we were unable to
perform an in-depth phenotypic analysis to address this
discrepancy. The role of WNT/b-catenin signaling in the
development of anti-tumor CD8+ T cell immunity requires
further investigation.

In clinical studies, increased frequencies of tumor antigen-
specific CTLs from pre- to post-ICT have been reported in ICT
responders (5, 58). While most responding tumors generally
exhibited high frequencies of HA-specific CTLs in the present
study, there were some exceptions. A small proportion of
animals had greater than 20% tumor infiltration of HA-specific
CTLs however did not respond to ICT. This may be due to the
presence of immune suppressive cells, such as myeloid derived
suppressor cells and regulatory T cells, which suppressed tumor
antigen-specific CTL function even if they were present (59, 60).
Conversely, few animals had an absence of HA-specific CTLs but
still displayed complete tumor regression following ICT. This
suggested that while it is desirable to have large numbers of CTLs
specific for one tumor antigen, it is not essential for response;
CTLs specific for multiple tumor antigens may be required (61).
The present study was limited to analysing the role of CTLs
against one model tumor antigen. We did not analyse the tumor
reactivity of endogenous CTLs which could have correlated to
ICT response. Tracking one antigen specificity allowed us to
study the effects of antigen-specific CTLs in ICT outcomes
however the frequency and phenotype of multiple tumor
antigen-specific CTLs in ICT should be investigated in
future studies.

TCR sequencing is often used as a complementary approach
to assess the breadth of antigen-specific T cell responses and is a
potential biomarker of response to ICT. Successful ICT
responses were associated with reduced tumor TCRb diversity
in our study, similar to other murine studies (38, 62, 63). Cancer
patients with improved survival exhibit a greater expansion of
TCRb clones after ICT in their tumors and peripheral blood,
compared to non-responders (16–19, 64), suggesting that
effective therapy requires expansion of tumor antigen-specific
CTLs. Although we were able to track the expansion of a single
antigen-specific CTL clone, the dominance of this clone
prevented us from studying the breadth of the anti-tumor T
cell response or identifying expansion of other TCRb clones in
the endogenous CD8+ T cell compartment in relation to ICT
outcomes. The combination of the high affinity CL4 TCR
transgenic, and robust cross presentation of the HA antigen in
draining lymph nodes (65, 66) could have resulted in the
dominant expansion of HA-specific CTLs over other
specificities in responding animals.

Apart from the introduced CL4 clone, there was minimal
sharing and similarities in tumor TCRb clones between animals.
Highly private tumor TCRb repertoires have been described in
pre-clinical studies by others (38, 67) and ourselves (unpublished
data). Crosby and colleagues found that ICT expanded private
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tumor TCRb clones even in the presence of a fixed tumor antigen
(38). This highlights the highly diverse nature of TCRb
repertoires in tumor models with limited variation. Each
animal expands unique tumor TCRb clones during ICT, and
identifying cognate antigens of expanded TCR clones associated
with successful ICT responses will inform personalized antigen-
specific therapies.

In conclusion, post-treatment frequencies of effector memory
tumor antigen-specific CTLs, and a clonal CTL repertoire
correlate with response to ICT in our model. A potential
dynamic biomarker of response could lie within the
distribution of TCRb clones within a memory T cell
population (18). Further validation is required to investigate if
this could predict ICT outcomes in cancer patients.
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