100 research outputs found
Quadratic solitons as nonlocal solitons
We show that quadratic solitons are equivalent to solitons of a nonlocal Kerr
medium. This provides new physical insight into the properties of quadratic
solitons, often believed to be equivalent to solitons of an effective saturable
Kerr medium. The nonlocal analogy also allows for novel analytical solutions
and the prediction of novel bound states of quadratic solitons.Comment: 4 pages, 3 figure
Solitons in nonlocal nonlinear media: exact results
We investigate the propagation of one-dimensional bright and dark spatial
solitons in a nonlocal Kerr-like media, in which the nonlocality is of general
form. We find an exact analytical solution to the nonlinear propagation
equation in the case of weak nonlocality. We study the properties of these
solitons and show their stability.Comment: 9 figures, submitted to Phys. Rev.
Modulational instability in nonlocal nonlinear Kerr media
We study modulational instability (MI) of plane waves in nonlocal nonlinear
Kerr media. For a focusing nonlinearity we show that, although the nonlocality
tends to suppress MI, it can never remove it completely, irrespectively of the
particular profile of the nonlocal response function. For a defocusing
nonlinearity the stability properties depend sensitively on the response
function profile: for a smooth profile (e.g., a Gaussian) plane waves are
always stable, but MI may occur for a rectangular response. We also find that
the reduced model for a weak nonlocality predicts MI in defocusing media for
arbitrary response profiles, as long as the intensity exceeds a certain
critical value. However, it appears that this regime of MI is beyond the
validity of the reduced model, if it is to represent the weakly nonlocal limit
of a general nonlocal nonlinearity, as in optics and the theory of
Bose-Einstein condensates.Comment: 8 pages, submitted to Phys. Rev.
Quasi-analyticity and determinacy of the full moment problem from finite to infinite dimensions
This paper is aimed to show the essential role played by the theory of
quasi-analytic functions in the study of the determinacy of the moment problem
on finite and infinite-dimensional spaces. In particular, the quasi-analytic
criterion of self-adjointness of operators and their commutativity are crucial
to establish whether or not a measure is uniquely determined by its moments.
Our main goal is to point out that this is a common feature of the determinacy
question in both the finite and the infinite-dimensional moment problem, by
reviewing some of the most known determinacy results from this perspective. We
also collect some properties of independent interest concerning the
characterization of quasi-analytic classes associated to log-convex sequences.Comment: 28 pages, Stochastic and Infinite Dimensional Analysis, Chapter 9,
Trends in Mathematics, Birkh\"auser Basel, 201
Tracking azimuthons in nonlocal nonlinear media
We study the formation of azimuthons, i.e., rotating spatial solitons, in
media with nonlocal focusing nonlinearity. We show that whole families of these
solutions can be found by considering internal modes of classical non-rotating
stationary solutions, namely vortex solitons. This offers an exhaustive method
to identify azimuthons in a given nonlocal medium. We demonstrate formation of
azimuthons of different vorticities and explain their properties by considering
the strongly nonlocal limit of accessible solitons.Comment: 11 pages, 7 figure
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
Multidimensional quantum solitons with nondegenerate parametric interactions: Photonic and Bose-Einstein condensate environments
We consider the quantum theory of three fields interacting via parametric and repulsive quartic couplings. This can be applied to treat photonic chi((2)) and chi((3)) interactions, and interactions in atomic Bose-Einstein condensates or quantum Fermi gases, describing coherent molecule formation together with a-wave scattering. The simplest two-particle quantum solitons or bound-state solutions of the idealized Hamiltonian, without a momentum cutoff, are obtained exactly. They have a pointlike structure in two and three dimensions-even though the corresponding classical theory is nonsingular. We show that the solutions can be regularized with a momentum cutoff. The parametric quantum solitons have much more realistic length scales and binding energies than chi((3)) quantum solitons, and the resulting effects could potentially be experimentally tested in highly nonlinear optical parametric media or interacting matter-wave systems. N-particle quantum solitons and the ground state energy are analyzed using a variational approach. Applications to atomic/molecular Bose-Einstein condensates (BEC's) are given, where we predict the possibility of forming coupled BEC solitons in three space dimensions, and analyze superchemistry dynamics
Driver Fusions and Their Implications in the Development and Treatment of Human Cancers.
Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy
Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.
BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362
- âŠ