10 research outputs found

    Multifragmentation of a very heavy nuclear system (I): Selection of single-source events

    Full text link
    A sample of `single-source' events, compatible with the multifragmentation of very heavy fused systems, are isolated among well-measured 155Gd+natU 36AMeV reactions by examining the evolution of the kinematics of fragments with Z>=5 as a function of the dissipated energy and loss of memory of the entrance channel. Single-source events are found to be the result of very central collisions. Such central collisions may also lead to multiple fragment emission due to the decay of excited projectile- and target-like nuclei and so-called `neck' emission, and for this reason the isolation of single-source events is very difficult. Event-selection criteria based on centrality of collisions, or on the isotropy of the emitted fragments in each event, are found to be inefficient to separate the two mechanisms, unless they take into account the redistribution of fragments' kinetic energies into directions perpendicular to the beam axis. The selected events are good candidates to look for bulk effects in the multifragmentation process.Comment: 39 pages including 15 figures; submitted to Nucl. Phys.

    Multifragmentation in Xe(50A MeV)+Sn Confrontation of theory and data

    Get PDF
    We compare in detail central collisions Xe(50A MeV) + Sn, recently measured by the INDRA collaboration, with the Quantum Molecular Dynamics (QMD) model in order to identify the reaction mechanism which leads to multifragmentation. We find that QMD describes the data quite well, in the projectile/target region as well as in the midrapidity zone where also statistical models can be and have been employed. The agreement between QMD and data allows to use this dynamical model to investigate the reaction in detail. We arrive at the following observations: a) the in medium nucleon nucleon cross section is not significantly different from the free cross section, b) even the most central collisions have a binary character, c) most of the fragments are produced in the central collisions and d) the simulations as well as the data show a strong attractive in-plane flow resembling deep inelastic collisions e) at midrapidity the results from QMD and those from statistical model calculations agree for almost all observables with the exception of d2σdZdE{d^2 \sigma \over dZdE}. This renders it difficult to extract the reaction mechanism from midrapidity fragments only. According to the simulations the reaction shows a very early formation of fragments, even in central collisions, which pass through the reaction zone without being destroyed. The final transverse momentum of the fragments is very close to the initial one and due to the Fermi motion. A heating up of the systems is not observed and hence a thermal origin of the spectra cannot be confirmed.Comment: figures 1 and 2 changed (no more ps -errors

    Effect of the intermediate velocity emissions on the quasi-projectile properties for the Ar+Ni system at 95 A.MeV

    Full text link
    The quasi-projectile (QP) properties are investigated in the Ar+Ni collisions at 95 A.MeV taking into account the intermediate velocity emission. Indeed, in this reaction, between 52 and 95 A.MeV bombarding energies, the number of particles emitted in the intermediate velocity region is related to the overlap volume between projectile and target. Mean transverse energies of these particles are found particularly high. In this context, the mass of the QP decreases linearly with the impact parameter from peripheral to central collisions whereas its excitation energy increases up to 8 A.MeV. These results are compared to previous analyses assuming a pure binary scenario

    Multifragmentation of a very heavy nuclear system (II): bulk properties and spinodal decomposition

    Full text link
    The properties of fragments and light charged particles emitted in multifragmentation of single sources formed in central 36AMeV Gd+U collisions are reviewed. Most of the products are isotropically distributed in the reaction c.m. Fragment kinetic energies reveal the onset of radial collective energy. A bulk effect is experimentally evidenced from the similarity of the charge distribution with that from the lighter 32AMeV Xe+Sn system. Spinodal decomposition of finite nuclear matter exhibits the same property in simulated central collisions for the two systems, and appears therefore as a possible mechanism at the origin of multifragmentation in this incident energy domain.Comment: 28 pages including 14 figures; submitted to Nucl. Phys.

    Study of intermediate velocity products in the Ar+Ni collisions between 52 and 95 A.MeV

    Full text link
    Intermediate velocity products in Ar+Ni collisions from 52 to 95 A.MeV are studied in an experiment performed at the GANIL facility with the 4π\pi multidetector INDRA. It is shown that these emissions cannot be explained by statistical decays of the quasi-projectile and the quasi-target in complete equilibrium. Three methods are used to isolate and characterize intermediate velocity products. The total mass of these products increases with the violence of the collision and reaches a large fraction of the system mass in mid-central collisions. This mass is found independent of the incident energy, but strongly dependent on the geometry of the collision. Finally it is shown that the kinematical characteristics of intermediate velocity products are weakly dependent on the experimental impact parameter, but strongly dependent on the incident energy. The observed trends are consistent with a participant-spectator like scenario or with neck emissions and/or break-up.Comment: 37 pages, 13 figure

    Evolution of the fusion cross-section for light systems at intermediate energies

    Get PDF
    ExpĂ©rience GANIL NIMAr + Ni and Ni + Ni collisions are investigated between 32 and around 100A MeV incident energy with the 4π multidetector INDRA. Fusion cross-sections are found to decrease from ˜ 180mb at 32A MeV to zero above 50A MeV. Other experimental results, for light systems, are compared. Moreover, theoretical works are discussed and fusion cross-sections, calculated from two dynamical simulations based on nuclear Boltzmann equation (Boltzmann-Nordheim-Vlasov and Landau-Vlasov models), are also compared to experimental results
    corecore